THE HERMITE-MINKOWSKI DOMAIN OF REDUCTION OF
POSITIVE DEFINITE QUADRATIC FORMS IN SIX VARIABLES

P. P, Tammela

Let

n
§= §(2yyeees TR)= 2:_{ Q,u z ®,
i-,l

be a positive definite quadratic form with real coefficients q,

W where Q=04 ()= 4,0« .y ). The

form § is said to be Minkowski-reduced if any set of integers ¢,,..., ¢, with greatest common divisor
(f,,..., L)1 satisfies
§(, ..., B )2 0. (1)
The general theory of Minkowski reduction of positive definite quadratic forms was developed

in Minkowski’s celebrated memoir {3] (see also the beautiful exposition [4]).

In the N-dimensional N="%*" space of coefficients {@,,..., Qug; @iy « - =+ On-s, n', the
Minkowski domain of reduction is a convex gonohedron with a finite number of faces. Minkowski [2]
formulated a number of propositions which make it possible to determine the reduction gonohedron
for n = 6. However, Minkowski published proofs of these propositions only for n =41, 3|. Ryshkov
[5] has recently proved these propositions in the case n=5. The purpose of the present note is to
give a proof of Minkowski’s propositions for n=6, More precisely, we establish the following propo-

sition (stated without proof by Minkowski [2]).

THEOREM. Let

gst-}zﬁ a,; *, =

be a positive definite quadratic form with real coefficients o, (i, j=1,...,n)and suppose that n=8.

A necessary and sufficient condition for $§ to be Minkowski-reduced is that it satisfies the conditions

Qi % Oy ey (b=, .0y n=4) 2)
and the conditions
$E, .oy Dm0y (3)
where k=1...., n, and the values of { are taken from the following table. Here (x, k|, ..., x'"~ %
run through all permutations of the indices {4, 2, ..., n). Only those rows of the table (4) with not

more than n entries are taken, and zeros are inserted in the vacant positions.
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Before proving the theorem, we state and prove a series of lemmas.

We introduce the following notation: 1) e, is the vector which has its i -th coordinate equal to 1
and all its other coordinates equal to 0 (i~1,..,m; 2) if i, j,..., K are indices (possibly identical)

from the set (4, 2,...,n), then

. N -v.‘ .
ei,,),...,K= et+e)+ ex

In this notation the inequalities (3) corresponding to the rows of the table (4) (other than the last row)

can be written as follows:
MOty 80620 (B2 42,0y nm ), )

§e )—g(e‘..\ao (t=4,5,...5 n-1), (6)

(738 FTRRR) bevrderde

s(eio,Ja»- CERY NP Ny A Jt)

The inequalities (5), (6), and (7), respectively, are equivalent to the inequalities
0 (t=1,2,..., n=14), (8)

~He 120 (t=5,..., n-1), (7)

2«}(81.0', e}u}n .. -1)¢)*§(e‘h dzyooe rje)a

2.5, [P0 =45, ne) ©)

o.’ ein }a,v---n}g-n bes Jg)+s(elln-..,)‘_" Jes

2§(e}e; e, 5o, 0 (t=5,..., n=4), (10)

(TITTTY (SIS NPR Wy X '!jQ-HJQ-«}“Jt

where §(z;y) is the bilinear form
H=; 4= Lﬂ% Oy %
corresponding to the quadratic form ,and §, J,,...,j, are distinct indices chosen from the set
(4, %2, ¢0:4n).
In addition, for brevity we use the notation £=(£,,.. ., £,) in the statements of Lemmas 1-3 for

the point with integral coordinates £, ..., £, satisfying the inequalities
O=f( <l =...=¢,. (11)
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LEMMA 1, Let k be any index in the range 0=«=n -1, Suppose that § satisfies the inequali-

ties* (5) for t=1,2,..., k +4, and suppose also that

k-t
20> ; b, (12)
Finally, suppose that for x> 3 we have the inequality
n-x~1 K=3 .
28, .. > % £;+Zé(l',+/f)(K-b— (3 AP S AP S B (13)
Then
5(3)35(5-9,‘-,&“,’”)- {14)

Proof. We have**
UL UL RPN bt 2 (L RG of | SMORS §
Expanding the bilinear form $(f; e,_, n.«s4,...,n) in its first argument according to the representation
£= n%{’ e+l e ek, Rk dy o o 2y Z( T L

we obtain

n=x-4

$(h)-5(-e -k,..,,n)'% ei{z‘s'(ei;en-x,...,ru)+sfennx,,..,n)}'+

*(en,—-x.w{_ en-x){ 2., &pxss,,..,ni* Herksn, ... ,nlt

n-x+f

+(EW-K+7’_ Bn.—KH) Z . {2;(83', en-hz, - ,n)“L S(en-nu.v e "’”’*
FLLZ
%-3 n-k+d
+% (En-i—en-i-é) Z P’Hej; erw%,...,n)'i' §(en—i, .. .,n«)} *
= j=n~K
K-3 =i n
+% @, .- "‘”“,.%m é »{zs(e e+ §{e)}+
nK-1
+(2’Zn-x— % 64—4){5(971.-1(, ,n«) nmgfu f‘(eh)‘f"”

L A O _maz e+
k-3 ei~d
+% U=t . 2 i+ maz e §e)h+
i=s JEn-K+ 2 n-K+¢l

K-8

A=Ked
2l - % G148 o b Zo

-2\ e
A (= )“H))ﬂ?ifhsn“ A

*And hence also the equivalent inequalities (8).

i
**We henceforth take the sum > tobe equal to zero if v <u. We assume also that { = ¢ and
iz

max §e)=0 if m=>n.

mash sn
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This establishes the inequality (14), since by (5) each of the terms in the curly brackets is nonnega-
tive, so that by (11), (12), and (13) each of the terms on the right-hand side of the last equality is also
nonnegative.

This proves Lemma 1.

Remark. For =3 and n=6 the inequality (13) takes the form
Bal,e b, >0+, L,. (13")
LEMMA 2. Let =3 or « = 4. Suppose that § satisfies the inequalities (5), (6), and (7) for
t=4,2,. . ., k+1andalso that

o2 b, bt b b= > 8, (15)
(w1 ed

Finally, suppose that for k=4 we have the inequality

n-5

eﬂ."-!+ gl’b-b * gﬂ'—& > % gl- * Efb-‘( ‘ (16)
Then

sh= §(£~en—s<,..,,n—4,rv,n.)' (17)

Proof. Let
- A=min{t _; 6.-2,. %,  B=min{l_~A; & - .},
C=an{Bn,M-2n_K, B,,_,—ZMZ'B}.

We have

§(6)- $(8- en.-x,. coy =4y 0, nl= 2 5(2; en-x,..,,n~4,n,n)_ f(en-x,...,n-«l, n, nle

Expanding the bilinear form $(£; e, .. .., ., ) according to the representation
nek-1{
e= in ebei"'Aenm,. ey n—J,n,n+ Ben"‘s- veyi= -0, N +

+(en-x'A'B)en—k,...,n-4,n+cen-x+4,..., Redy, Rty iy n T

k=2
+ (Zn—KM_ Pxn‘__k-c)en_.ﬂh n-4, n + LZ_.Z((’n-L- ErL—L—l)en—t,...,n +
*l = lag~B -0y - mAIE,
we obtain
$8)-5CB-2 ... not,n, n)=
n-k-4
= Z eil{zﬂet; €nx cyn-in n)+ Hen-‘»- co =1y Ny '1')} ¥
=1 ' L
Uy ~A-BYilen.s,... not,n)" HEII*

+B{§(en~x,: -y n-tyn)” Hen-l)h

"’(zn_”f zn-x_c){s(en-m-l,..., n-4,n)* 2580 Cnmktd, .y n=d, )+

+ (Zn-xd- en—x 'C){ s(en.-nw,- eagn-1, n.)_ ;(eﬂr)h’
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+C{5’(en-m4,...,n.-i,n,n.)_ $€n-y )}' +

+C{Z§(en_K; en_“q,,,,,n-;,n-l, n,,n,)+ g(en—xd,...,n-l,n.-fl, n.nﬂ"

-2 n-4
3 Byt 02 {28E e S
<2 pan-2

x-2 neKef
+ Z (gn,_i," en,—'u-l) Z {2’5'(%’ en.-i, i ,n—J,ﬂ:)+ Hen—i,...,n-'!, n)}+
ez =n-K

n=2
*(B, -0, ,-B-C1 3 {23(e;; e, , rslen , if+

t=n-3
+(€n_4— gn_z—B—C){Zg(en_ﬁ e )+ 4+
ned

(-0 ~A) 2 \ {25(e,; e, )+ 5} +

i=n-

* B[g(en’"x?v--,ﬂ--ﬁ n-1,n, R«)- ;(e“‘"‘q ey tmdy ”')}+

n-y
Wl -0, ~ALS 2ste;setE(e)]r

imR-K
a-y
# by by B-OL 2 24005 0 + 5O
==K
Rak-{
Q2A-1= > b+l ~A-BrBSEL . nepnn) SCa} ¥
[y

* wn-uu = zn—x -C)[s(en-xu, ceiyn-iyn, S il 11 R n)] +

nel
+(Booy - en-a—B—C)Z {25(ei; e )rie,, )+

LEPLek

nek-4
+{2A~1- % g+t ~A-B+B-(x-3xL,_-f, _,-B-C}se, ).

This establishes the inequality (17), since by (5), (6), and (7) each of the terms in the curly brackets is
nonnegative, while for «=3 or k=4 Eq. (5) and Lemma 1 imply that the expressions in the curly brack-

ets are nonnegative, so that by (11), (15), and (16) each of the terms on the right-hand side of the last
equality is nonnegative.

This proves Lemma 2,

LEMMA 3, Let n=6. Suppose that § satisfies the inequalities (5}, (6), and (7) fort=4,..., 5 and
also that

i
tsb=t=t, 20, €3 f (m=45,6) (18)

i={

Finally, suppose that either of the following conditions holds:

1) b=2f =28, (19}
2) b=t =t (20)
Then
s(i)as(e_e‘r‘y’r"!’;s-sy‘)' (21)
Proof. Let

A=min i+t -0,, E-E).

681



We have
&(E)—s(z-e,,z,a’% 5’6’5)=2,§(5;e,',_,,’h,,s,é,s)—i(e4’z,a’ 055,60 )

Expanding the bilinear form ;e y according to the representation

4y%y 3,4, 55, 6,6

b=(E,-8)2,, 5,055, 6,6 ACa,5, 01,5, 5,6,6
+(f+E -t -A)e ~L~Ae, ,  +(8-E,e

+
432,8,4,5,6 (2“ 45,6 R4

we obtain

5'(2}_'“[_94,7,,5, u, 5,5, s,e\‘ = A‘[§(e4,z,a.a,s,s)'5(e~)’1'+
+(24+Eﬂ-e!~A){§(el,z,a.u,5, 5,6 = 5(65)} +(@,+ Zu_ EA’-A){“e‘hz,s,u,s,s,s)' Hes)}
3
*“fEfA’% {25665 8, 500500, 5 Y HE-L-ANR5 (e, € M5 0 *
HE-t-PR5(e,; e dvse, b+ (b -6 ANZEE, ) s+
. k
+(6- esm(e4.z,a,~,s.s,s)— sep)f HE"’—ZE)% fzste,; ©s.e 1r§(8s Ot

o) SENT

ARy 8,4,5,5,

+H2 (L)1 (6 - L0+ A ste

+A{§(e4,z,s,q,q,5'5‘5,5)—;(61,1,3, '4,5)6)1 *{z(f,"eu)-4-{5s~f,)+r'\-(E;E,—A)};(e*),
This establishes the inequality (21), since by (5), (6), and (7) each of the terms in the curly brackets
is nonnegative, while by Eq. (5) and Lemma 1 the expression in the curly brackets is nonnegative, so
that by (11), (18), (19), and (20) each of the terms on the right-hand side of the last equality is non-

negative.

This proves Lemma 3.

3.
We turn now to the proof of the theorem, assuming henceforth that n<=6. If a form is Minkow-

ski-reduced, then it satisfies a set of inequalities which includes the inequalities (2) and (3).

We next prove the converse: if § satisfies the inequalities (2) and (3), then it is Minkowski-
reduced. Let £= (¢ ,..., &) be a vector with integral coordinates having the greatest common
divisor (4,...,¢,) = Ifor some j (1=} =nr). We must prove that

$(ly s L)z 0y, (22)
1°. Without loss of generality, we can assume that £, >0 for all i=4,..., n; for otherwise the
form § could be replaced by the form §, =¢(+ =,,..., tx,), where the signs are chosen so that
S 1B= 58 s B

2°. Suppose that all the coordinates of the vector ¢ except the first coordinate are equal to zero,

with the greatest common divisor ({;,.. ., {)=1. Then t=¢;, for some i=} and

HO=sEep=a,=a,
by (2). Thus the inequality (22) has been established in this case. We therefore assume in what fol-
lows that there are at least two nonzero coordinates.

3°. As a preliminary step, we prove the following lemma.
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LEMMA 4. Suppose that § satisfies the conditions (3). Suppose also that the integral-valued
vector {=(t,,...,L,) is distinct from the vectors of the table (4), with {,>0 (i=4,..., n), and that there
are precisely s nonzero coordinates (2=38<n = &), Then there exists an integral-valued vector

£'=(l;,..., &) satisfying the conditions

Iy O==Eb (i=4,...,n)
2) 4, >0 it >0 (i=4,...,0
3) o, ,+2,L< R
4) $(t"= 5(L).
Proof. Without loss of generality, we assume that the conditions (11) are satisfied for
t=(f,...,t,), since we could otherwise replace the form f by a form g=g(x, ,..., =) such that
t,<...=¢, . Inproving Lemma 4 for the form §', we also prove it for the form §.

In the following table we give the consiruction of the vector {' in terms of the vector ¢ (for

various values of s and under various conditions on the coordinates of the vector ), The remarks

in the last column indicate why the new vector {' satisfies the conditions 1-4 (the references are to
various cases of Lemmas 1-3).

s Condition on 1 | Construction of | Remarks
the vector 1
£ <t P'=t-ep, L. 1. for k=0
2 "
4
en-4=en, £="£'We f= E,Hen_l'n
L._.<t, t'=1t-e, L.1 for k=0
3
r 4 .
gn_z= eﬂ' 2:2“&& B-‘ﬁn eﬂ“l,n-hn-
n-7
2> 2 0, t'=t-e, L. 1. for k=0
van-a ¢
n-d
2. 2 L,
4 Lsr;-!
22t b=t-enn L.1.  fork=1
m-4
20.s 2 !, m=n-1,n)
i=n-3
bog>1 t'= b-€,2n-tn L. 1. forx=2
-1
20> S o, =t-e, L. 4 for k=0
yeR-l
-4
2t 2 I
ten-y
5
-2
ZB,,_4>_Z_~'B.” t=t-e L.1 for k=1
m-{
z@ms.ZZi(m=n-4,n)
i=n-
n-3%
2,22 & Cel-€yynin L.1  for k=2
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6

m-=4
U< 2 F(m=n-2, n-4,n)

i=n-4

n-2+ ZfL-l > En—"g* en/

£ >4

n-3

f=l-e

n-3,n-2,n~4,

L.4. for «x=3

m~4
2'Em,é_Z ei (m=r-2,n-1,n),

ten-4

NI A AN A Y

$=n=6

R-2 “n~1 n
o
by > 1 b= b, ‘ e=e"-"en-~,n-s,n—z,n-4,u
" : -
2,832{ £ t'=t-e, L.4. for «=0
5
zQ<%e‘
4
u,»% A V=t-e,, L.4. for k=4
m-{
2l &2 L, (m=5,8),
i=d
3
283%55 t=t-e,,, L.4. for =z

m-4
Un=2 b (m=4,5,6),

t,> ¢,

byttt Lir e v 8,

1
t=t-e,., 556

L.i. for «=3

m-{
U= Z L, (m=4,5,6)

t,> ¢,

e$+ e"+ al = E4+ e!.+ El

L

B,=1 b=t-e,, 546 | L-2. forx=3
m-4
zﬂms;ei (m=4,5,6), ¢~ L,
&>, L2 L,
b +E =42, + L, btz
£,>1 t=t-e,, . 564 L-% fOrk=y
m~{
28, = lZ‘ L, (m=4,5,6),
bml=0 >4
Lot v >0, + 0,
LeE = b+l t'=t-e L.2 for k=4

2,3,45,6,6




m-1
Zemf g—lit (m=4,5,8), bi=t,=0,=0,
by=b=t,>1 ' to=2¢,
b bt <0, +0, U=t usses L3 (19
m-4
2l = .Zﬁ (m=4,5,6) L=t,=¢,
i=
b=t =€, >1 by=t,
b+l s B, 40, be=ty
eb‘ > es 8'=e_el.,7.,!,'¢,5,5,6 L.3. (20}
me{
2, €58 (m=4,5,6)
ey
L=t =¢,>1
3,335 ={+L
1 4
by=ty £=g—l£ e”%%z,a,w,s,s

It is straightforward to showthat the conditions imposed on the coordinates ¢, of the vectors ¢,
exhaust all possible vectors which do not appear in the table (4). We note here only that if §,_, =4,

then it can be shown from the conditions

n-m~-{

Z’En-m= Z E:‘. (m,co, 452’)

=4

that ¢ is one of the vectors given in the table. It is also quite straightforward to verify that the con-

ditions for the applicability of the lemmas are satisfied.

This proves Lemma 4.

In order to formulate the next proposition, we introduce the term ‘‘reductions of Lemma 47’

for the transitions from ¢ to ¢' given in the table which appears in the proof of Lemma 4.

Addendum to Lemma 4. The vector £’=¢,, , , s s:. canbe obtained by means of the reduc-

tions of Lemma 4 from only one of the following vectors m®=e,, . +3e, . m*=e,  +2¢e, +3¢,,,

3 ) _ 5)_ ) _
m=e+le, , +t3esthe , mi=e+2e, +de, o, m =le 5,60 M =2e

192,3,4,5, 4,2,5,&1,5,5,5,5"

Proof. It is sufficient to consider the reductions of the table corresponding to s=n= 6. These
reductions are achieved by subtracting the vectors e .15 Cihxs G bk, mo Bp K myms €L 4 K, PP
€, j,x,m, p,p,%, « from the original vector ¢. Using the fact that £= e, ;,4,4,5,5,s, and checking
directly that { satisfies the necessary conditions for the reduction to be possible, we find the given

set of vectors m,

LEMMA 5. If § is any form in six variables which satisfies the conditions (3), then

smPy= maz a (b=4,..., 6).
=4 8 o

Proof. We have
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$(m )= 8y g, 0,0,5,60* zZ{zHeb, €50+ §le )
$(m*y= Z{zf(ea; CRPRLE (C)

y
* é {Li’(eh esxs)+5(e‘:6)} +§-(e‘n"y5,"r51516, 5)+ §(e"q,f’ b)

),

§m )={5'( 4,;,3,u,5,s,5)" 5’(94)" ’{*(ez,s,ﬂ,s,s,s)_}(eK)}+

Hste,,,,,, 55,66 5808 w5 0t P H@L s uese ) 5@, L)
O ]
$m)=f2se,; LAV (CWPIN A z; fasie;; e, 0 5o, b

i 125-(9”2,,,, LN ICH s,s)} +ie,, 05 AR SIS

ing

§(m )= Z “( 42,8, u,s,s,s) s(e»)} Zili—(e” e+ 4le; )JT‘"

L4
"Z{zs'(en e + 5'(3 )}' +§( 1,2,3, 4, 8, ‘)+s'(ed 2,% 4,58, &)

{6,

.
fm )= {”ema 3,4 5,5,5,5)- Hev)} + Z "2'5'(54; e )+ §(e4)i? ¥
i=5

* Zz fostes; €00 58 b+ 880 010,50 H€ 0, 5 0,m 50,0

By the inequalities (5), (6), and (7) the expressions in the curly brackets are nonnegative, and the sum

of the remaining terms is not less than maac 5.

=4

This proves Lemma 5.

4, Suppose that § is a form which satisfies the conditions (2) and (3) of the theorem, By Lemma
4, if t=(l,..., t,) is any integral-valued nonnegative vector having s (2=<s= n < 6) nonzero coordinates,
then there exists a vector &'=(f,,.. ., ¢,) of the table (satisfying ¢/> 0 if ¢, > 0) such that
§(8)> 5(L").
This vector also satisfies {;=1 if ¢; =4. Thus if the last nonzero coordinate of ¢ is equal to unity,
then the last nonzero coordinate of £' is also equal to unity. By (3) we have
$E)= 5(2Y> 5(ep=0a;,,

where {=¢/-1and {=¢ =0 for i>j.
We therefore assume in what follows that the last nonzero coordinate of ! is greater than unity.

5°. If 5=2,3,4 and { is any integral-valued vector having s positive coordinates, Lemma 4 im-
plies that £/ =1 if ¢, =0 and that &, =0if §,=0 (i=4,...,n). By the conditions (3) we have

)= §(L)» max §(e)
L ¥ 0

and the inequality (22) is valid.

6. If s=5, Lemma 4 implies that §(£)= §(2'), where the vector ¢' of the table has at least one of
its last two positive coordinates equal to unity, and by (3) we have

§(£)?§(el); §(ex)= Q’xx’
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where k is the penultimate index of the positive coordinates of ¢. Using the results of Sec. 3.5, this

1mplies the inequality (22).

7. Let s=n=6and t=(¢,, ..., {,), and assume that we have the greatest common divisor
(s« oy E)=1 for j=4. By Lemma 4 there exists a vector ¢'=(¢, . .., ¢ ) of the table for which at
least one of the last three coordinates is equal o unity. Then by (3) we have

Y= §{E)= 0y
The case { =1 was considered in Sec. 3.4. Consequently, to prove (22) it is sufficient to study the case

of the greatest common divisor (i,,f,)=1. We shall prove that in this case
$H0) = Oy (23)

8. Let s=n=6 and assume that we have the greatest common divisor (£, ¢,)= 1. If by applying
Lemma 4 we found a vector ¢' of the table (4) for which the {fifth or sixth coordinate were equal to
unity, we would have

$HE)= §(B)= Qg
To establish (23) it is therefore necessary to consider only those vectors ¢' of the table (4) for which
t;>4 and £ >1, i.e., the vectors '
P, 1,1, 2,2), EP=(4,4,1,1,2,53), £%=(1,1,1,1,3,2).
9. We show here that

5
e()

}(Em)a 0 ® Qg $y= o, (24)

We have
5 (eu‘,,},x, Lm,m,n, %, 'o)gis(ei,'), K, &m,x, ‘L)- S'(em)}+

2 {usle; e e, MHHE) 2 5(e,)F Sy,

(I RN
where i, {, k,€,m, and ¢ are distinct indices. By (5) and (6) the expressions in the curly brackets are

nonnegative. This implies the inequalities (24) and hence also (23).

10°. To prove the theorem it remains only to note that, according to Lemma 5, all the vectors
m* (i=4,...,6)from which the veetor ¢’ =(I,1,1,1,2,2) can be obtained by means of the reduction of
Lemma 4 satisfy the condition
smea, (=1,...,6),

so that we have established the inequality (23) and thus also (22).
This proves the theorem.,

I thank A, V. Malyshev for suggesting the problem and for his interest in the work and S, 8.

Ryshkov for allowing me to become acquainted with his work {5] in manuseript form.
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