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SOLUTIONS OF THE YANG--BAXTER EQUATION 

P. P. Kulish and E. K. Sklyanin UDC 517.43+530.145 

We give the basic definitions connected with the Yang--Baxter equation (factoriza- 
tion condition for a multiparticle S-matrix) and formulate the problem of classi- 
fying its solutions. We list the known methods of solution of the Y--B equation, 
and also various applications of this equation to the theory of completely inte- 
grable quantum and classical systems. A generalization of the Y--B equation to the 

case of Z~-graduation is obtained, a possible connection with the theory of repre- 

sentations is noted. The supplement contains about 20 explicit solutions~ 

0. By the Yang--Baxter equation [i, 2] is meant the following functional equation: 

for a collection of functions ~C~) of a complex parameter ~, depending on four indices 

~~,running through values from I to some natural number N. In (i) and later we under- 

stand summation over repeated indices. 

Equation (i), which first appeared in [i, 2], has many applications to the theory of 
completely integrable quantum and classical systems and exactly solvable models of statis- 
tical physics. In recent years it has undergone intensive study~ Here the profound connec- 
tion of (1) with such areas of mathematics as group theory and algebraic geometry has be- 
come more and more apparent. 

The present paper is an (apparently the first)attempt to give a systematic survey of 
the facts accumulated at the time it is written relating to the solutions of (i). The ac- 
count is structured in the following way. In Sec. i we give the basic definitions and we 
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formulate the problem of the classification of the solutions of (i). In Sec. 2 we list var- 
ious applications of (i) to the theory of completely integrable systems. In Sec. 3 we dis- 
cuss known methods of solution of (i) and we formulate some assertions about properties of 
its solutions. In Sec. 4 we consider generalizations of the Yang--Baxter equation, and fin- 
ally, in the Supplement we give a summary of the known solutions of (i). 

The authors hope that the present paper will be useful to specialists in the theory of 
completely integrable systems and the method of the inverse scattering problem, and also 
helps to attract attention of mathematicians who are specialists in group theory and alge- 
braic geometry to a new promising object of investigation, the Yang--Baxter equation. 

The authors thank L. D. Faddeev, the initiator of studies on the quantum method of the 
inverse problem, V. E. Korepin, A. G. Reiman, M. A. Semenov-Tyan-Shanskii, L. A. Takhtad- 
zhyan, N. Yu. Reshetikhin, and S. A. Tsyplyaev for many helpful discussions. We are grate- 
ful to A. A. Belavin, A. B. Zamolodchikov, and V. A. Fateev for giving us a series of solu- 
tions of the Yang--Baxter equation. 

i. Since the systematic study of the Yang--Baxter equation (Y--B) has only just begun, 
there is still no generally accepted terminology in this area. In this section we make an 
attempt to propose a system of terms and definitions for the theory of solutions of the Y--B 
equation. Practice will show how successful this attempt is. 

First of all, we discuss a series of equivalent ways of writing the Y--B equation (i). 

For this we note that the four-indexed quantities ~j~(~) can constitute a linear operator 

~.(~) in the tensor product of two N -dimensional complex spaces ~=~N). The action of 

this operator on the basis vector ~F @ 8s is given by the following formula: 

R c%~ e~) = (e~ | % }~ ~ (2) 

The tensor ~K~ can also constitute three operators ~, ~4~%~ in the tensor prod- 

uct V|174 , corresponding to the three ways of imbedding the space ~@V in N~@V@V : 

N o t a t i o n  ( 3 ) , w e  h a v e  i n t r o d u c e d  a l l o w s  us  to  w r i t e  t h e  Y a n g - - B a x t e r  e q u a t i o n  (1)  a s  an  o p e r -  

a t o r  equation: 

~(~_ ~)g~$ (~) ~ (~)= ~ (~) ~ (~)~ (~- ~) (4) 

In order to avoid misunderstandings, it is necessary to note that there also exists another 

system of notation, used, e.g., in [3-5]. In these papers, instead of the operator ~ , in- 

troduced above, there is used an operator ~ , differing from ~ by multiplication by the per- 

mutation operator ~: 

-- , (5) 

where 

(6) 

Here the Yang--Baxter equation assumes the form: 

(7) 
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This notation for the Y--B equation is interesting in that it preserves its form in the grad- 

uated case too (see Sec. 4). 

Now we introduce a series of concepts which we need later. A solution ~(~) of the 

Yang--Baxter equation (4) will be called a Yang--Baxter sheaf. The natural number m (dimen- 

sion of the spacer) will be called the dimension of the sheaf. The variable ~, figuring 

in the Yang--Baxter equation (4), will be called the spectral parameter, in contrast with the 

other parameters ~,~,~ .... on which the sheaf ~(~,~,...)possibly depends, and which we shall 

call connection constants. We shall call the Yang--Baxter sheaf ~(~) regular if for ~=0 

the operator ~(~) is equal to the permutation operator ~ (6), which obviously satisfies (4): 

It is often useful to consider not the isolated sheaf ~(z)~ but a family of Yang--Baxter 

sheaves ~(~,~}, depending on the connection constant ~. We call the family ~(~) quasi- 

classical if for some value of the parameter ~= ~0 (one usually chooses the normalization 

~0----0, which we shall also do in what follows) one has, identically in 4, 

where I is the identity operator in the space'@V: 

(9) 

(10) 

If, moreover, for each ~ the sheaf ~(~,~) is regular in the sense of the definition 

given above, such a family of sheaves will be called canonical. 

Equation (4) admits a series of obvious transformations, leaving it invariant: 

i) Multiplication of the solution ~(~) by an arbitrary scalar function S(~) again gives 

a solution of (4): 

~i~) -- #(u)~(~). (ii) 

Sheaves ~(~) and ~), connected by (ii), will be called homothetic. 

2) Similarity transformation. Let T be a nondegenerate operator in the space V. Then, 

as one verifies easily, the sheaf 

= (T | (T (12) 

satisfies the Yang--Baxter equation (4). Sheaves ~(m) and ~L(w),connected by (12), will be 

called similar. We note that a similarity transformation preserves the properties of regu- 

larity, quasiclassicism, and canonicity of a Y--B sheaf or family of sheaves. Two sheaves 

connected by a similarity transformation and homothetic will be called equivalent. 

If in the space ~ the representation T(~) of some group ~ acts, then we shall call the 

sheaf ~(~ invariant with respect to the representation T(~) , if for any ~e~ one has 
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Let ~O)(~) and ~(~)(~) be two solutions of (4) of dimensions N~ and N~, respectively. 

By the tensor product of the sheaves ~u)(~) and ~c~)(~) we shall mean the sheaf (~C0| 

of dimension N 4 • ~ defined by 

By the direct sum of the sheaves ~(~)(~) and R(~)(~) we shall mean the sheaf (~(~).~(~))(~) of 

dimension ~+ N~, defined in the following way. The operator (~(4)* ~(~))(~) acts on the ba- 

sis vectors of the form ~)| cK) (6,k=~)~=~,%~.,~;e~) of the space (V~+V~)~ ~ *V~) by: 

~I ~, ' 

~ ~ @~ ~ (15) 

Direct verification shows that (~(%~(~))(~)and (~(~)+~(~))(~) actually satisfy (4). It is 

also obvious that the operation of tensor multiplication of Y--B sheaves preserves the prop- 

erty of regularity of families of sheaves. Now the operation of addition, on the contrary, 

preserves only the property of quasiclassicism of sheaves. In addition, it follows from 

(15) that the direct sum of two sheaves is never a regular sheaf. 

If the space V admits a decomposition into a direct sum of two subspaces ~ and ~f~, 

-(~)~ e ~)  (notation such that the action of the operator ~(~)on the basis vectors of the form.ei~- J~ 

is the same as in (15)) has the following property 

then the sheaf ~(~) is called reducible. In particular, a reducible sheaf is always the di- 

rect sum of two sheaves. If no such decomposition exists, we shall call such a sheaf irre- 

ducible. It is easy to prove that for a reducible sheaf ~(~) the operators ~(~(~) and ~(~)(~), 

acting in the spaces ~| and ~f~@~, respectively, according to the formula 

~ ) = R { ~ ) (  . (~ ,,~, 

will also be Yang--Baxter sheaves. It is also obvious that a reducible sheaf cannot be reg- 

ular. 

As we shall see later, Y--B sheaves play a large role in the theory of quantum complete- 

ly integrable systems. The analogous role in the theory of classical completely integrable 

systems is played by the classical Yang--Baxter sheaf, whose definition we shall now give. 

Let ~(~) be a quasiclassical family of Yang--Baxter sheaves, depending smoothly on the pa- 

rameter ~. Then, differentiating (4) with respect to ~ and setting ~=0, we get, keeping 

(9) in mind, for the quantities 
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the following equation 

~(~_~)~8(~)§ ~3(~)%~(~ ) =~(~)~(~)+~(~)~(~-~+~)~(~-~)~ (19) 

which can be rewritten in the following commutator form: 

[ ~(~-V}, ~(~),~z~(~)]+[~(~), ~ (~]] -= 0 . (20) 

By a classical Yang--Baxter sheaf will be meant any solution of the functional equation (20). 

The calculation given above shows that for a known quasiclassical family of Y--B sheaves one 

can always construct a classical Yang--Baxter sheaf. Whether the converse is valid, i.e., 

whether one can for any classical Y--B sheaf construct a corresponding quasiclassical family 

of Y--B sheaves, is still unknown. Using (18), one can transfer almost all concepts we have 

introduced for Y--B sheaves to the case of classical Y--B sheaves. In particular, instead 

of invariance with respect to homothety transformations (Ii), classical Y--B sheaves are in- 

variant with respect to the translation transformation 

�9 ~) = ~(~)+~(~) I (21) 

The definitions of similarity transformation (12) and group invariance (13) carry over 

to classical Y--B sheaves without change. We shall call two classical Y--B sheaves equivalent 

if one of them can be turned into the other by a similarity transformation and a translation. 

We shall call a classical Y--B sheaf z(~) canonical if for it one has the following 

equation: 

~) = -p%(-~) p (22) 

The connection between the concepts of canonicity of classical and quantum Y--B sheaves 

is established by the following theorem. 

THEOREM. Any canonical family of Y--B sheaves ~(~) generates by (18) a classical Y--B 

sheaf ~(~), equivalent with a canonical one. 

Proof. We differentiate (4) with respect to ~and we set ~=:0; ~=:0 �9 Multiplying the 

result obtained 

D ~ ~ ~ = ~ ~(f~)~%~(~ (23) 

on the right by ~ and using the obvious equations 

we arrive at the equation 

~(-~)* ~4 (~) = ~(-~)§ (~) " (25) 

By virtue of the obvious symmetry of the Y--B equation with respect to permutation of the 

spaces V~ ~V~ , one also has 

~(-~) +~(~) ~_ ~4~(-~)+~(~) (26) 

Comparing (25) and (26), we arrive at the inference that the operator ~(-~) +~i(~) acts 

trivially on all three spaces V I ~ , ~ , i.e., 
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where the scalar function g(%~) must be even ~(~):~(-~) . Redefining ~'~(Ig)-~z(~)+}g(9) , we get 

equivalent with (22), which is what had to be proved. 

The tensor product (~'q| of the classical Y--B sheaves ~c (0 (t~) and ~.~)(~,) is given 

by: 

(%(I]~ %(~h ; (~] ~ ~(I](%) @~(~U~%(~)(tr ~ (27) 

and the direct sum by (%(i~.@~,))(~,} 

(~(0+ @~)) (~) __-- @~(~)+ ~(~](~). (28) 

The definitions of reducible and irreducible sheaves are carried over to the case of class- 

ical Y--B sheaves unchanged. 

We formulate to conclude this section a series of unsolved problems, standing in front 

of the theory of quantum and classical Yang--Baxter sheaves: 

i) List all solutions of the Yang--Baxter equation (4) of a given dimension ~ up to 

equivalence. The analogous problem is of interest for regular, quasiclassical, and canoni- 

cal sheaves, and families of Y--B sheaves, and also for Y--B sheaves having group invariance. 

The problem of listing all constant solutions of the Y--B equation, i.e., those independent 

of the spectral parameter, is also interesting: 

~ 4 ~  - -  ~Z3 ~43~'f% " (29) 

It is easy to see that (29) is satisfied, in particular, by the permutation operator 

(6, 8) and the identity operator ~ (10). Setting in (4)%=~=0 , we get that for any 

Y--B sheaf ~(~) , its value for ~=0 also satisfies (29). 

2) The same problems are naturally formulated also for classical Yang--Baxter sheaves. 

In addition to constant solutions, here there is also interest in solutions of the classi- 

cal Yang--Baxter equation (20) of the form 

(30) ~ )  =--~ , 

where the operator ~ must by virtue of (20) satisfy 

(For canonical sheaves m=~m~ , and the equations in (31) are equivalent.) 

It is easy to construct a wide class of solutions of (31). In fact, let ~ be an arbi- 

trary semisimple Lie algebra, ~ (~=I~Z~,..~) be a basis of its generators in an arbitrary 

representation, k ~# be the matrix inverse to the matrix of the Killing form of the Lie al- 

gebra ~ in the basis of generators ~ . Then, as is easy to verify, the operator ~, de- 

fined by the formula 
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satisfies (31). This solution was also obtained in [6], where there is the assertion that 

(32) gives a complete description of the solutions of (31). 

3) Can one associate with any classical Y--B sheaf ~(~) a classical family of Y--B sheaves 

such that (18) holds? 

2. Now we discuss applications of the Yang--Baxter equation to the theory of quantum 

and classical completely integrable systems. 

i) We shall show, first of all, that to any regular Yang--Baxter sheaf one can associate 

a quantum completely integrable system with locally mutually commuting integrals of motion. 

In fact, let ~(~) be a regular Y--B sheaf of dimension ~ . We take as state space ~ of the 

quantum system sought the space ~=~@V~...| M ~V~-CN; ~=4,~,..,M), where M is an arbitrary 

natural number ~Z , and we define in this space a Hamiltonian ~ by the formula: 

M-~ (33) 

where the local density of the llamiltonian ~+I,~ is given by 

We e x p l a i n  t h e  n o t a t i o n .  The o p e r a t o r  ~ . ~ , e ( ~ ) a c t s  i n  t h e  s p a c e  ~e,  le 'V~ , as  t h e  c o r r e -  

s p o n d i n g  Yang--Baxter  s h e a f  ~ ( ~ ) ,  and on t h e  r e m a i n i n g  componen t s  o f  t h e  t e n s o r  p r o d u c t  V4~.. 

oV M i t  a c t s  as  t h e  i d e n t i t y  o p e r a t o r .  The same r e l a t e s  to  t h e  p e r m u t a t i o n  o p e r a t o r  ~ . t , ~ .  

I t  i s  c o n v e n i e n t  t o  r e p r e s e n t  t h e  quantum s y s t e m  we have  c o n s t r u c t e d  as  a r i n g  o f  M " a t o m s , "  

e a c h  of  wh ich  h a s  N quantum s t a t e s ,  where  o n l y  t h e  c l o s e s t  n e i g h b o r s  i n t e r a c t .  We n o t e  t h a t  

a l t h o u g h  t h e  H a m i l t o n i a n  ~ , d e f i n e d  a b o v e ,  g e n e r a l l y  s p e a k i n g  need  n o t  be  a s e l f - a d j o i n t  

o p e r a t o r  (wh ich ,  h o w e v e r ,  i s  n o t  r e f l e c t e d  i n  t h e  f o l l o w i n g  c a l c u l a t i o n s ) ,  i n  p r a c t i c e ,  i n  

t h e  m a j o r i t y  o f  c a s e s  i t  can  be made s e l f - a d j o i n t  by m u l t i p l y i n g  by a s u i t a b l e  c o n s t a n t .  

A s e q u e n c e  o f  o p e r a t o r s  commuting w i t h  ~ i s  c o n s t r u c t e d  i n  t h e - f o l l o w i n g  way.  We e x -  

t e n d  o u r  s p a c e  3~ to  t h e  s p a c e  ~ = Q @ Q ~  , i n t r o d u c i n g  two a u x i l i a r y  s p a c e s  Q and Q[ i s o -  

m o r p h i c  w i t h  C N. We d e f i n e  t h e  t r a n s i t i o n  o p e r a t o r  ~ ( U )  by 

T< M(@) = LM (~) ~M-4 {~) ... L4 (~) , (35) 

where ~)=~(~) (the notation is the same as above, the index ~ relates to the space V~, 

the index ~ to the space Q) Analogously, replacing Q by Qf �9 one defines operators L~(~) and 

Using the notation introduced, one can rewrite (4) in the form 

Starting from (36) one can prove [2-4] the following remarkable equation: 

(37) 
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The generating function ~{~) of the integrals of motion of the quantum system considered is 

defined as the trace of the transition operator T~(~), taken with respect to the auxiliary 

space Q 

~T~(~) (38) 

It follows [2-4] from (37) that ~(r a family of mutually commuting operators in ~ : 

[~(~)~(V)] = 0, (39) 

As shown in [7], ~(~0)~(%~)) is the generating functional of the local integrals of motion 

J~ for the Hamiltonian ~ : 

(locality means that we can represent the operator ~ as the sum of operators, each of which 

acts nontrivially at no more than ~+~ neighboring nodes of the lattice). In particular, for 

~=I , (40) gives the Hamiltonian ~ = ~, . 

The question of completeness of the system of integrals of motion ~ in the space 

has only been weakly studied so far (completeness is strictly proved only for one of the 

simplest models -- the Heisenberg ferromagnet [8])0 The conjecture on the completeness of 

the integrals of motion (40) for the known Y--B sheaves of dimension N=2 is quite plausible. 

On the other hand, for dimensions N >Z, the completeness of the system ~ is automatically 

false as comparison with the corresponding classical completely integrable equations shows 

[9, i0]. The problem of constructing the missing integrals of motion in this case is still 

unsolved. 

It is not excluded that there exist methods of constructing from a given Y--B sheaf other 

completely integrable quantum models too. For example, in the recent paper [ll] there is 

constructed a relativistically invariant model of the quantum field theory, closely connected 

with the Y--B v~Z-sheaf ($8). Probably this result can be generalized to the case of an ar- 

bitrary Y--B sheaf. 

2) The construction given above of the integrals of motion for a quantum model on a 

lattice was based on (37). This equation plays a most important role in the quantum method 

of the inverse problem [3, 4]. Besides the construction of integrals of motion, it allows 

one to find, in many cases, the eigenfunctions of the Hamiltonian ~ and its spectrum [3, 4] 

If the Yang--Baxter sheaf ~, on which one constructs by the method described above a 

quantum completely integrable model on a lattice, depends also on additional parameters ~, 

~,., then it often turns out to be possible to perform the passage to the limit, as a result 

of which one now gets a continuous completely integrable model of quantum field theory on 

the line. For example, from the Y~model one gets in this way the nonlinear Schr3dinger 

equation [12], from the ~-model one gets the Tirring model [7] and the quantum sin-Gordon 

equation. 
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The limit passage mentioned is usually realized in the following way. Depending on 

the character of the model, one chooses "critical" points of the spectral parameter and 

connection constant and performs a scaling limit passage with respect to the size of the 

lattice ~-*-0, so that ~=~ remains fixed (n is the number of nodes of the lattice). 

For the choice of "critical" values and scaling parameter, one considers the natural re- 

quirements of decomposability of ~(~) from (36) in a series with respect to the scaling 

parameter and simplicity (diagonality or multiplicity i) of the highest term 

(0) C1) 

It is important to emphasize that the quantities ~'(~...) and ~(m,~)=~O in (36) now get 

(after passage to the limit) a completely different interpretation in contrast with the lat- 

tice case, where ~(~) and ~(#) represent one and the same Yang--Baxter sheaf of dimension 

N �9 At the same time that E~(~...)remains a numerical N ~x ~ matrix, the operator ~(~...) 

is interpreted as an ~ ~ ~ matrix, whose elements are operator-valued functions on the 

line, e.g., ~(~) for the nonlinear Schr~dinger equation [12, 13] and ~(~) ~r for 

the quantum sin-Gordon equation [14]. 

We choose the following parametrization of the Y--B sheaf ($8), connected with the XYZ- 

model [2], 

/ J  

f aS 
where ~, ~,{=4,$,3 are Pauli matrices acting in V=Vf----o , and ~, 0~ r are identity matrices 

in these spaces, 

~ ~~ % = ~  ~,=~. 

The coefficients ~ can be expressed in terms of an analytic function of modulus k. Making 

the substitutions ( ~ ~rare complete elliptic integrals of the first kind of moduli ~ and 

) 

and letting ~-- -~O(k~6) ,  we get the ~-operator of the quantum sin-Gordon equation [14] 

L0 0 
X+ O# X+ 

• x 

The linear problem for the quantum nonlinear Schr~dinger equation [13] is obtained in 

the following way. First we carry out the degeneration of the Y--B sheaf ($8) in the sheaf 

of the XXZ -model on a lattice ($9) (the modulus of the elliptic functions k=0). Then we 

proceed to the scaling limit in ($9) [12] 
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where ~ is the connection constant of the nonlinear Schr~dinger equation, =L is the spectral 

parameter of the linear problem. As a result, we get (0~/~ 

1(+ 0,, X ~' 

X 

Equat ion  (36) ,  in which ~f(l*} i s  r e p l a c e d  by the l i m i t  of the  matrices, and is re- 

placed by the approximate transition operator on the interval (~7~+~), is satisfied only 

up to 5. Now (37) remains valid after limit passage too, which allows one to apply for 

models on the line the quantum method of the inverse problem. The corresponding matrix ~, 

realizing the similarity of the tensor products of transition matrices of the quantum linear 

problems ~(~)~T(~)and T(~)~T(~) , will be called the quantum ~-matrix. 

3) Most of the results of the first two parts of this section relating to quantum com- 

pletely integrable systems can be carried over to the classical case too. The role of quan- 

tum Yang--Baxter sheaves will be played here by the classical sheaves. For example, analo- 

gously to the way for a quantum Yang--Baxter sheaf there was constructed a quantum completely 

integrable system, with any classical Yang--Baxter sheaf one can in a canonical way associate 

a classical completely integrable system of Heisenberg ferromagnet type [15]. Without de- 

scribing this construction in detail, we note only that the quantum equations (36) and (37) 

correspond here to the classical equations 

[ If l If 
[~ (~,-~b~(~,~)+ L (~,V)] (42) 

Equat ion  (42) r ep roduces  (20) wi th  t h i s  d i f f e r e n c e  t h a t  in  the  decompos i t ion  of ~ s  and 

~%o(v) in terms of generators of some Lie algebra j~ ~ {=I,%~ the generators ~(3) are re- 

placed by functions ~a(wb of the Poisson brackets for which the commutation relations for 

the generators $~ are reproduced and the commutator [~$(~),%~(v)] is replaced by the Poisson 
,,f 

brackets ~.i~,~) and J (~v). Thus, L(~,~) is an N ~ ~ matrix whose matrix elements are func- 

tions on the phase space of the dynamical system with Poisson bracket 

The classical transition matrix is determined as a fundamental solution of the differential 

equation 

(44) 

ff 
and the matrices ~(~) and h(~v) are given by 

---- ]~ (?,~)=I | L(~, ~) (45) 
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In order to get (43) from (37), it is necessary to expand (37) in powers of the quasiclassi- 

cal parameter ~ as ~--'-0 and to use the relation [',-]~-~{-,.~ between the quantum commuta- 

tor and the classical Poisson bracket, retaining in (37) terms of order ~. The parameter 

plays here the role of Planck's constant ~ [15]. 

As in the quantum case too, (43) allows one to calculate the Poisson brackets between 

matrix elements of the transition matrix and to construct commuting integrals of motion and 

action-angle variables [15]. The matrix figuring in (42), (43) will be called the classi- 

cal ~-matrix. 

In the scheme described above there is contained a large number of completely integra- 

ble classical models, e.g., the nonlinear SchrDdinger equation [13], the sin-Gordon equation, 

the Landau--Lifshits equation [15], Toda chain [3, 16], etc. [30]. It is essential here, 

however, that the Poisson brackets between dynamical variables are ultralocal in the termin- 

ology of [3], i.e., do not contain derivatives of the ~-function. There is interest in the 

problem of generalizing this scheme to equations with nonultralocal Poisson brackets, e.g., 

the Korteweg-de Vries equation. The first steps in this direction were taken by S. A. Tsypl i 

yaev, who proved that for the sin-Gordon equation the classical ~-matrices in the laboratory 

system ({~(~l,~(~)}=~x-~ and in the light cone system (~q~),~=~Im-~) coincide. 

4) To conclude this section, we note that there exists another important interpretation 

of the Yang--Baxter equation (i), as the condition for factorization of multiparticle ~-ma- 

trices. The functions ~@~f(~-@~) are interpreted here as the scattering matrix of two par- 

ticles of identical mass with relativistic speeds ~ and @z and having N states ("polariza- 

tions") each, which are given by the indices ~ ~7~ Equation (i) here is the condition 

of reducibility of any multiparticle collision to a two-particle one (property of factoriza- 

bility of multiparticle ~-matrices). In this context (i) was first obtained by Yang [I], 

as a property of two-particle ~-matrices of nonrelativistic one-dimensional Bose particles 

with exact interaction. Later, when the close connection was established between complete 

integrability of a model and the factorizability of its ~-matrix [17], (i) was situated at 

the foundation of the method of calculation of factorized relativistic ~-matrices (see [19] 

and the references in it). Here, in addition to (i) there are imposed on the ~-matrix con- 

ditions of unitariness, analyticity, and crossing-symmetry. In the realms of this approach 

a large collection of ~-matrices have been calculated. The fact is encouraging that the 

-matrices found in a series of models of dynamics [20, 30] in the realms of the quantum 

Hamiltonian approach coincided with the answers obtained earlier by the method of factoriza- 

tion of ~-matrices. 

Using the ~ -matrix treatment of the Yang--Baxter equation one can give an intuitive 

interpretation of the operations on Y--B sheaves introduced in Sec. I. The tensor product 

of sheaves describes the construction of the ~-matrix for composite particles. The direct 

sum corresponds to the possibility of dividing the particles considered according to iso- 

tropic indices into two kinds such that particles of different kinds do not interact with 

one another. Reducibility means the possibility of dividing the particles into groups such 
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that for particles from different groups the scattering is without reflections. 

Besides the applications listed above, the Yang--Baxter equation is also used in the 

theory of exactly solvable models of statistical physics. The first paper in this area is 

Baxter [2]. Not having the possibility of discussing this interesting direction, we refer 

interested readers to [2, 4, 21]. 

3. In this section we list the basic methods of finding solutions of the Yang--Baxter 

equation, known from the literature. 

i) The most straightforward method of solving (i) consists of choosing some more or 

less successful substitution for the matrix 4~s (e.g., to impose some symmetry condi- 

tion) and write down the so obtained cubical system of functional equations for the matrix 

elements ~s The system of equations obtained can either be solved directly, as was 

done by Baxter in [2], or one can differentiate it with respect to ~ and set ~=0, getting 

a system of differential equations, which with some luck and skill can be solved. Although 

this method is rather awkward and success is not guaranteed, the overwhelming majority of 

known Yang--Baxter sheaves were obtained in precisely this way. In view of the large volume 

of calculations in verifying the Yang--Baxter equation for concrete sheaves, it can turn out 

to be helpful here to use a computer, in particular, programming languages allowing one to 

make analytic calculations [22]. 

2) An important improvement in the preceding method is connected with the algebra of 

We consider the algebra generated by elements ~(@)and the commutation Zamolodchikov [19]. 

relations 

A~(~.) A~(~) =~ ~s163 (46) 

The Yang--Baxter equation is the condition for associativity of this algebra under the as- 

sumption of the linear independence of the monomials of the third degree in A~. The use of 

the Zamolodchikov algebra in practical calculations allows one easily to write down the ma- 

trim elements of the Yang--Bamter equation considering monomials of the form ~(~}~t(~}~ir(~ and 

performing commutations according to (46). 

Cherednik constructed a realization of the operators A~(~) for the ~- sheaf ($8) of 

dimension 2 [23] in the form of compositions of operators of multiplication and transla- 

tion in the space of functions on an elliptic curves. Analogous relations of the Zamolod- 

chikov algebra for ~>% were obtained in [5, 24]. Although Cherednik's method allows one 

to get new Yang--Baxter sheaves, for the corresponding realizations of the Zamolodchikov al- 

gebra for ~ >% one does not have the independence of the third-degree monomials, and (I) 

must be verified independently each time. 

3) And, finally, the third method of solving the Yang--Baxter equation consists of seek- 

ing a Y--B sheaf ~(~) as an ~-matrix ~r(~), involved in relations of type (36), (37) (or 

(42), (43) in the classical case) for some completely integrable model. The advantage of 

this method is that in the classical case the operator ~(~) is, as a rule, known in advance 
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from the classical method of the inverse scattering problem, and the problem reduces simply 

to the definition of ~(~)from the (it is true, redefined) system of linear equations (42). 

Knowledge of the classical L-operator essentially facilitates the search for the quantum L- 

operator for the corresponding quantum problem (which need not at all coincide with the class- 

ical L-operator [14]). 

Of course, as in the Cherednik realization, the Yang--Baxter equation (4) follows from 

(37) only under the condition of the independence of the monomials of third degree in ~), 

which it is difficult to verify. Hence to get the sheaves ~(~) it is necessary to verify 

(4) directly each time. 

4. In this section we consider some generalizations of the Yang--Baxter equation. 

One of the natural generalizations of the Yang--Baxter equation is connected with the 

introduction of a graduation [25]. In particular, the classical and quantum equations which 

can be solved by the method of the inverse problem and which along with the usual functions 

contain functions with anticommuting values, and in quantum theory, Fermi fields, lead to 

this generalization [26-28]. In what follows we shall speak only of ~-graduation with the 

symbol Z~ frequently omitted. 

A vector space V is called Z~-graded if it is decomposed into a direct sum of two sub- 

spaces V0@V4. Elements of V, having zero projection onto one of these subspaces, are 

called homogeneous. For the homogeneous elements ~ there is defined a function p(x) with 

values in the group ~ : 

~(~) = 0, if ~ (even elements); 

~(~)----- ~ , if ~6~ (odd elements). 

If the dimensions of the spaces V 0 and ~ are equal to ~ and ~, respectively, then one writes 

the dimension of the graded space thus: ~ = ( ~ ) .  

An algebra ~is called graded if it is graded as a vector space ~=~o~ and for any 

homogeneous elements ~ one has the property: ~ @ e ~  , i.e., p(~)=~(~)*p(~#) (ad- 

dition of ~ and ~ reduced mod 2). ~-graduations of an algebra are also called superalge- 

bras. If for homogeneous elements of the graded algebra ~one has the relation~=(~)Ps 

then ~ is called a commutative superalgebra. An example of such an algebra is the Grassman 

algebra ~ [29]. 

We choose in the space ~=V0@~ ~ a basis of homogeneous elements e~;,.~E~ and ~...~ 

~§ The coefficients of the expansion of a vector ~eV belong to the Grassman algebra 

% ~ ~  (~F is a right ~-module). Right linear operators in~ can be represented 

in the chosen basis in the form of matrices 

Such matrices ~are graded -- to their rows and columns one can ascribe parity: ~(~ 

~ ~@)=~g~,~,...,~§ A graduation is also introduced in the linear space of such matrices. 

To matrix ~ one ascribes a definite parity p(~) if the expression 
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is independent of ~ and ~ (the matrix elements P~E~ and p(P~) is its parity as an element 

of the Grassman algebra). In what follows we shall be interested only in matrices of parity 

zero, for which p(~) = p(~)+p(~). 

We consider the graded Zamolodchikov algebra with generators A~(~), some of which are 

even p(~(~))~p(~)=0, and the others odd p(~#~))~p~l=1 . The basic commutation relation (46) 

we rewrite in the form 

assuming that all ~#~rs are even elements of ~. If ~>~Fs163 , then the algebra in- 

troduced becomes a commutative superalgebra. Just as for an ordinary algebra (46) the con- 

dition for associativity under the assumption of the independence of monomials of third de- 

gree in the generators ~(~), will be the relation 

Between the solutions of the Yang--Baxter equation (i) and its graded analog (48) there 

is a one-to-one correspondence. In fact, we overdetermine the coefficients in (48) 

Then for ~(~) we get (i). Here it is essential that pC~&~)= 0 for any nonzero 4~ ~s 

and as a matrix ~has null parity p(~)=0. 

(4) can be considered as a matrix in the tensor product of two graded spaces ~V, 

~V=(~,~#. For compact notation for (48), we need the permutation operator in the tensor 

product of graded spaces and the operation of tensor product of graded matrices. 

As a basis in the tensor product of two spaces ~ r  we take ~| (~,~ are homogen- 

eous elements). The components of the vector ~| in this basis are equal to~)P(~)P(~) : 

~ ~= ( ~ z ~ |  (~ |  ~c~Pc~ . 

We define the action of the (right) linear operator ~| G in the space~| r as CP@~)~| 

~)@ G(~) (we consider operators of null parity pi~)-----p(~) = 0 , otherwise there arises an ad- 

ditional factor ~)P(~)P~e)). As a result the matrix element of the tensor product of even 

matrices {~}, [~} has the form 

The permutation operator ~ in ~V, defined by its action on the product of homogen- 

eous elements ~ has the form 

Just as the ordinary permutation operator satisfies (i), the operatOr (51) satisfies 

(48). Usingthis operator one can write one of the solutions of (48) for arbitrary dimen- 

sion of the space V and graduation 
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~C~)=a(~}+~{~)~) ~r ~/~*~ (52) 

We note that the correspondence described above between ~(~ and ~(~) (see (49)) pre- 

serves the property of regularity of Y--B sheaves, but not quasiclassicity. 

We_make use of the definition of the tensor product (50) and the graded permutation 

operator (51). Then for the operator 
v 

(48) assumes the same form as in Sec. 1 (7) 

V V V V V V 

eI = ( R( )eI ) (53) 

Just as in the nongraduated case, for a quasiclassical family of Y--B sheaves (~Cu,~)l~0 ) 

one introduces a classical Y--B sheaf: 

It is convenient to get the equation for ~(~) from the following form of (48): 

where the lower indices indicate in which of the three spaces ~@V~ ~V$ the Y--B sheaf acts 

nontrivially, and 

Differentiating (55) twice with respect to ~ and setting ~=0, we get 

The arbitrariness connected with multiplication of ~) by an arbitrary function leads to 

additive arbitrariness in~ : if ~(~) is a solution of (57), then %(~)*~(~)I is also a 

solution. One can make use of this arbitrariness and choose ~C~) so that for ~(~) one has 

" ( 5 8 )  

We shall say a few words about applications. Graduated Y--B sheaves, just like ordinary 

ones, about which we spoke in Sec. 2, arise if one applies the quantum method of the inverse 

problem to equations in which antic0mmuting quantum fields enter. Such are, e.g,, the ma- 

trix nonlinear Schr~dinger equation with Bose and Fermi fields, the massive model of Tirring 

with anticommuting fields [26], the supersymmetric sin-Gordon equation [27], etc. If ~(~-~) 

interlaces the quantum transition matrices T(~)~ T(~), then ~(~-~) defines the Poisson brack- 
ets of the matricial elements of T(~)'~i~) in the classical theory. Equations (57) and (58) 

are the ref&ections, respectively, of the Jacobi identity and the antisymmetry property of 

the Poisson brackets. 

Another possible generalization of the Yang--Baxter equation consists of considering 

(4) as a functional equation for three different operators ~(~-~),~(~), andR~3(~) acting 

in the product of three different spaces ~@~@ ~ with dimensions N4, N~,N~, respectively, 
where the operator ~(~} acts nontrivially only in V~| V~ . In the language of the ~-am- 
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trix interpretation, discussed at the end of Sec. 2, this means that we consider scattering 

of three kinds of particles, where N~is the number of internal states of the ~-th kind of 

particles (~=~,2~). The coefficient of reflection for the scattering of particles of dif- 

ferent kinds here must be equal to zero. 

One gets an especially simple such generalization for classical Y--B sheaves. In fact, 

any classical Y--B sheaf of dimension N can be decomposed as an operator in G N ~C N with re- 

spect to basis elements of the form ~@~06 (~,~=~,~,..,NR), where J~ is any basis in the Lie 

algebra ~ (N~G) : 

N z 

= N (59) 
~,~I 

But since in the classical Yang--Baxter equation (20) only commutators appear, it can be con- 

sidered as an equation on the Lie algebra ~(N,~) and one can take as ~ the generators of 

~(N,C) in any other representation besides the fundamental one. If the generators ~, ap- 

pearing in (59) with nonzero coefficients ~(~), form a subalgebra ~C~(N,C), then the same 

arguments work for the Lie algebra ~. Thus, for any classical Y--B sheaf one can construct 

an infinite series of classical Y--B sheaves of any dimensions, and also solutions of the 

generalized in the above sense Y--B equation. 

If the conjecture discussed in Sec. 1 that to any classical Y--B sheaf corresponds a 

quantum quasiclassical Y--B sheaf is valid, then analogous results should be expected also in 

the quantum case. However, since the quantum Yang--Baxter equation (4) is not expressed in 

terms of commutators, the problem of extending a given Y--B sheaf to higher representations 

of ~(~,C) (or other Lie algebras) becomes much more complicated than in the classical case. 

It is reasonable to assume that analogous to the way the classical Y--B equation (20) can be 

considered as an equation on a Lie algebra, the quantum Y--B equation (4) can be considered 

on the universal enveloping Lie algebra and one can get finite-dimensional Y--B sheaves by re- 

ducing a "universal" sheaf. The validity of this conjecture is verified by one of the auth- 

ors (E.K.S.)for the simplest ~(~C) invariant sheaf (see Supplement, formula ($3)).* Using 

the generalized quantum linear problem for the sin-Gordon equation on higher representations 

with respect to an auxiliary space and applying the third method (Sec. 3) of finding solu- 

tions of the Y--B equation as quantum ~-matrices, one can get a generalization of the XX~- 

sheaf ($9) in terms of the universal enveloping algebra of ~(~r [44]. 

SUPPLEMENT 

In the Supplement we give a summary of known solutions of the quantum Yang--Baxter equa- 

tion. Since in a series of cases the verification of (i) requires long and tiresome calcu- 

lations, not all the sheaves given below will be reexamined. In the majority of examples, 

we indicate the authors to whom the assertion that the given sheaf satisfies (i) is due. 

*As V. A. Fateev informed us, he, together with A. B. Zamolodchikov, obtained an analogous 
result. 
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It will be convenient for us to represent the tensor ~#~d" in the form of a square 

block-matrix, considering the index ~ as the number of the block-row, 0~ as the number of 

the row in block~, ~ as the number of the block-column, and ~ as the number of the column 

in block ~. 

The spectral parameter is denoted everywhere by ~, the quasiclassical parameter (for 

quasiclassical sheaves) by ~. The normalization of quasiclassical sheaves is chosen so that 

~(~,~)=]- for ~----0. For quasiclassical sheaves we give the corresponding classical sheaf 

(18) 

i) ~g(~,C)-Invariant Sheaf (Yang [i]) 

P, N .z. (s1) 

It is obvious that I and ~ are the unique operators in cN| N , invariant with respect to 

the group GL(N,r the sense of (13). The sheaf (Sl) is regular and quasiclassical, the 

corresponding classical sheaf %(~)has the form 

The sheaf ~(~)is widely used in the quantum method of the inverse problem [3]. "For N=% it 

arises in studying the quantum nonlinear SchrDdinger equation [13], the x~X-model (Heisen- 

berg ferromagnet) [3, 12], Toda chains [3, 16]. Sheaves with N~3 are used in considering 

multicomponent analogs of the equations mentioned: vector and matrix nonlinear Schr~dinger 

equations [i0], generalized Heisenberg fe~romagnet [30], non-Abelian Toda chains [16], sys- 

tems of ~-waves (Lie model) [31]. In addition, the sheaf (SI) is used as ~-matrix for non- 

relativistic particles with pointwise interaction [i]. 

As noted at the end of Sec. 4, for N=% there are known analogs of the sheaf (SI) for 

any finite-dimensional irreducible representation of the group GI.(2,C). Let there act in 

the space ~---C r an ~-dimensional irreducible representation ~(~) of the group GL(s Then 

the generalized sheaf (SI) has the form: 

where P~ is the projector onto the space of ~-dimensional irreducible representations in the 

decomposition of the tensor product ~| into irreducible representations. The sheaf ob- 

tained is canonical. The proof of ($3) will be published separately. 

2) ~0(N,G) Invariant Sheaves 

In the space CN| .N there are in all three operators, invariant with respect to the 

action of the group ~0~N,O). We have already met this with the operators I andP, and, in 

addition, the projector ~ : 

= 6-r 
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An invariant Y--B sheaf corresponding to ~0(~,0) was found in [18] as ~-matrix for the Gross-- 

Neveu model: 

I+ P+ N-z 

The sheaf ($5)is canonical. The corresponding classical sheaf: 

4 ---~-=~+ @(U)I ($6) 

It is interesting to note that if one takes a linear combination of only I and P , we 

get a @~(N,0)-invariant solution of (Sl), for combinations of ~ and ~ we get a new sheaf 

~ ('1~) =-- [~ ~ ( ~ )  ~( e ~----- + ( ~- ~-~i~_ # ~ ) ($7) 

which i s  r e g u l a r ,  but not  q u a s i c l a s s i c a l ,  and f i n a l l y ,  for  combinat ions  of only I and ~ a 

solution does not exist. 

3) X"/E-Sheaf  (Baxter [2]) 

~ o 0 ~  
o ~ c O  
O c ~ O  ( s8 )  

TABLE 1 

a, 

(; 

R 
4 

k ~  

~ = 0  

0 

4 

0 

~=0 

I 
4 

a_/_a,z �9 I o 

0 

�9 'ulr 1,6 

k ,'a4~ IJ,, 

In the formulas of Table 1 all elliptic functions have modulus k. The X~-sheaf is 

canonical. To the quantum X~-sheaf corresponds a completely integrable lattice XYZ-model 

[4, 32]. The corresponding classical sheaf corresponds to the Landau--Lifshits equation [15]. 

The presence in the X~-sheaf of two parameters: ~ and k allows one to get different de- 

generate cases, e.g., XX~ - and XX~-sheaves (see below), and quantum models on the line (sin- 

Gordon equation, nonlinear SchrDdinger equation). 

4) XX~-Sheaf 

I ~ 0 0 0 

0 $ c o 

I 0 0 0 

(s9) 

The ~Z-sheaf is obtained from the X~Z-sheaf (Table i) as the limit as k--~0. Like the 

XYZ-sheaf, the XX~-sheaf is canonical. To it corresponds a quantum lattice XX~-model, 

which was considered in the realms of the quantum method of the inverse problem (QMIP) in 
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TABLE 3 

TABLE 2 

I 
~ ~ _ 

F 

I,(,=0 ~=0 

4 

0 

0 

~ (~.+)~) 

s~ C",(+ ~ ) 

0 

R 

TABLE 4 

5 

8~ 

T 

6 ~ 

~=o ~=o ~/~.I~=o 

4 

J~h~ 
4 

0 

4 

4 

4 - ~ ~i;~. ~. 

TABLE 5 

C,, 

4 
s~u, 

~ (t*+')'Z) 

%(,=0 

4 

0 

4 

4 

4 

~(.0) 

~-~(.0) 

0 

0 

~rco>-~co> ~il 

(o) 

~T l~k~ 
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[12]. This sheaf also arises in the quantization of the sin-Gordon equation by means of 

QMIP [ 14]. 

For t~e following degeneration ~=8~, ~=~F, ~0 the XXZ-sheaf degenerates into an X~- 

sheaf corresponding with the sheaf (SI) for N=Z. 

5) X~Z -Sheaf for Spin 1 (Fateev [33]) 

R(~,~,k)= 

T 
t l (Sl0) 

As in Table I, the elliptic functions in Table 3 have modulus k. The sheaf (SI0) is 

canonical. The corresponding classical sheaf, which we shall not write down due to its com- 

plexity, is a sheaf ($8) rewritten in a basis of generators of a three-dimensional irreduci- 

ble representation of ~(Z,C), which allows one to consider the sheaf (SI0) as a generaliza- 

tion of the sheaf ($8) to a higher representation (see end of Sec. 4). 

6) XX%-Sheaf for Spin 1 (Zamolodchikov and Fateev [34]) 

I 

I 

t 
o, 

'l, t 

(Sll) 

In Table 4, g=• The sheaf (Sll) for s is obtained from (Sl0) with ~%=4 after 

passage to the limit as k--~ 0 and a similarity transformation (12) with matrix 

-{, 0 

-~ ~ 0 

The property of canonicity of (SI0) is also preserved for (SII). 

7) ~N -Invariant Sheaf (Cherednik [24]) 

For N=~ 
a, 

o. 

c 
(s12) 
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TABLE 6 

R. 

4 4 

4 

~/= (~'l,,,(u- ,~ )+ ~ ~ )- ~ 

TABLE 7 

_ al ~ ~ ~i & ~ 

I ~+% ~+~, ~ 0 (~,~,){~p~) 

(u*~)(~7-u] 

I 

X(c~u-4J 
X (cb.~+4) 

0 
~,X ~ku 

- X (d+ e.. -~') 

- X (4+ e ~) 

-,%X 

X(4-c ~) 

-X (4-e, ~) 

X = ~I~, ~,. 

C~ C~, C~ 

0 o 0 

0 ~x+l (u+i)( l#-  u) 

]7 0 ~ 0 0 0 7~(u+~). 0 d .6h(u+p~ 

o 

g- 

N 
Z 

-(N-4) 

4,N 

~ 0 0 0 ~t~u 0 4 ~ ~ ~=N 

TABLE 8 

R 

4 

x ~k~ 7 

"1 3 ~'g',, ~ k ~',l /c k L u + ~ ) 

~=0 

0 
0 

-1 
4 

4 

0 

i 

q 

o 

o 

0 

0 

-Z~s ~, 

4- 

The sheaf (S12) is regular, and if @(0)= 4 , then also quasiclassical. In addition, 

the sheaf is invariant with respect to a similarity transformation (12) with matrix T. 

OO4 

T= 40o 
0 4 0 

1616 



TABLE 9 

4 

R, t I ~=0j 

-4 

0 

~ - - - - 0  

~= 4 / ~ k ( ~ , v  i 
TABLE i0 

C �84 

4. 

"i 

1/. -"~ "0 

o 

o 

r ,?# 
I ~10,. I~=o 

- ~,tk ~,-  s  

- 4 k  ~, 

o/~,z. I ~=o 

~=0 ~=0 ~I~ I~=0 
3 ~(~-~) 

J ~ 0 
I 

,I 
'I 

o 

In view of the identity ~a= { , the corresponding group of transformations is isomorphic 

with ~. For ~(~)=~ the sheaf (S12) arises upon quantization of the doubles Toda chain 

[36] with the help of QMIP (Reshetikhin). 

Analogously, one constructs N-dimensional ~N-invariant sheaves for any N~ [24]: 

,~p~,t.o.-= 0 for ~+S,=~.+d" (m~i,N); o6#,~',d-=o,'1,...,N-'l, 

~o~ ~---- ' [ '  (S13) 

~k~ . 
~ 'R~ ~= e~'~ (~' ~' .N - '~'i'~'~(~-~) ~, k ' ~ - ~  (~+~ 

In algebraic terms a system of roots of the given sheaf, as we noted, is the quantum~-ma- 

trix for the relativistic field-theoretic model corresponding to the system of roots ~N_~ 

[36]. It is not hard to calculate the classical ~-matrix for the remaining root systems 

(BN,CN,...,F~), and it is interesting to find the corresponding quantum ~-matrices. 

8) Sheaf of Dimension 3 (Izergin and Korepin [5]) 

4 
6 

e 
J 

4 
r 

6 

(S14) 
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Mikhailov--Shabat [5]. 

9) Block 0(N)-Invariant Sheaves [35] 

The sheaf (Sl4) is canonical -- it is the ~-matrix for the quantum relativistic model of 

A 
~C 

R(u,) = C B , (Sl5) 

A 

A;B, C are N~x N Z blocks of the form A=c41*~P*~3K and analogously for B and C, where 
is a projector (S4). 

These sheaves were obtained in [35], as examples of factorized ~(N)-invariant ~- 

matrices. This does not contradict our definition of them as 0(N)-invariant, since the ac- 

tion of a group of transformations on an ~-matrix is defined differently than we did it in 

(13). 

The sheaf II is canonical, I is quasiclassical, III is regular. 

Now we give some examples of ~-graded Yang--Baxter sheaves, satisfying (48). 

i0) CT[,(~%m~)-Invariant Sheaf 

@I,(~,,%C) is the analog of the group ~(N,C) [25] in the graded space C a+m' with gradua- 

tion (~m). The sheaf has the form 

where P~,~ is the graded permutation operator (51)o The sheaf given is a natural generaliza- 

tion to the graded case of the sheaf (SI). It is used in applying QMIP to equations contain- 

ing Fermi fields [26, 27, 30]. 

ii) Sheaf, Connected with the Tirring Massive Model for Fermi Fields 

The auxiliary linear problem for the Tirring model [26] is defined by a (3 • 3) matrix 

differential operator of the first order. The graduation is equal to (2, i). In the basis 

where p(fl=p(~)=0, p(3)= {; the R-matrix, interlacing the monodromy operators for the auxiliary 

linear problem (37), has the form: 

o~ x y" X ii 
c . 

~, (.i~,, ~ ) --= ~ . (S17) cx x 
c 

Y 

12) Graded Analog of XYZ-Sheaf (but in Hyperbolic Functions) 

n~ 

~ o o A 
o 6 c 0 

0 c ~, O 

J~ 0 0 ~ 

(s18) 
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This sheaf arises as part of the interlacing ~-matrix for the quantum supersymmetric sin- 

Gordon equation [27], corresponding to a majorizing field. 

13) Graded Analog of the XXZ-Sheaf 

~(u,~) = 

0 0 OI 
0 ~ C 0 
0 c ~ 0 " 
0 0 0 ~, 

(S19) 
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