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This paper is a developed and consecutive account of a quantum version of the meth- 
od of the inverse scattering problem on the example of the nonlinear SchrDdinger 
equation. The method of R-matrices developed by the author is given basic consid- 
eration. The generating functions of quantum integrals of motion and action-angle 
variables for the quantum nonlinear Schr~dinger equation are obtained. There is 
also described a classical version of the method of R-matrices. 

Introduction 

i. The last decade was marked by a sharp increase in interest in completely integrable 
systems of classical and quantum mechanics. Although exactly solvable problems are always 
of interest for physics and mathematics and models for the study of general laws of behav- 
ior of complicated nonlinear systems or as sources of "zeroth" approximations to noninte- 
grable equations, only comparatively recently were powerful methods for their study avail- 
able, which allowed the essential extension of the class of completely integrable systems. 
We are concerned here, on the one hand, with the method of the inverse scattering problem 
[I], which has its origin in Gardner, Greene, Kruskal, and Miura [2], Lax [3], Zakharov and 
Faddeev [4] and allows one to investigate completely integrable models of classical mechan- 
ics. On the other hand, there exists a tradition of studying exactly solvable models of 
quantum mechanics and statistical physics, going back to Bethe [5] and Onsager [6] and 
achieving its highest development in Baxter [7-8]. (We intentionally schematize the situa- 
tion here, leaving aside for example, the group-theoretic methods of investigation of class- 
ical and quantum completely integrable models.) 

After the complete integrability of certain relativistically invariant models was 
proved: by the method of the inverse scattering problem sin-Gordon equations [9], chiral 
fields [i0], etc. there arose the question, doesn't the corresponding quantum models also 
turn out to be completely integrableo A positive solution of this question would be of 
great interest for the quantum theory of fields, since it would give a nontrivial example 
of an exactly solvable quantum model. This circumstance gave rise to a series of attempts 
at the quasiclassical quantization of completely integrable models, e.g., [ii, 12], which, 
however, were not completely satisfactory, since one could give only an approximate and not 
an exact answer, 

Thus, there remains the actual problem of synthesis of the two approaches indicated 
above, th~ classical and the quantum, into one method of investigation of quantum fields of 
completely integrable systems, which one could call the "quantum method of the inverse scat- 
tering problem." 

The first steps in this direction were undertaken in [13] by Faddeev and the author and 
in [14]. In [13] there was formulated a program for generalizing the method of the inverse 
scattering problem to the quantum case. In [14] this program was successfully realized for 
the nonlinear Schr~dinger equation. However, the small size of [14] did not allow the in- 
clusion in it of all the necessary proofs. The present paper, written on the basis of the 
author's dissertation [15], contains a developed and consecutive account of the quantum 
me~hod of the inverse scattering problem for the nonlinear Schr~dinger equation taking ac- 
coun~ of the achievements of the 2-yr period of development of this method [16-28]. In 
addition, we have included here a brief outline of the theory of the classical nonlinear 
SchrDdinger equation, based on the method proposed by the author in [29] of the classical 
q-matrix. 
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2. We consider in more detail the basic lines of the approach to the quantum general- 
ized method of the inverse scattering problem, proposed in [13, 14] and developed in the 
present paper. First of all we compare the formulation of the problem in classical and quan- 
tum mechanics. If in classical mechanics one is usually interested in the evolution of the 
initial data in time, and the classical method of the inverse scattering problem is usually 
aimed at finding the law of evolution in time of the scattering data of an auxiliary linear 
problem, then for quantum mechanics the "stationary" approach is more characteristic, in 
which the greatest interest is in the spectrum of the Hamiltonian and S-matrix. However, 
despite such an apparent dissimilarity in the formulation of the problem, there nevertheless 
exists an approach to the classical method of the inverse scattering problem, completely an- 
alogous to the "stationary" quantum mechanical approach. We are concerned here with the 
Hamiltonian interpretation of the method of the inverse scattering problem, developed in 
[4, 30]. The study of the nonlinear evolution equation with such an approach is aimed at 
constructing from the scattering data of the auxiliary linear problem variables of action- 
angle type for the equation considered and thus proving its complete integrability, deter- 
mining in passing the spectrum of the elementary excitations of the system. Now the ques- 
tion of the time of evolution is from this point of view of secondary interest. Precisely 
this Hamiltonian approach was taken as the starting point for the quantum mechanical general- 
ization of the method of the inverse scattering problem in [13, 14] and in the present paper. 

The choice of the nonlinear SchrBdinger equation (n.S.e.) 

(1) 

as the object of study was dictated by the following considerations: 

i) The quantum version of the nonlinear Schr~dinger equation (with zero boundary condi- 
tions at infinity) describes a one-dimensional system of Bose particles with pointwise in- 
teraction. Thus, the problem reduces to the quantum mechanics of a finite number of parti- 
cles and does not contain difficulties specific for the quantum field theory (nonfocal repre- 
sentations of commuting relations, divergence, etc.). 

2) The nonlinear SchrBdinger equation is studied in detail in the classical as well as 
the quantum case. The classical n.S.e, admits the application of the method of the inverse 
scattering problem [30-32], in the quantum case there is a complete description of the spec- 
trum and eigenfunctions of the Hamiltonian [33, 34]. The latter circumstance is valuable in 
that it allows one to compare the results obtained by the new method with the exact quantum 
answer. 

Now one can give a concrete formulation of the problem. An important role in the 

method of the inverse scattering problem is played by the transition matrix T(~)(see below 

Sec. i.i) 

% =/L ~ (2) 

which is defined by means of the auxiliary linear problem, and whose matrix elements are 

functionals of the fields ~(~)t ~(~) �9 

As is known [30], (I) describes the dynamics of a Hamiltonian system with Hamiltonian 

H = 

and Po isson b r a c k e t ,  d e f i n e d  by the r e l a t i o n s  
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The method of the inverse scattering problem allows one to calculate the Poisson brack- 

ets between the matrix elements of the matrix-,~%). In particular: 

{C~(~t),~(~)]: ~'-,M " + ~,0 C~(B,)~(j~s . (4) 

In turns out [31, 32], that ~(~) is the generating function of the local integrals of 

motion of (i), and from the quantities ~(~) and ~(~) one can construct variables of action- 

angle type. 

In [13] the problem of generalizing the method of the inverse problem to the quantum 

case was formulated as the problem of constructing quantum operators A(~) and B+[%), which 

would have the following properties: 

I) In the classical limit the operators ~(%) and B+(~) should go respectively into the 

quantities ~%) and g(%). 

2) Between the operators A(~)and B+(~) there should be the following commutation rela- 

tions: 

At#)] = = O, (5) 

= # )  (6) 

where r is some numerical function of ~ ands. 

We note that such a formulation makes sense not only for the n.S.e., but also for many 

other completely integrable equations [16]. 

The quantization of (I) is carried out in terms of the annihilation and birth operators 

~(~)and~+(~) , satisfying the canonical commutation relations 

(7) 

Here the problem of constructing the operators A(~) and Bt%) reduces, essentially, to 

the question of choosing a proper ordering of the operators ~ and ~+, i.e., an ordering 

such that condition 2), formulated above, should be satisfied. As will be proved later, for 

the n.S.e, the normal (Wick) ordering is proper, i.e., the operators A(~)and B+(~) are de- 
fined as the operators whose normal symbols are respectively the classical functionals ~(~; 

~t~) and ~(~;~). 

The basic technical difficulty of the approach considered consists in proving the com- 

mutation relations (5, 6) and calculating the �9 ~) . This problem can be 
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solved by the method of ~-matrices proposed by the author in [14], which makes it possible 

to write down the commutation relations between the matrix elements of the quantum transi- 

tion matrix in compact matrix form and to reduce their proof to the verification of simple 

infinitesimal relations. The idea of this method was suggested to the author by the papers 

of Baxter [7, 8]. 

Calculation of the coefficient r by the method of ~-matrices gives the following 

result: 

X-f~, (8) 

We list the main results which will be proved in the basic text as consequences of the 

commutation relations (5, 6): 

i) The operator-valued function ~A(%), as in the classical case, is the generating func- 

tion of locally pairwise commuting integrals of motion ~m for the quantum n.S.e. 

2) States Ik1~...~k~>~, obtained by the action in a vacuum of the operators B+(~ (~=4t...7~) 

] ~ , , . . . , kA = B2~,)... B$~,),o>, (9) 

are eigenvectors of the quantum Hamiltonian H and all integrals of motion ~m , where the 

corresponding eigenvalues are additive in the momenta %~: 

�9 ~ ~ . H ]~i ..,~ B=>--~-kz Ik~,...,~> B (10) 

The wave functions of the states k~p..tkx> B coincide with the wave functions obtained by the 

Bethe substitution method [33, 34]. 

3) The operators ~(~)t ~+(%), defined by the formulas 

= ( 1 1 )  

satisfy the canonical commutation relations 

= 

and allow (in the case ~>0) the explicit diagonalization of the Hamiltonian 

and all other integrals of motion ~m. On this basis the operators ~(~),~) can be called 

the quantum analogs of action-angle variables. 

3. The basic text of the paper consists of two chapters, a Conclusion and a Supplement. 

In Chap. I we consider the classical nonlinear SchrDdinger equation, in Chap. II the quantum 

one. Here the consideration of the classical case is carried out so that all the results 

obtained have direct analogs in the quantum case. 

1549 



The composition of the paper is also subordinate to this idea: to each section of~Chap. 

I corresponds an analogous section of Chap. II. 

Chapter I consists of five sections. In Sec. i.I the basic concepts and notation are 

introduced. In Sec. 1.2 the Poisson brackets between matricial elements of the transition 

matrix X~4(~) on a finite interval are computed. In Sec. 1.3 the cases of semi-infinite and 

.,infinite intervals are eonsidered. In Sec. 1.4, which has an auxiliary character, known re- 

sults about the integrals of motion for the n.S.e, are collected and action-angle variables 

are constructed. In Sec. 1.5, with the help of the method of ~-matrices, the generating 

functions of the ~-operators for the n.S.e, are constructed. 

Chapter II also consists of five sections. In Sec. 2.1 the known results for the quan- 

tum n.S.e, are listed, the quantum transition matrix ~(~) is introduced. In Sec. 2.2 the 

commutation relations between the matricial elements of the quantum transition matrix ~(~) 

are calculated. In Sec. 2.3 the cases of semi-infinite and infinite intervals are considered. 

In Sec. 2.4, the results obtained are summarized, the question of construction of quantum 

action-angle variables is considered. In Sec. 2.5 the question of the quantum M-operator is 

studied. 

In the Conclusion the basic derivations and results of the paper are summarized, a 

brief "survey is given of unsolved problems in the domain of quantum completely integrable 

systems, the future developments in this direction are discussed. 

In the Supplement a summary is given of the classical and quantum commutation relations 

between the matricial elements of the transition matrix for finite, semi-infinite, and infi- 

nite intervals. 

CHAPTER I 

CLASSICAL NONLINEAR SCHRODINGER EQUATIONS 

i,i. Transition Matrix 

In the present section we introduce the basic notation and list some results, basically 

known in [30-32], for the classical nonlinear SchrDdinger equation. We allow ourselves to 

deviate somewhat from the notation and formulations of the original papers [30-32], giving 

them a form more convenient for our goals. 

The nonlinear SchrDdinger equation, as was indicated in the Introduction, has the form 

The complex-valued function ~(mTt) will be assumed to be infinitely differentiable in both 

arguments and for any ~ , decreasing in ~ faster than any power of m. 

The study of (i.i.i) by the method of the inverse scattering problem reduces, as was 

shown in [31, 32], to the study of the spectral characteristics of the sheaf of linear dif- 

ferential operators ~- L(~) , where 
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, 

L (~,~) = k- ~(~) ' 
= 4  { ~ +  ~ ~'I*(~) ~+- ~Y(~) ~_ . (i. i. 2) 

0o). 
Starting here and up to Sec. 1.5 we shall consider the moment of time t fixed. 

In contrast with [30-32], we have chosen the matrix L with nonsymmetric occurrence of 

the connection constant ~, which allows us to consider in a uniform way both the case of re- 

pulsion ~>0 , and that of attraction ~<0 . 

We introduce the transition matrix T~(~) on the finite interval[~r~] as the solution 

of the differential equation 

'~ T.,  (~) L(.,.~.) T ~' ~m~ = ~, (~) (1.1.3) 

with the initial condition 

~(~)= =I .  (1.1.4) 

We list some properties of the matrix T:~(~) : 

i) (.T ~ (~.)) -4: ~' T~,.@,), 

2) TI'~(~) " " , T~, (~) : T  ,,(~) 

(1.1.5) 

- (1 .1 .6)  

3) ~o - ~4 v~J - ~ v~  ~w~'~ = - T "~ c'r~ L c% 
~-4 ' ~) 

4) T~ @,) = K T ~{,~,) '~4 7 

(1.1.7) 

(i.i.8) 

where 

(, 
K = -'/" K~=I 

and the line over a matrix denotes elementwise complex conjugation. 

(1.1.9) 

4) 

Properties 1)-3) follow directly from the definition of T~4(~ ) 

follows from the analogous property of the L-operator 

The symmetry property 

(i.i.I0) 

which can be verified directly. We note that (1.1.8) means that the matrix T~(~) has the 

form 
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T::O.) \~,'I0.), ~:r (1.l.11) 

Finally, property 5) follows from the equation %~i(~,~) = 0 . 

Substituting (i.i.ii) in (1.1.9) we get for real ~ the important relation of "unitari- 

.~ness" 

Now we define the transition matrices T_(~,%),T+(~,/~),T(~) for semi-infinite intervals 

(-=~I~] and [~ oo) and the infinite interval (-oo I o~) , respectively, as the following limits: 

T_(~,:~)--,~ T~,(;~)e (~,,~), (1.1.13) 

(1.1.14) 

(1.1.15) 

where we have introduced the notation 

It follows from (1.1.13) that T-(~,~) satisfies with respect to the variables ~ the dif- 

ferential equation (1.1.3) with the boundary condition as ~----oo 

T_ (~, ~.)- e (~ , , )  ~--r o. (i.i.16) 

Analogously, %(~t&) satisfies with respect to ~ the differential equation (1.1.7) with the 

boundary condition as ~--+oo 

T+ (:~,,.) - e(-- ~,~.) ~_--z-~ o. (1.1.17) 

It follows from (1.1.6) that for any 

T<,)-- T+(~,~,) T_(,~, ~,). (1.1.18) 

Analogously, to the case of a finite interval, for T+~,~ and T(~) one proves the sym- 

_metry property (1.1.8) and the "unitariness" property (1.1.12). 

We list analytic properties of the matricial functions T:~(~), T• and T(~ with re- 

spect to the spectral parameter ~. T:~) is a holomorphic function on the entire complex 

,plane ~. The matrix elements ~.~t~1~,~ta+~,~t~+~,~)t=(~) can be analytically extended to the 

haif-plane Im~0 , then as matrix elements ~_~,~,~+(%~,a+~),0~%) can be analytically 

extended to the half-plane Imp<0. The matrix elements ~(~) and ~, in general, are defined 

only for real ~. (The notation for the matrix elements of the matrices T_+~,~ and T(~) is 

given in the Supplement.) 

The proof of the analytic properties listed above and also of the existence of the 

limits (1.1.13-17) is carried out in the standard way [30-32] using integral equations and 
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integral representations for T~(x), T_+(%~), and-[(Z) , and we now start in on its consideration. 

The Cauchy problems (1.1.3-4) and (1.1.7)-(1.1.4) are equivalent respectively with the 

Volterra integral equations 

& 
T ~,(~):n I + I d:~ L(~,x)T~,(,)" (1.1.19) 

and 

T : : ( ~ ) :  I + I ~-T~. ' (*)L (~, ~,) �9 (l.1.20) 

Extracting from i(~,~) the potential V(~)--~(~)d+-~(~)~i, we get the following integral equa- 
~z 

tions for T~(~) : 

% 

o r  

Z~ 

(1.1.22) 

From (1.1.13), (i.i.21), and (i.i.22) follow the integral equation 

T_ (z,x)--e (z, ~) + [ d~ e(~-~, x)V(~)T_ (~, ~) (1.1.23) 

and the integral representation 

-v #, -~ (1.1.24) 

for T_ (Z,~) �9 

equation 

Analogously, from (1.1.14), (1.1.21), and (1.1.22) one derives the integral 

(1.l.25) 

and the integral representation 

T+ (~= ee~,~+[a~ ~+~,~)V(~)T~ (~) (1.1.26) 

For T(~), from (1.1.15), (1.1.21), (1.1.22), we get the two integral representa- for T+(z,z) . 

tions : 

T(~)= I+ I ~ ~e~,~)V(~)T_(z,~) 
- o Q  

(1.1.27) 

and 

T(~) = I+ Saz T§ e(~,~) (1.1.28) 
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Iterating the integral equation (1.1.21) or (1.1.22), we get the following expansions 

of the matricial elements of T~(%) in power series in ~: 

Expansions for ~'~- ~[%) are ~4[%) and obtained by complex conjugation. 

( 1 .1 .30 )  

Analogous expan- 

sions for the matricial elements of $_~,~, and T(~)are obtained from (i.i.29) and 

(1.1.30) by cancellation, respectively, of ~,~, or ~4 and ~. 

To conclude this section, some words on the discrete spectrum. As shown in [31], for 

~>0 the function ~(~)has no zeros in IMP>0, but for ~0 can have in the upper half-plane 

a finite number of zeros: 

~(~)=0, Im~>O, j=i, ,~ (1.1.31) 

This property of the coefficient ~(~)is closely connected with the existence for ~<0 of 

soliton solutions of (i.i.i), and in the quantum case, as we shall see later, the connected 

states of the basic particles. 

1.2. Poisson Brackets. ~-Matrix 

describes the dynamics of a Hamiltonian system with Hamil- As is known [30], (i.i.i) 

tonian 

H = (1.2.1) 
- - o o  

and Poisson brackets 

In other words, (i.i.i) can be r e p r e s e n t e d  i n  the f o l l o w i n g  form: 

%:{, 

(1.2.2) 

(1.2.3) 

In [30] from the matrix elements of the matrix T(~) (1.1.15) there were constructed ac- 

tion-angle Variables for (i.i.i). The basis for this construction includes the calculation 

df the Poiss0n brackets between the matrix elements of T~) as functionals of the fields 

~z(~j~ ~nd ~(m) . Below we shall calculate these Poisson brackets by a new method, proposed 

by the author in [29]. This method is based on using the so-called ~-matrix and has the 

advantage over the traditional methods [4, 30], that it admits direct generalization to the 

quantum case, and also allows one to appreciably simplify calculations. 
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In what follows it will be convenient for us to use the following notation. With each 

(2 x 2) matrix 

we associate two (4 • 4) matrices 

and 

T= \ ~;,. ~7 

and ~ : 

T=T~I~ , 
0 %~ 0 \ 

) 

( '~. t,, ~ ~ ) 
~=I~T= t , .%o . 

\~ ~ ~. i,,~ 
0 t~ t~ 

Thus, the matrix 

(1.2.4) 

(1.2.5) 

(1.2.6) 

will contain all 16 possible Poisson brackets between the matrix elements of the matrices 

~(7~) and T~). We note that the matrices ~[~) and ~(~) commute with one another 

I T = I T  (1.2.7) 

Later we shall also need the permutation matrix 

O t  
~= I 0 , 

0 0 
~ =  I zl (1.2.8) 

and the following easily verifiable relations 

~OT~P=T , P T P = T  , 

1 s  = 

(1.2.9) 

(1.2.1o) 

The fundamental result of the present section is the following theorem. 

THEOREM i. The matrix of Poisson brackets L; ~4[~)~Tm~t~)j = . _~,j. admits the following 

representation for X~1 

E 2~t(~,j~)--- ~ (~ -~ ) ,T . t (~ )  T . ,  , < l .2 .11)  

where [ ,  ] denotes the c o = u t a t o r  of matri~es,  and the 4 • 4 matrix ~(*-~) has the form 
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~,_~ �9 

For ~f':Z i ,  as follows from (1.1.5), (1.2.il) goes into 

[,+,,T 
_Proof. For the proof it suffices to see that the right and left sides of 

satisfy the same differential equation with the same initial conditions. 

Differentiating the right side of (1.2.11) with respect to mm we get for 

following differential equation: 

~ + ~ t~.,~) " T..(~.) T..~) (L(=,,~)+ L(=,,b *"" 

with the initial condition 

(1.2.11) 

(1.2.12) 

the 

(1.2.13) 

(1.2.i4) 

In order to calculate the derivative with respect to ~m of the left side of (1.2.11), 

we represent it in the form: 

g., T.,(~),T., ~ ku~,~, ~ , f ) -P2r  = 

= T., (~) T ,:(f) ~)~ (f)) . (,. 15) U', 0)~', (f)-l, TZ(~),T'= t 2. 
&'-"O L ~, J 

We study the first summand of the expression obtained. Substituting in J'oc,~ (~,~)the 

expression 

~+# 

T,,+~ .4 = it o r  
~Z 

following from (1.1.19), we get 

Here 

o 6 , ) =  ~ 

{~/ denotes the "local" Poisson bracket 

_ _  ! 

Finally, passing on (1.2.15) to the limit as #--~0, we get 

~ "  ~ ~ ,~) 

I n  o r d e r  to  i d e n t i f y  ( 1 . 2 . 1 3 )  and ( 1 . 2 . 1 7 ) ,  i t  s u f f i c e s  to  no te  t h a t  one has 

(1.2.16) 

(1.2.i7) 

(12.18) 
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or 

which is easily verified directly, taking into account (1.1.2), (1.2.2), (1.2.12). 

In order to complete the proof of Theorem i, it remains to note that z,(z),Tz 
satisfies the initial condition (1.2.14). 

A complete summary of all Poisson brackets between matrix elements of "[~(~) following 

from (1.2.11) is given in the Supplement (Eqs. (SI-6)). 

We note that the domain of application of the method of the Z -matrix is not restricted 

to (i.i.i). The existence of a representation of the Poisson bracket in the form (1.2.11) 

is based, as follows from the proof given above, only on (1.2.19), which also holds for the 

sin-Gordon equation and the Landau--Lifshits equations [29]. The matrix ~ for these equa- 

tions has a more complicated form than (2.2.12). 

1.3. Passage to an Infinite Interval 

To achieve our ultimate goal, the construction of action-angle variables, we need to 

calculate the Poisson brackets for the transition matrix on the interval (-oooo). But first 

we concern ourselves with the calculation of the Poisson bracket ,z),T_<z, , which it 

is convenient to denote by ~-(z}Z~) . 

Repeating word for word the argument of the preceding section, one can see that ~_(z; 

%,M) satisfies with respect to the variable Z, the differential equation (1.2.13). On the 

T_ (m,,) T_ (m,j~)] �9 other hand, the same differential is satisfied by the expression [~(~-~)r ~ 

Consequently, their difference satisfies the corresponding homogeneous differential equa- 

tion, whose general solution we can write as ~_(z,Z)~_(z~}~)6_(Z~). Thus, we get the following 

representation for ~_(~;Z~) : 

The (4 x 4) matrix ~_~,~) is determined from comparison with the asymptotics of (1.3.1) 

as 05---~-o~ . 

It is easy to get the asymptotic behavior of the right side of (1.3.1), using (1.1.16): 

where 

" J To calculate the asymptotics of ,z),T_(z, as ~--~ we use the integral representa- 

tion (1.1.24). We have: 

=_ (1.3.4) 
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Calculating the Poisson bracket standing in (1.3.4) under the integral 

+ T ,(f){T {(x),V<~)] V(~)+ T, (a, {V(~),T ,(f,} V(~), (1.3.5) 

we see that only the summand 

(1.3.6) 

gives a nondecreasing contribution as ~-~ in (1.3.4). Substituting (1.3.5) and (1.3.6) 

in (1.3.4), and considering that as follows from (1.1.21), 

we get, that as ~---m, 

T~(~.)-e@-{,~.)--0, <r,~ . _ o o  

- , = , o  

(1.3.7) 

It is easy to calculate the integral in (1.3o7), and comparing the asymptotics of (1.3.7) 

with (1.3.2), we get <00:) 
o 

_ ~) ~v~4.o 
. 

~.-~+b 0 

0 0 

Completely analogously one calculates the Poisson bracket (t+(z,~,),?(~,ji)]=~+(~;~) : 

~+@;,,j,) = ,T+(r,:a)T+(:r + C+(~.,la.)T+~,~.)T+(:~,p.), 

(1.3.8) 

(1.3.9) 

where oo.o) 
�9 0 ~ 0  �9 

0 0 0 

(i. 3.10) 

It is interesting to note that although (1.3.1) and (1.3.9) should be understood in the 

sense of generalized functions, the summands in (1.3.1) and (1.3.9) containing g~-~) , are 

not needed in the regularization for ~=~ , since the corresponding numerator IT_+@~ T+~, 

vanishes for ~=~by virtue of (1.2.10). 

However, the choice of a definite regularization of ~(%-~), e.g., ~-~)=-~v.p.~-~1~ , al- 

lows one to write (1.3.1) and (1.3.9) in compact form: 

and 
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where 

o , o , ) 
~+(~ ~)= ~(~-~)+ C+(~,~) = ~ 0 , ~(~), 0 , 

0 ) 0 ~ 0 ~ v .p .~-~  

Now everything is ready to calculate the Poisson bracket =~(~p~) 

(1.1.18), (1.3.11), and (1.3.12), we get 

(1.3.12) 

(1.3.13) 

Keeping in mind 

(1.3.14) 

The results proved above allow us to formulate the following theorem. 

THEOREM 2. The Poisson brackets between matrix elements of transition matrices for 

semi-infinite and infinite intervals are given by (1.3.11-14). 

A complete summary of all Poisson brackets is given in the Supplement (Eqs. ($7-24)). 

1.4. Integrals of Motion. Action-Angle Variables 

In the present section, which has an auxiliary character, we list results basically 

known from [30-32] for the nonlinear SchrDdinger equation, which will be useful later for 

comparison with the quantum case. 

As shown in [31, 32], ~(~ is the generating function for the local integrals of mo- 

the coefficients ~of the expansion of Sa(~ in an asymptotic tion ~,rfor (i.I.i), i.e., 

series in powers of ~-~ 

are the integrals of the local densities with respect to ~f(m) 

where ~ ,~(~) 

and ~*(~) 

are determined from the recursion relation 
~-4 

(1.4.1) 

(i.4.2) 

(1.4.3) 

with the initial condition 

~,~(90) =~(~) . (1.4.4) 

By virtue of (S19) the quantities ~are in involution with respect to the Poisson bracket 

(1.2.2). We shall write down the first few of the integrals ~: 

~4=~=I(~I~(~)I ~, (1.4.5) 
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~C H = ] a~ GT~I ~+ ~ IT I } .  (1.4.7) \ 

The quantities ~W, and H are called, respectively, the number of particles, momentum, and 

energy. Since the Hamiltonian H=~ is included among the ~m, the quantities ~m are inte- 

grals of motion for (I.I.i).. 

We proceed now to the construction of action-angle variables for (I.i.i). The concept 

of "action-angle variables" we shall treat here broadly, calling such any canonical vari- 

ables in which the Hamiltonian H can be written as a quadratic form (and the equations of 

motion, correspondingly, become linear). 

We introduce quantities ~) and ~(~) by the formulas 

I ~ )  

_ ~(~ ~ (1.4.8) 

~(~)= 1~(~)1 ~ - ~  
In (1.4.8) it is necessary to take the positive value of the root. The expression un- 

der the radical sign here remains positive for any value of ~, since by (1.1.12), I~(~)17~ 

for ~0 a~d I~)I<~ for ~<0, when �9 runs through the real axis. 

The quantities ~(~) and ~) satisfy all the requirements listed above for action-angle 

variables. In fact, using the Poisson brackets (Eqs. ($9-24)), it is easy to verify that 

~(~ and ~(~ are canonical conjugate variables: 

{,(~), ~e)) = ~ (~_~)" (1.4.~) 

Further, for ~0 , the generating function of the integrals of motion ~(~) has, as 

proved in [31, 32], the following integral representation: 

~(~) 

which can be rewritten, using (1.4.8), as 

_~ - ~  
(i.4.10) 

Decomposing (1.4.10) into powers of %-~ , we get 

j~:~ p, i~)i ~ (1.4.11) 

In particular, 

(1.4.12) 
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P = ' 
-o,o 9 

HI]@/I f) . (1 .4 .14)  

all the integrals of motion ~,~ in the variables ~) are quadratic, and corre- Thus, 

spondingly, the equations of motion 

4 d."-~" '(~ ('1:; JU') = {~m ' ~ ('t: ;~)} = - ~'~-' ~ <'~ ;. ~ )  (1.4.15) 

are linear in , which allows us to call the variables T~),?~) variables of action-angle 

type for (i.i.i) in the sense of the definition given above. The action-angle variables 

introduced by us differ from the traditional ones [30], but have the advantage that they ad- 

mit a quantum-mechanical generalization. 

The case X~0 requires the calculation of the discrete spectrum. We shall not write 

down here the corresponding variables of action-angle type, since they, apparently, have no 

reasonable analogs in the quantum case, and we restrict ourselves to indicating how in this 

case one generalizes (1.4.10-14): 

"~n'~(%) = C ~" ~:---'--'--~;~=~ + -Z4 -~:#-" df , (i. 4.i0' 

(1.4.11') 

Z Z S t ~ ~' 

(1.4.12') 

(1.4.13') 

(1.4.14') 

1.5. M -Operator 

All the arguments of the preceding sections were based on the study of the operator 

~,~ at a fixed moment of time %. This did not prevent us from proving the complete in- 

tegrability of (i.i.i) and finding the spectrum of its elementary excitations. For the tra- 

ditional approach [31], however, the consideration of the time evolution from the very start 

is characteristic. The initial point here is the representation of the equation of motion 

(i.i.i) as the commutativity condition of two differential operators: 

o r  
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where 

(1.5.3) 

Although, we stress again, the approach developed in the present paper is in principle 

not necessary in introducing the operator ~ both in the classical and the quantum case, 

the study of the question of the ~-operator is of definite systematic interest and allows 

us to demonstrate again the possibility of the method of the %,matrix. 

We raise the question in the following way. Let the time evolution of the fields ~(~ 

and ~(%~ be given by the m-th local integral of motion: 

= 

How can we find under these conditions a matrix ~m~,~ , satisfying (1.5.2)? Although the 

answer to this question is known [35], the method of the~-matrix allows us to express it 

in a simple and compact form. 

We consider first the case of periodic boundary conditions on the interval ~,m~ 

~~+ ~ , )  =~(~ (1.5.5) 

and we formulate the following proposition: 

Proposition i. 5. i. One has the equation 

z~ ~z.~ (1.5.6) 

where 

~ 

The operation ~ introduced by us here is the convolution operator in ~| ~ in the indices 

relating to the first factor. The result, thus, is a (2 x 2) matrix. In particular, 

The proof of Proposition 1.5.1. is based on the following lemma: 

LEMMA 1.5.1. For any functional X(~,~) of the fields ~(~) and ~(m) one has the following 

relation: 

{T ::(~,), X} = i~T  :'(*) {L (,,,), X} T:#,). ~1.5.8) z~ 

~o prove Leman 1.5.1 we introduce the notation 4,* ,X)= ~. , , , , - , , , ,~.  ~ i f fe rent ia t ing  the 
left and right sides of (1.5.8) with respect to ~, it is easy to see that they satisfy the 

same differential equation 

-~, '2,~, (,~ X) - l.(,,,,.) ~,,, (~.,X) + {L,:.,,,9,X} T , ,  (~.) (1.5.9)  
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with the same initial condition 

:', (, :0 --- o �9 

Reference to the corresponding uniqueness theorem completes the proof. 

We begin now the proof of Proposition 1.5.1. First, using the notation ~, we have 

introduced, we transform the left side of (1.5.6): 

.y,,~, " J  ~ ~ ,  ~ ~ .. {t, T,, (~),L(~,~)) = t, (i- d,), IC. ,~)} (1.5.11) 
To calculate the right side of (1.5.11), we use Lemma 1.5.1, which we have just proved. Sub- 

stituting in (1.5.8) X=~(~)~ we get 

d(,), Z(~,~)~ = J 4r~T r162 T $,(~), 

or, by virtue of (1.2.19), 

(1.5.12) 

? ~ 7 N ~  r ,,~ ~ 7~.~ 

Substituting (1.5.13) in (1.5.11) and using (i.i.3) and (i.i.7), we get 

+ & t ;.'@.) [~@.-.~), 1 (~,4 T:,@.) = ~ & t  #(~.) ,~(~.- ~)T;,(~.) + 

= ,, (~;~,j~) + M,, (1.5.1~) 

where ~(~'~-,~ is given by (1.5.7) which is what had to be proved. 

From (1.2.11) follows 

'2"Z -----" 0 ~,,,,,,,, vo.,~, , (1.5.15) 

which allows us to consider &t~T~,r as the generating function of the integrals of motion 

of (i.i.i) with periodic boundary conditions. 

In order to find the analog of (1.5.6) for an infinite interval, it is necessary to 

divide both sides of (1.5.6) by ~m~(%) and pass to the limit as ~---o= m--+oo. The an- 

swer depends, obviously, on the sign of Im% and is given by the following formula: 

where 

(1.5.17) 

We explain the notation. The upper sign corresponds to Im%>0, the lower to IMP<0. ~(+)(%)= 

~(~)t ~(-)~= ~(D- The projectors P~) onto the eigenspaces e~ have the form 
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:I00:) 
The p r o o f  o f  ( 1 . 5 . 1 6 )  and ( 1 . 5 , 1 7 )  becomes o b v i o u s  i f  one n o t e s  t h a t  as ~ - ~  m ~ - - + ~  

t~T ~ (~)~ ~ ~ (~,~T(~)~ ~ ~,,~) ~ ~ ~:0 t~ pm T(~) P~): e ~ ~ ~(~)(~) 

We consider the results obtained. Since ~(%) (or ~ )  ) is, as discussed in Sec. 1.4, 

the generating function of the local integrals of motion ~, (1.5.16) means that ~)~i~) 

is the generating function of the corresponding ~-operators: 

= • (1 

In particular, 

M~(~,~): ~6~ , (1 5 19) 

We note that the specific structure of the ~-matrix for the nonlinear SchrDdinger equa- 

tion (1.2.12) allows one to simplify the expression (1.5.17) for ~+-)(~7~) : 

;%,j~)=-~-~ ~(~) ~_(~c,%)/ ' (1.5.22) 

�9 

thus reproducing a known result [35], stating that the generating function of the ~-oper- 

ators for the n.S.e, is proportional to the diagonal of the kernel of the resolvent opera- 

tor ~-L. 

We stress, however, that such a simplification makes essential use of the specifics of 

the nonlinear SchrDdinger equation, at the same time that (1.5.17) carries a universal char- 

acter and is suitable for any completely integrable models, whose L-operators have a ~-ma- 

trix (e.g., the sin-Gordon equation, the Landau--Lifshits equation [29]). 

To conclude this section, we introduce a series of formulas, describing the time evo- 
% lution of the transition matrices T~4~T+_ , and T. 

Proposition 1.5.2. The transition matrices T~(~;~)~T+~)~) , and ~(~;~) satisfy the fol- 

lowing differential equations: 

(1.5.24) 

(1.5.25) 
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-% T(,'~p,)= ~ r T(~,~) ~ t  ~ " 

(1.5.26) 

( 1 . 5 . 2 7 )  

Proof. We introduce the notation ~T~,~,@=.~,@;@ . Differentiating (1.5.24) with 

respect to ~ and using (1.1.3) and (1.5.2), it is easy to see that both sides of (1.5.24) 

satisfy the same differential equation 

with the same initial condition 

~,~,~)=o, 

( 1 . 5 . 2 8 )  

(1.5.29) 

which proves (1.5o24). Equations (1.5.25-27) are now obtained from (1.5.24) by passage to 

the limit according to (1.1.13-15), taking into account 

m~/%,~)=~-~ ~, 

which follows directly from (1.5.3) and the boundary condition ~(~) i~i-~0 

We note that (1.5.27) has the obvious general solution: 

TCt?,) = e i~ '~  T(o,*) J ~ ' ~  

(1.5.30) 

(1.5.31) 

Writing out the matrix elements of (1.5.31), we get the well-known result [31]: 

~ (~,~,) = ~ Co,~,) , 

~(t,,)= e -~ '~  ~ (o,~) 

(1.5.32) 

(1.5.33) 

(1.5.34) 

(1.5.35) 

CHAPTER II 

QUANTUM NONLINEAR S CHR'0DINGER EQUATION 

2. i. Quantization 

In this section we enter upon the study of the quantum version of the nonlinear SchrD- 
dinger equation, which constitutes the basic object of study of the present paper. As al- 
ready noted in the Introduction, the nonlinear SchrDdinger equation admits detailed descrip- 
tion in the classical as well as the quantum case, which stipulated its choice as the object 
of the first application of the quantum method of the inverse problem. 

We shall briefly describe the quantum system corresponding to the classical equation 

(i.i.i). The Hilbert space of states of the system is the Focke space F for Bose particles 
in one dimension [36, 37]. 

The elements of the space ~ are columns of the form 

~'~ C~i~ 
�9 . . . . . . .  I ~  (2.1.1) 

\\' . . . . . . . . . . .  t 
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where ~06~ , and ~(~i, .,mR) is a complex-valued symmetric square-integrable function of X 

real variables. We define the scalar product in the space ~ by the formula 

- ~ J r  . . . .  

The Focke space ~ splits into the orthogonal sum of ~' partial subspaces ~: 

A vector of the form 

<o,o>:,, 
~ J 

will be called a vacuum and will be denoted by I0>. 

Let the generalized operator-valued functions ~(m) and ~+(~) define the standard [36, 

37] representation of the canonical commutation relations 

;+ (2. i. 2) 

in the space ~ (we set Planck's constant ~ equal to i), having the property 

~(~)I0)=0 . (2.1.3) 

Here any element ~ [Eq. (2.1.1)] of the space ~ can be represented in the form 

I 
f=~lO> ~:4 W !--- l~ " ' ~ $  ( ~ ' ' ' ' v ' X ~ ' ) ' ' ~  I O> " (2.1.4) 

In what follows we shall use as representative both (2.1,1) and (2.1.4). 

The classical Hamiltonian m (1.2.1) corresponds in the quantum case to the self-ad- 

joint operator ~ in the space ~, defined by the expression 

The Heisenberg equation of motion for the operator ~(~, generated by the Hamilionian I , 

has the form 

U s i n g  t h e  c o m m u t a t i o n  r e l a t i o n s  

commutes  w i t h  t h e  o p e r a t o r s  o f  t h e  number  o f  p a r t i c l e s  

Ill 

and momentum 

[Y, HI = -Y,=+ S; Y (2.1.6) 

(2.1.2), it is easy to verify that the Hamiltonian H 

(2.1.7) 

(2.1.8) 
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On vectors ~(m~,...~e~)from the ~-partial subspace ~F, the Hamiltonian ~ acts as a dif- 

ferential operator [33, 34, 38]: 

hav ing  the form of  a m u l t i p a r t i a l  Sch r~d inger  o p e r a t o r  w i t h  t w i n  p o i n t w i s e  i n t e r a c t i o n .  I t  

is easy to give strict meaning to the singular potential a(~i-z~) in (2.1.9), replacing it by 

the boundary condition [33, 34, 38] 

~-0 ~ 

The eigenfunctions of the operator ~ admit a simple description [33, 34]. Namely, 

the eigenfunction ~$~,,...,~$I~0...,~) , corresponding to the eigenvalue ~4~ and describing the 

state of scattering of Jr particles with momenta ~7...,~(Tm~=0~}=4r.v~)t has for ~i< ~< ...< ~$ 

the following form 

- . ( 2 . 1 . 1 1 )  

(to other values of ~ the function ~$ is extended by symmetry). A substitution of the form 

(2.1.11) for an eigenfunction is usually called a Bethe substitution in honor of Bethe, who 

in [5] first proposed such a substitution, studying a lattice model of a ferromagnet. 

The summation in (2.1.11) is taken over all permutations (~4)...,~) of ~..vE), and the co- 

efficients Cs must satisfy the condition 

C~...~...~...~$ k~- ~ +*~ 
Ct{...Zs...s = ~s ~s (2. i. 12) 

Following [38], we choose a solution of (2o1.12) in the form 

{4...'~r ~s ~t~'- kt~ -'[~ (2.1.13) 

For such a choice of ~+..~ the system of functions f~ ~,...~m~l~,..v~) is orthonormalized: 

at 

.... , e (.1.14) 

In  t h e  c a s e  o f  r e p u l s i o n  ~ > 0  , t h e  s y s t e m  o f  f u n c t i o n s  ~a r Ik,~,...,~ae) ( ~ = o , f , 2 . . ) ,  m o r e -  

o v e r ,  i s  c o m p l e t e  i n  ~.  In  t he  c a s e  o f  a t t r a c t i o n  g<O,  we mus t  c o n s i d e r  c o n n e c t e d  s t a t e s .  

I t  t u r n s  o u t  t h a t  f o r  e a c h  E=~S~...  t h e r e  i s  o n l y  one R - p a r t i c l e  c o n n e c t e d  s t a t e  o b t a i n e d  

f rom ( 2 . 1 . 1 1 )  by a n a l y t i c  c o n t i n u a t i o n  w i t h  r e s p e c t  to  t h e  momenta k~ : 

k~= P +*,a~l ( } - ~ )  ; } = , , z , . . . , *  , ( 2 . 1 . 1 5 )  

where  P i s  t h e  t o t a l  momentum of  t h e  c o n n e c t e d  s t a t e .  The c o r r e s p o n d i n g  n o r m a l i z e d  wave 

f u n c t i o n s  a r e  g i v e n  i n  [ 3 8 ] .  
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The proofs of all the assertions given above are contained in [33, 34, 38]. 

Concluding the list of results obtained for the quantum n.S.e, by the method of Bethe 
substitution, we can enter upon the consecutive account of the quantum version of the method 
of the inverse problem. We note right away that in contrast with the method of Bethe sub- 
stitution, our method allows us to find the spectrum of the Hamiltonian and other integrals 
of motion of (2.1.6), without using the explicit form of the eigenfunctions (2.1.11). 

The main object of our investigation will be, as noted in the Introduction, the quan- 

tum analog of the fundamental solution T~(~) of the auxiliary linear problem (1.1.3). Gen- 

erally speaking, there exist many methods of associating with a given functional of classi- 

cal canonical variables ~(~) and ~(m) a quantum operator (for example, Wick, anti-Wick, 

Weyl quantization [39]). We dwell here on Wick (normal) quantization. The advantage of such 

a choice is indicated, for example, by the result of [38] in which it is proved that the in- 

tegrals of motion ~m (1.4.2) for the classical equation (i.i.i) after Wick quantization go 

into quantum integrals of motion for (2.1.6). 

Thus, we define the quantum transition matrix T~z~(~ by 

T ~ (~) ~ = "T ~i ~) ~ " (2.1o16) 

The colons :" in (2.1.16) denote Wick quantization. In other words, the matrix elements 

of the matrix ~z1(~) are defined as quantum operators whose Wick symbols are the correspond- 

ing elements of T~($). 

There immediately arises the question of the propriety of such a definition, i.e., of 

the existence of such quantum operators in the space F. The clarification of this question 

we postpone to the end of the section, and meanwhile we list the properties of the quantum 

transition matrix, formally following from the definition (2.1.16). 

for Z1<z~<z ~ or ~=~>~ (2.1.17) 

It z 2) ~ z~(~) has ~he form 

~§ \ 
== A~:(~,), , b  =; (~,)~ (2. l .18) 

T = , ( , )  = . +=, / 
\g:~( , ) ,  I =,(~,)/ ' 

where the superscript + denotes Hermitian conjugation, and A~,/~='@ ~(~.~" 5z~)=: z~[~: ~ ~ [%)= 

(~=,{,~), ~ =, (,) - (B ,,, ~)) . 

3) ~(~) satisfies the differential equations 

and 

(2.1.20) 
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with the initial condition 

T=(~)---- I . (2.1.21) 

Property i) follows from the analogous property (1.1.6) for the classical transition 

matrix and the commutativity of the operators ~[~) and N~+II~ on disjoint intervals. We 

stress that in contrast with the classical case, in the quantum case the condition m1<m~<z~ 

or ~z>z~ is essential. 

Property 2) follows from (i.i.ii) for the classical transition matrix and the obvious 

property of Wick quantization that the complex conjugate of the Wick symbol corresponds to 

the Hermitian conjugate operator. 

In order to prove property 3), we formulate the following simple assertion. Let X(~) 

be a functional of the fields ~f(~) and ~(z). Then one has 

"'~X:-----'~+:X:, (2.1.22) 

The proof is obvious. 

Now, differentiating ~4(~) with respect to ~ or z~, and using (2.1.16), (1.1.3), 

(1.1.7), and (2.1.22), we get (2.1.19-21). 

In order to write (2.1.19) and (2.1.20) more compactly, we introduce the sign of normal 

arrangement of operator factors {i. The sign ::~ should not be confused with the sign for 

Wick quantization ::, applied here only to classical functionals, the sign ~}, applied to 

the product of several operator factors (including ~. and ~+), guarantees the arrangement 

of all ~+ on the left, and all ~r on the right, without altering the order of the remain- 

ing factors. For example, 

:X ~ + . ' { Y  (2.1.23) 

Using the notation introduced, (2.1.19) and (2.1.20) can be rewritten, respectively, 

in the form 

9~ (2. i. 24) 

~"~ I m1(~,) = -  : T m, (~,) ~ (~;,,~,) ~ , (2.1.25) 

where ~(~,Z) is the quantum L-operator 

~(,,I,)=:L(,,~):---'~O's-~,6"11t~,)+%~,O'+'~I~m)=\_~li~,z) ' ~'~ / .  (2.1.26) 

As also in the classical case, the differential equations (2.1.24) and (2.1.25) with 

initial condition (2.1.21) are equivalent with the Volterra integral equations 

T=, I + (2.1.27) 
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and 

"" = T,( , )  L(~,~)! (2.1.28) 

or 

and 

where 

g~ �9 ~ �9 

(2.1.29) 

T., (~o = ~(.,-.,,~.)+i~.- T .  (~.)%~: ~(.,,,,~.), (2.1.30) 

V(~) =: V(z): = s - ~6_~) . (2.1.31) 

Iterating (2.1.29) and (2.1.30), we get for the matrix elements of ~;~(x) [Eq. (2.1.18)] 

the following expansions: 

+~, _ r  - + + 

o,,~,~--,,~ fio~ I...Ia~,...a~,~+,a,~,...a~, ~"~,~,+.-*~o~-,-~,~,:,-~ ~l~,/...~l~,,, / ~,~,~..~, ~ . . 1 . ~  

analogous to the classical expansions (i.i.29) and (1.1.30). 

To conclude this section we turn to the question of the propriety of the definition 

(2.1.16) of the quantum transition matrix ~(~) . Unfortunately, the general theorems con- 

tained, e.g., in [40], do not give an answer to this question, since too restrictive con- 

ditions are imposed on the Wick symbol of the operator (of the type of decreasing as J~J-- 

oo or summability). However, the specific construction of T~(~) as a functional of ~(~) 

and ~(m) essentially simplifies ~he situation. 

We take as a basis the expansions (2.1.32-35). Analysis of (2.1.32-35) shows that the 

operators A~(~) and ~ m,(~ do not change the number of particles, ~ ,~(~) increases it by i, 

and lowers it by i (annihilating vacuum). Here, in order to define the action of any of 

these four operators on an ~-particle state, it suffices to know only a finite number of 

first terms of the series (2.1.32-35) (up to terms containing ~ annihilating operators, in- 

clusive). Thus, on functions from ~ the matrix elements of ~;~(~) act as certain integral 

operators. 
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We shall not discuss here such properties of these operators as the domain ~f defini- 

tion, range of values, etc. For our purposes (i.e., for calculating commutation relations 

between matrix elements -r-'~:~(~,)),~ it will suffice to consider the operators ;,~.,~A ~(,~k ~.�9 LR"~.~'(~3. ,, 

and ~+=~o(~:. %,,,, as formal series (2.1.32-35). The integral equations (2.1.27-30) we shall con- 

sider here as compact notation for the series (2.1.32-35). 

Some additional information on the properties of the matrix elements of T%f~k, �9 z~v'~ as oper- 

ators in the Focke space will be given in Sec. 2.4. 

2.2. ~-Matrix 

As in the classical case too, our final goal is the definition of the quantum transi- 

tion matrix !~ for an infinite interval and the calculation of the commutation relations 

between its elements. An important intermediate stage here is the calculation of the com- 
~f'~_, 

mutation relations between the matrix elements of ~(#~). Analogously to Sec. 1.2, it is 

convenient to introduce the matrices ~v'O and ,s by (1.2.4-5). The basic result of the 

present section is the following 

~z,,  T~(p,) be written compactly in the THEOREM 3. The commutation relations ~ ~(#) and , ~\~ can 

form 

where 

(2.2.1) 

(2.2.2) 

As also in Sec. 1.2, the proof of Theorem 3 is based on the verification of (2.2.1) in in- 

finitesimal form. 

LEMMA 2.2.1. 

tial equations: 

and 

and initial condition 

Here the following lemma will be useful. 

�9 ~'i, 

The products ~(~.) (~ and -I-~)-i-:,~) satisfy the following differen- 

(2.2,3) 

(2.2.4) 

(2.2.5) 

The operators s163 and s in (2.2.3)and (2.2.4) have the following form 

' ~ -. ~Jf+, ~+ / 0 \ 

\ r . ' t l  ' 

. . . .  + let '~,~ ' ; 

(2 .2 .6 )  
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\ 

\ 0 , ' 

(2.2.7) 

We give two proofs of Lemma 2.2.1. 

Proof i. Let ~ be an arbitrary positive number. We differentiate the product 

~m~+~, ~r,,~ with respect to ~. Using (2. i. 19) we get ~ ~J ~,J 

=, ,+,),l-=, + ,,e+ L u ,, 
l n  o r d e r  t o  g e t  t h e  f •  a n s w e r  ( 2 . 2 . 3 ) ,  we mus t  c a l c u l a t e  t h e  c o m m u t a t o r s  i n  t h e  l a s t  two 

t e r m s  on t h e  r i g h t  s i d e  o f  ( 2 . 2 . 8 )  and p a s s  t o  t h e  l i m i t  as &--- ,-0 . The c o m m u t a t o r  ['~'r(m,.~+0~ 

Obviously vanishes, since ~(z~+ 0 commutes with all operators ~m)~) for ~e[m~] 

since ~0 . To calculate the second commutator in (2.2.8), we use Lemma 1.5.1 and the fol- 

lowing easily verifiable equation, 

which is valid for any functional X(~,~)of the fields ~(~), ~(~) . As a result we get 

| ~, ~+ ] = ~  ~ . - -  ~ =~+~ . "-" 

Substituting (2.2.10) in (2.2.8) and letting g--0, we get the answer required. We note 

that the result is independent of the sign of E. For g<0 the second commutator in (2.2.8) 

vanishes, and the first gives the needed summand in (2.2.3). One proves (2.2.4) analogously. 

The method of "extension" used in the proof given above we borrow from [30].* This 

method allows us to avoid consideration of indeterminate expressions of the form z~(~)1 

Y$~] (containing indeterminacies of the type of the product of a function and a discontinu- 

ous one, as is easy to see, using, for example, the expansions (1.1.29-30)). However, here 

one uses implicitly an unproved, generally speaking, proposition about the continuous de- 

pendence of [~)--~4 on ~. Hence we give a second proof of Lemma 2.2.1, more straight- 

forward, although also more complicated. 

Proof 2. We substitute into the product ][~(~)][~[~) the integral equations for T~4(~ ) 
and ~:~(~)of the form (2.1.27). As a result, we get: 

*The author thanks S. V. Manakov for indicating the possibility of using the method of "ex- 
tension" in the quantum case. 
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!=!) I( + 
[1 ) <====> 

Subsequently, complicated, but in terms of ideas entirely transparent, calculations pro- 

duce as their ultimate goal the reduction, using the commutation relations (2.1.2), of equa- 

tion (2.2.11) to a Volterra integral equation, equivalent with the differential equation 

(2.2.3) with initial condition (2.2.5). 

We transform the fourth summand in (2.2.11), opening the brackets in the integrand and 

using the commutation relation (2.1.2), after which it assumes the form 

.~+. + . ~ 

~ T ~=~ v,~+ ( ~ =  ++=Wc+~+)W~I)T =,(?) + = i ~+ ~(i I)T !~(~)r=~ ~ j  . ( 2 . 2 . 1 2 )  

We transform (2.2.12) in the following way. Firstly, we integrate the ~-function in 

the fifth summand. Secondly, we divide the domain of integration in the remaining summands 

into two parts: ~=<~<~<~ and ~<~<~<m~. Then, for ~<~, in the first and fourth sum- 

mands we transfer ~) to the left, using the fact that ?~(~)commutes with ~I for the in- 

dicated relation of ~ and ~, and for ~>~ analogously we transfer ~u75) to the right in the 

third and fourth summands. Then using (2.1.19), we can rewrite (2.2.12) in the form 

++ It+ +/.+ T =~>u =, l~} + "  T : + + k ~  =4 3 = ' ~ :  
(2.2.13) 

Carrying out integration of the total derivatives in (2.2.13) and substituting the re- 

sult in (2.2.11), we get for ~(%)Y~C~) the following integral equation 

~ ' ~  ~, - . ( 2 . 2 . 1 4 )  T=:~(~) Y ~,I)- [ +~i~: k(~)+L(~)+j T=~(~)T =~)i, 
which, obviously, is equivalent with the Cauchy problem (2.2.5) for (2.2.3). The investi- 

gation of the product ~(~)T~(~) is carried out analogously. Thus, Lemma 2.2.1 is proved. 

The proved lemma allows the reduction of the proof of Theorem 3 to the verification of 

the equation 
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P~ (%- ~) ~(~'} ~:J~) = ~(:~; ~, ~) P~ (~-~) , (2.2.15) 

In fact, by virtue of (2.2.3-5) and (2.2.15), the quantities Uz~(~)U~I~} and ~(%-#)~z~(~)~34(~)~ 

~4(~_#) satisfy the same differential equation with the same initial condition. We note that 

in establishing this fact it is extraordinarily important that ~ is a numerical matrix, 

whose matrix elements commute with the matrix elements of ~z. 

Equation (2.2.15), to which the proof of Theorem 3 is reduced, is easily verified directly. 

We discuss in the conclusion of this section the connection of the formula (2.2.1) 

which we have obtained with the result (1.2.11) of Theorem i. For this it is convenient to 

introduce in the commutation relations (2.1.2) the Planck constantS: 

Then the ~-matrix assumes the form 

P =I + (2.2.17) 

We shall show that in the quasiclassical limit ~---0 (2.2.1) goes into (1.2.7). In 

fact, in view of (2.2.17), (1.2.1) can be written in the form 

Using the fact that as ~-~0 ~ ~(%) goes into the classical transition matrix m~(~), and the 

commutator goes into the Poisson bracket 

and retaining in (2.2.18) terms of orderS, we arrive at (1.2.11). 

We note that this result is also valid for ~-matrices of more general form, for which 

(2.2.17) is false (see [29]). In the general case it is replaced by the relation 

= I+ (2.2.20) 

or 

1 (2.2.21) 

2.3. Passage to an Infinite Interval 

This section is devoted to the derivation of the most important result of the present 

paper, the commutation relations between the matrix elements of the quantum transition ma- 

trix for an infinite interval. 

Analogously to the way the quantum transition matrix ~{~} was introduced in Sec. 2.1 

for a finite interval, we define quantum transition matrices ~_(~)~ ~+(~} for the semi-in- 

finite and ~{~) for the infinite intervals by the formulas 

~• = :~• : ~ (2.3.1) 
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The properties of the matrices ~_~(~,~) and "~'(.%) follow directly from (2.3.1), completely 

analogously to the corresponding properties of the matrix ~(~), established in Sec. 2.1. 

The matrices ~+_(m~A) and ~C%) have the same symmetry as ~ (~) (for the notation for the ma- 

trix elements ~+i(~,i) and ~(~), see Points 6-8 in the Supplement) ~=(~,A) satisfies the dif- 

ferential equation 

~m ~_(~,,~)-~--~ I1.(~,~)~'_(~,~)" , (2.3.2) 

and ~+(~ ~J the equation 
(2.3.3) 

For ~(~,~) and ~(A) the quantum analogs of the integral equations (1.1.23-28) are 

valid, which we shall write down later insofar as they are needed. 

We recall again that for now we are considering the matrix elements of ~• and ~(~) 

which are formal series of the form (2.1.32-35) (we shall not write these series down here, 

since they are obtained from (2.1.32-35) by eliminating ~4 and/or ~). 

Now we can formulate the basic result of the present paper, Theorem 4. 

THEOREM 4. The commutation relations between the matrix elements of the quantum transi- 

tion matrices T+_C~,~) and ~(~) can be written for real ~ and ~ in the following form: 

A(./-,p,)(,~.* :~-j~-,i,o'i'~ ~+)~.t(~,A)~.(m,/~,). = ( , i  /i-/~+'i,O ~"-)T*(~"II'I')T+(m'~OR(A'4~')' (2.3.5) 

R ( l -p)  C:b ,,- 

(2.3.6) 

Proof. First we prove (2.3.4). The proof will be based on the study of the asymptotic 

T~(~)~C~) as ~i-~-~. Here we shall devote bas- behavior of the products Tm~ (~)~i C~) and 

ic attention to the formal-algebraic side, not going into the analytic justifications of 

our calculations and making it our goal to give as simply and rapidly as possible a method of 

calculating the desired commutation relations. 

~ , ~  ~ ~ ~ ~ ~ 
It was proved in Sec. 2.2 that the products .,~i(~j.~i (~) and Um1(~) m~ (~) satisfy, re- 

spectively, the differential equations (2.2.3) and (2.2.4). The operators ~ and ~r (2.2.6- 

7) figuring in (2.2.3) and (2.2.4) do not coincide with the sum of the operators ~,i) and 

~(~), as would be so in the classical case, but differ from it by ~_ the summands and 

m~§ respectively, arising from the noncommutativity of the quantum operators. In connec- 

tion with this, in the quantum case in describing the asymptotic behavior of the products 

~:~(j~) and ~(~)T~ (~)as ~i--~-oo or ~--+ the role of the classical matrix 

~,~) (see Sec. 1.3) will be played, respectively, by the matrices ~(~;~,~) and ~/(~,j~) : 
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0 

K;,,, 0 ~' '~ , e..~'~ -~~ 

O0 ;~-~ ' 
, 0 

/'e- ~' ~-~ ~ , 0 

0 , e~' "~-~'~ ~ :~ 

0 , 0 

0 , 0 , 

O~ 0 \ 
, ) 0 , 

0 o. 

0 , e.)'-T- / / 

0 0 
++~ ' 

~'~ ~,_# , 0 

e(' A:~ ~ ~ 0 

0 e~' ~~-~; 

(2.3.7) 

(2.3.8) 

where ~0(~,~) and ~of(~,~) are the "asymptotic" (as IXJ--,-~ ) values of the operators 

~, and ~f(~,j~), respectively, 

- -  + ~-+ +~'+':_ . 

We note that by virtue of (2.2.15) one has 

~c~-~ ~0( ~,~ = ~( ~,~ ~(~-~) 

(~; 

(2.3.9) 

(2.3.10) 

(2.3.11) 

From (2.3.11) in combination with (2.3.7-8) follows the analogous equation for the matrices 

~(~; ~,~) and ~I(~ ~,~) : 

R(~-~) ~(~} ~,~)=~f(~j ~,#) ~(~-~) �9 (2.3.12) 

Now we concern ourselves with the investigation of the asymptotic behavior of the prod- 

uct ~'~'(~'(~t~) as ~i--,--oo We note, first of all, that the differential equation (2.2.3) 
z~. ,~. 4 ~ J ~ L ~ I  �9 

which, one can rewrite using the notation (2.3.9-10) and (2.1.31) in the form 

(2.3.13) 

is equivalent under the initial condition (2.2.5) with the Volterra integral equation 

(2.3.14) 

We introduce into consideration the limit 

Substituting (2.3.14) 

sentation 

~I----~ - 

in (2.3.15), we get for ~'(Oc;~) the following integral repre- 

-00 

(2.3.16) 
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We note that ~(~;~,~) as before satisfies the differential equation (2.2.3): 

(2.3.17) 

On the other hand, arguing exactly as in the proof of Lemma 2.2.1 in Sec. 2.2, one Can 

See that the product ~.(~,~)~_(~,~), which we denote by ~-(~), satisfies the same dif- 

ferential equation 

#,oo ~'- (:~'; ~'~') -----" Z(m; ~,,,j~,) ~-(~,~,~,~) (2.3.18) 

Consequently, the quantities ~(~ ~,~) and ~-(~) can differ only by some matrix fac- 

tor r 

(~;~) = $-(~;~,~) r . (2.3.19) 

We note the obvious similarity of our arguments with the arguments made in proving 

Theorem 2 (Sec. 1.3). As also in Sec. 1.3, we find the matrix ~(~,~) , comparing the asymp- 

totics of ~(~;~)and ~_(~;~,j~) as ~---~-~o. The asymptotics of ~'(~;~,~) as g----,--~ are 

easily determined from the integral representation (2.3.16): 

~ - ~  

It remains to investigate the asymptotics of ~-(~;~). 

analog of the i n t e g r a l  r e p r e s e n t a t i o n  (1 .1 .24) :  

(2.3.20) 

For this we use the quantum 

(2.3.21) 

or 

' ~_ (~ ,~ )=  6(~,,~,~ +I ~ ~(Ju,)~/(~) " ~C~,~,) . (2.3.22) 

Substituting (2.3.21) and (2.3.22) in the product ~_(~7~)~_(~,~), we get 

T _ { ~ , ~ > =  E c ~ , ~  ,J  ~ ' T,z~,~)~ ~) ~ , (~ ,~ )~ (~ ,~ )  + 
-eO 

. J ~ i  'l]'~c~)~'~,z) " ~c~.,,b ~.,z,../.,.~ +J ~',z,I a,,z,, ~,,.,z ,:~,,)'n';z,c~.)~-~,'n'~ c,~)o-...~:.~.,) 

~[ ~.~"c,z~,) u. ~,~)~-~? .,z,.,~.~ o-._ ~c~,,.)] ~c~,,),) ~ 6 (~,j~,). (2.3.23) 

Here we again use the notation introduced in Sec. 1.3 ~(~; ~,~)~-6(~,~)~(~,~). 

The fourth summand in (2.3.23) can be transformed completely analogously to the way the 

corresponding summand in (2.2.11) was transformed. Omitting the corresponding calculations, 

which coincide almost identically with the chain of calculations (2.2.11-14), we give only 

the final result: 

00 

~(~;~,,~ = E ~ ;  ~,2-) * I ~'z i(  ~ ~ " %z (,b T-~ c#))( ~l(~),~'oz)+ ~ r ~) E{?~{J,#). (2.3.24) 
- -00 

In order to find the asymptotics of ~_ (~; ~) as ~--~-~o, we note that the product 

~(~)T~(~) has the following asymptotics: 
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"/, ~ ) ) Z ~ e O  

as ~ ) ~ - = - - - - ~ -  ~. Formula (2.3.25) follows from (2.3.14). Substituting 

and discarding terms which decrease as ~--~- ~ , we get 

~ I ~ -  ~ �9 

Calculating the integral in (2.3.26), we arrive at the following result: 

E'_(~,~).-.--. E(| ~ ~ - ~  ~, = ~ ( ~  ~,~.~ r 
~ _ ~  - 

where 

(2.3.25) 

(2.3.25) in (2.3.24) 

Rewriting (2.3.19) in the form 

and using the fact that 

(2.3.26) 

(2.3.27) 

~-/~.+ 1,0 (2.3.28) 

(2.3.29) 

6- !( ~,,m I+ {* " ~- ~.f (2.3.30) 

(since ~_~---- ~+~= 0 ), and recalling the definition of ~(~,~) and ~-(~] ~>~), we get finally 

~-~-+~0 ~-~* )" (2.3.31) 

The analogous formula for '~'~I(~) ~(~) is obtained by interchanging in (2.3.31) ~+~ and 

-~ -~--~ ~. : 

~ " ~  V ~ "" ,~, ,,. 
~ (7~ (;I,)7~ (~,))g(~,; ~,.~,)='~'_(~,~)7- (~,~)~* - -  @+ ~_ ) (2.3.32) 

Now everything is ready for getting the commutation relation (2.3.4). For this, we 

multiply (2.2.1) on the right by ~(~) and use (2.3.12), and we get 

' ~ 9~ . ~ ,~ ~. 

Passing in (2.3.33) to the limit as ~4 , - oo , according to (2.3.31) and (2.3.32) we get 

(2.3.4). 

Equation (2.3.5) is proved completely analogously. Combining (2.3.4) and (2.3.5) and 

using the obvious equation 

we get (2.3.6), thus completing the proof of Theorem 4. 

We proceed to discuss the results obtained. We note first of all that a calculation, 

completely analogous to that given at the end of Sec. 2.2, allows us to get in the classi- 

cal limit of (2.3.4) the formula (1.3.1) and analogous formulas for T+ and T . Thus, the 
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results of Theorem 4 generalize the results of Theorem 2 to the quantum case. 

A summary of the commutation relations between the matrix elements of the matrices 

~• and '~(~) is given in the Supplement (formulas ($31-48)). In order to show how one 

gets these formulas, we calculate, for example, the commutation relation between the opera- 

tors ~,~) and ~_(~) (formula ($34)). For this we write in (2.3.4) the matrix element 

found at the intersection of the first row and third column: 

+ _  - + , + , -  

Regrouping terms, we get 

We note that in the denominator of the third term on the right side of (2.3.36) it is un- 

necessary to regularize for ~=~ , since the numerator here vanishes. This means that we 

can choose the regularization of the denominator arbitrarily, in particular, replace (J-j~)-+ 

by (J-~-~0) -I (see the analogous argument in Sec. 1.3 in connection with (1.3.11)). Then 

terms containing the product ~*(%~)~_(~,~3, are preserved, and we get ($34). 

Analogously one also gets the remaining formulas ($31-48). The calculations here, how- 

ever, turn out to be rather complicated. It turns out that if one is interested in commu- 

tation relations only for ~fi then (2.3.4-6) can be essentially simplified. 

In fact, for ~=fi the regularization of + ~0 in the denominator (~-fi)is inessential, 

(I- ~ ~_ ~+ ~ obtaining here the and we can divide, for example, (2.3.4) on the right by %-fi+~0 

following equation: 

where 

0 , 0 \ 

(2.3.37) 

+~ 0 

0 , bT, 0 , 0 

0 , 0 + , i , 0 

\ 0 , 0 , 0 ~ ~ ' / ,  

. (2.3,38) 

We note that without making any preliminary statement about ~ja , we would get in 

(2.3.38) a meaningless product of generalized functions of the form (~-~-~0)'<(~-~§ -+ 

Analogously from (2.3.5) and (2.3.6) one gets 

Ror = T(~)Tr 

(2.3.39) 

(2.3.40) 

Equation (2.3.40) reproduces a result obtained by Faddeev in [16]. 
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We note one interesting thing. Although the commutation relations for the matrix ele- 

ments of T• , obtained from (2.3.37) and (2.3.39), are only defined for ~ ,  we can, 

using the analytic properties of the matrix elements of the matrices ~• , extend the 

corresponding commutation relations to the real axis and find thus their proper regulariza- 

tions for ~-~-~. We clarify what has been said with an example. 

We write the matrix element lying at the intersection of the first row and second col- 

umn in (2.3~37): 

<s {7 j) (2.3.41) 

By virtue of (2.3.1) the operator functions A_(x~) and ~t(~) have the same analytic prop- 

erties as the corresponding classical quantities &_~) and ~_(~). Thus, (2.3.41) is 

initially defined for ~>0 and ~<0 . When ~ and~leave the real axis we must reg- 

ularize the denominator C~-~] in (2.3.41) in the following way: 

' A_ (=,  

thus getting the proper commutation relation 

In the same way from (2.3.37) and (2.3.39) one can reproduce all the commutation rela- 

tions ($31-42). For the quantum transition matrix ~(1) on the infinite interval, analo- 

gously from (2.3.40) one can reproduce the commutation relations ($43-46), i.e., those com- 

mutation relations, in which at least one factor admits analytic continuation to the real 

axis. Exceptions are the commutation relations ($47-48), since the functions ~) and ~*(~) 

are defined only for real ~. These commutation relations can be obtained only from (2.3.6). 

commutation relation ($48) between ~(~) and~+(~) deserves special commentary. We The 

write it separately: 

(2.3.43) 

(2.3.42) 

On the right side of (2.3.43) we see, generally speaking, the undefined product of gen- 

eralized functions (~-~+~0)'~(~-~-~0~. , This indicates the highly singular operator character 

of ~(~) and B§ It turns out, however, that one can be saved from the singularities in 

the ratio (2.3.46) by regularizing the operators B~) and ~ju) in a definite way. 

Namely, we define operators ~(~)and ~+(~) by 

(2.3.44) 

and we formulate the following proposition. 

Proposition 2.3.1. The operators ~(~) and ~*(~) introduced by (2.3.44) satisfy the 

canonical commutation relations: 

[ ~(~),~(~)] ~- [ ~), ~ ]= 0, [ ~(~)~ ~ )  ] __~_ ~(~_7~). (2.3.45) 
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Proof. We note first of all that from ($46) 

A(~)B+(~) = (i* ~-;-~+,o)B~*)A(A) (2.3.46) 

and from ($43) follows the analogous relation 

S(A(A)) ~(Ul~,)= ~*(J~) ~ ~(~+ ~-~0i~ )A(~)] (2.3.47) 

for any analytic function ~(~). In fact, from (2.3.46) the validity of (2.3.47) follows 

directly for polynomial functions ~), and consequently also for analytic functions ~(~), 

considered as infinite power series in A (we recall that all our arguments carry formal al- 

gebraic character). We can also extend (2.3.47) to functions i(1) of the form #(~) = A "4/~ , 

by decomposing them into power series near any point ~=A~0. 

Analogous arguments allow us to get from ($45) the following relation 

(2.3.48) 

Now one can enter upon the proof of Proposition 2.3.1. We derive, e.g., the commuta- 

tion relation between ~(~) and ~+(#). For this we substitute in the product ~(~)~*(~) 

the expression (2.3.44). We get 

Now using (2.3.43), 

In order to get the answer needed, it remains to transform (2.3.50), using (2.3.47-48) and 

the commutativity of AcA)and A§ (Eqs. ($43-44)): 

The remaining relations from (2.3.45) are obtained analogously. 

We note to conclude this section that the quantum operators ~(~) and ~+(A) correspond 
to the classical variables of action-angle type ~(~) and ~(A) (Eqs. (1.4.8)). 

2.4. Spectral Decomposition 

In the present section we shall show how, using the commutation relations between the 

matrix elements of the transition matrix ~(~), one can study the spectra of the integrals 

of motion of the quantum n.S.e. 

First, however, we consider the connection of the quantum method of the inverse problem 

and the Bethe substitution method. This connection is given by the following proposition. 

Proposition 2.4.1. The wave function of an ~-particle state 

I = I o 
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coincides with the wave function defined by (2.1.ii) for the following choice of coeffi- 

cients C~...~ : 

vq...~ ~ (~)x/~ n (2.4.1) 
~<~ k ~ -  k~ 

The assertion just formulated was first announced in the author's paper [14]. The 

proof of this fact available to the author is quite complicated and reduces, essentially, 

to the direct calculation of the result of the action of a segment of the series (2.1.34) 

on a wave function of the form (2.1.11). An analogous proof was recently published in [27]. 

Almost simultaneously with [27] there appeared [23], containing an elegant and short proof 

of an assertion, equivalent with Proposition 2.4.1. Hence we shall not give here the proof 

of Proposition 2.4.1, but proceed directly to the discussion of the consequences following 

from it. 

Comparing (2.4.1) with (2.1.13), we see that one has 

I = I I kr ' kN 'gO~ ' (2.4.2) 

l~...,kl>~mis the ~ -particle state which is associated by (2.1.4) with the wave func- where 

tion ~ (~,...,~#1KI,...,KN) (Eq. (2.1.11)). Equation (2.4.2) shows that the wave functions 

generated by operators ~+(~) are not normalized on the ~-function. Moreover, the denomina- 

tors (kw-~) -~ make the normalizations of these wave functions so singular that R+(~) cannot 

be defined even as a generalized operator-valued function.* This fact allows us to clarify 

the singular commutation relations (2.4.43). 

Now we consider the ~-particle state generated by the normalized operators ~+C~) 

(Eqs. (2.3.44)): 

Ik,,..., b >  = �9 (2.4.3) 

Substituting (2.3.44) in (2.4.3), we get 

= g ( k ~ ) ( ~ A  (k~)A(k~)) ~ I o > .  ( 2 . 4 . 4 )  

With the help of (2.3.47-48) moving the factor (~)A(~)) "41~ to the right in (2.4.4) and 

using the equation 

A(~)IO>~--~- A~) IO.  -~-- lO> , (2.4.5) 

which follows directly from (2.1.32-33), we arrive at 

I ]k,,i..,~#>~ (2.4.6) 

or by virtue of (2.4.2), 

] k~ .... , k~ > - I k l , . . . ,  k c, >,orm, �9 

*A. K. Pogrebkov pointed this out to the author. 
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Thus, the operators ~+(k~)give birth to the normalized eigenfunctions of the Hamilton- 

ian (2.1.5). 

We �9 now to the consideration of a circle of questions connected with the quantum 

integrals of motion for (2.1.6). 

We shall show that, analogously to the classical case, the role of the generating func- 

tion of the quantum integrals of motion is played by ~m(~). In fact, from ($43) follows 

the commutation relation 

[~i~A(~), $~A(~)]--- 0 �9 (2.4.7) 

Moreover, substituting in (2.3.47) ~(~)=~, we get 

~, ~ A (~))B+(j~): ]~i~ } [~A~ A (A)+ ~ (~+~)] (2.4.8) 
o r  

~ ) (2.4.9) 

We let the operator ~,Ac~, )  act on the #-particle state I~,...,&>; 

I O>. (2.4.10) 

Using (2.4.9), we can move ~i~A(~) in (2.4.10) to the right. Noting, in addition, that by 

virtue of (2.4.5) one has 

we arrive at the following result. 

: 

�9 # 

~i~A(~) lO>:  0 , (2.4.11) 

The state l~,...~k# > is an eigenfunction of the operator 

(2.4.12) 

where the corresponding eigenvalue is additive with respect to the momenta ~; 

Decomposing both sides of (2.4.12) in powers of ~-I, we get that the state l~...~kiP 

proper also for the operators A n , defined as coefficients of the expansion 

J~,=-'l 

The corresponding eigenvalues 0~(~) 
# 

are defined from the expansion 

and have the form 

k~-(k-L~) m ~ cm-Or ,. ~-~.m,~+~ 
' [ - ~ , z )  K 

is 

(2.4.13) 

(2.4.14) 

(2.4.15) 

(2.4.16) 
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Unfortunately, for the quantum case a method of calculating the operators A~, analo- 

gous to the method of the Riccati equation (1.4.2-4) in the classical case, is still un- 

known. Hence, in order to connect the operators ~ with the local integrals of motion for 

(2=.1.6), we have to use a result of Tsvetkov [38]. As shown in [38], the classical inte- 

grals of motion ~ (1.4.2) for (1.1.1) after Wick quantization become quantum self-adjoint 

operators ]~ in the space ~ : 

~= :~: 

commuting with the Hamiltonian ~. In particular, 

%='N:=N , 

(For the definition of~,~, andS, see Eqs. (2ol.5, 7, 8).) 

The eigenvalues of the operators ~$ on the states I~I,...,~X> have the form 

kf  I 

Comparing (2.4.21) and (2.4.14), we get the relation 

" ~ '  (~,-1)! 

In particular, 

(2.4.17) 

(2.4.18) 

(2.4.19) 

(2.4.20) 

(2.4.21) 

(2.4.22) 

A4 ~- ~4 , (2.4.23) 

Ag"-~- "~-  " ~  ~ I '  (2.4.24) 

A~= ~3 - "i';~12 -"--~[- ~'I " (2.4.25) 

Formulas (2.4.23-25) allow one to express~,P, and H in terms of A~,A~ andAs: 
N = 

P= , 

H y AI 

For positive values of the connection constant ~ (the case of repulsion), the states 

I k~, .... ~N>(~=~%...), as indicated in Sec. 2.1, form a complete system of eigenfunctions of 

in the space ~ . This fact, and also the additivity of the eigenvalues of ~A(~) in 

(2.4.12), allow us to write for the generating function of the quantum integrals of motion 

~m the following spectral decomposition: 

The analogous decompositions for~,~, and ~ have the form 

(2.4.26) 

(2.4.27) 

(2.4.28) 

(2.4.29) 
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N = I ~ r162 (2.4".30) 

p----- ~ &~'~l~ (~)(~(~} , (2.4.31) 
-CO 

OO 

~,/~.,i~ ~ (~](~(~). (2.4.32) 

Equations (2.4.30-32) show that ~§ and ~(~) are operators of birth and annihilation of 

elementary particles with momentum ~ and energy ~ . The operator ~)~) can here be in- 

terpreted as the operator of the density of the number of particles with momentums. We 

note the obvious similarity of (2.4.29-32) with (1.4.10, 12-14) for the classical n.S.e. 

TO conclude this section, we discuss the case of attraction (~<0). Here, as noted in 

Sec. 2.1, in the spectrum there appear connected states, which can be obtained from the 

scattering states I~, .... ~> by analytic continuation with respect to the momenta (2.1.15). 

We calculate the eigenvalues of the integrals of motion for the connected states. This, 

of course, can be done by simply substituting (2.1.15) in (2.4.21), but we choose another 

method of calculation, which allows us at the same time to get interesting deductions of 

general character. 

First, we find the eigenvalue of the operator A~)on the state Ikl,...~>. This is easy 

to do, letting the operator A~) act on the expression ~*(~)...~*(~)I0> and moving A(~}to the 

right with the help of ($46). As a result we have 

(2.4.33) 

We note two things in connection with (2.4.33). Firstly, the eigenvalues of A(~) are mul- 

tiplicative (hence additive as eigenvalues of~A(~)) in the momenta ~}. Secondly, the eigen- 

~ ~  has in the upper half-plane with respect to ~ exactly ~ zeros ~ ~f~- value ~ ~-K~ 

~+~I~l (we recall that we are considering the case ~0). 

An eigenvalue of the operator ~s on a connected state of ~ particles is obtained from 

(2.4.33) by analytic continuation of (2.1.15) with respect to the momenta %. Here in the 

product 

_ ~ �9 ~ (2.4.34) - . .  

there occurs consecutive cancellation of numerators and denominators, and as a result there 

remains the factor 

(2.4.35) 

h a v i n g  a u n i q u e  z e r o  i n  t h e  u p p e r  h a l f - p l a n e  w i t h  r e s p e c t  t o  ~ a t  t h e  p o i n t  ~=~--  + ~ l ~ J - - - ~ - - - . "  " 

I t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  on t h e  o t h e r  h a n d  ( 2 . 1 . 1 5 )  c a n  b e  o b t a i n e d ,  by  r e q u i r i n g  t h a t  
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the eigenvalue A(~) have a unique zero in the half-plane ~ > 0 and that the momenta k~ be 

distributed symmetrically with respect to the real axis. In fact, the condition of cancel- 

lation of numerators and denominators in (2.4.34) leads to the requirement of equidistance 

of momenta ~:k~ = s , which in combination with the requirement of symmetry k M : 

gives (2.1.15). 

This result has interesting analogs in the theory of the classical nonlinear Schr~dinger 

equation. It is known [ii, 41], that connected states of quantum particles correspond in 

the classical limit to solutions for (1.l.l). The classical coefficient of passage ~(~) to 

a one-soliton Solution, characterized by the momentum # and the number of particles if, has 

the form 

p . .ff 
~ ( , b =  ~ ' - ~ - ~ l = l ~  �9 (2.4.36) 

Comparing (2.4.36) and (2.4.35), we see that they coincide up to the translation ~--~- 

~, which in the quasiclassical limit is inessential. 

(N) The eigenvalues ~ (p)of the integrals of motion A~ on an ~-particle connected state 

are obtained, as earlier, by the expansion of the generating function 

-~_ P ~.f~.l #+t 

cs (p) ~1 , 

~--~--* ~,1 ~1 ~-t  ~=~ 

c(.,f~(D)_ ~, [ [  P �9 K - ~ , ~ , P + . . / Y §  

(.l'J 

r .(p) = r  �9 

(2.4.37) 

(2.4.38) 

Using (2.4.26-28) it is easy to get the eigenvalues of the integrals of motion N7 ~, 

and H on an ~-particle connected state Ip,~>: 

I p,N>=I k,,...,k#>, kj = ~-  +,i,l~l(j ---~--!) , 
~. = '1,. , . ,  ~ . 

These eigenvalues have the form 

(2.4.39) 

= Xip, >, 

P l p , ~ >  = P Ip , . f~ , ,  

Unfortunately, we still do not have available a method based on the quantum method of 

the inverse problem for constructing the canonical operators ~ (p) and ~K(P) of birth and 

annihilation of normalized connected states of ~ particles with total momentum p. If, how- 

ever, one admits that such operators are constructed, then the proper generalization of the 

spectral decompositions (2.4.29-32) to the case ~<0 must assume the form: 
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2.5. Quantum ~-Operator 

00 

N=~ I ~,~;(p)~(p) , (2.4.30') 
0?=4 -~ 

OO 

P = m .  [ ~ "  ~ ~; (e)~/ /Ce] ,  (2 .4 .31 ' )  

~0 ~ P~ | ~)) ') R----~ ~(-~- - ~- (~/_ (~). (2.4.32 
~_-~- 

All arguments of the preceding sections were carried out for a fixed moment of time ~. 

The introduction of temporal evolution does not present any difficulty in quantum mechanics. 

In fact, the solution of the Heisenberg equation of motion 

x~= {Ex, R~I 
for  any observable quant i ty  X is  given by the formula 

X(t,~ = e ~Ht X(o) e -~H~ 

In particular, for matrix elements of the quantum transition matrix 

the commutation relations 

the following result 

(2.5.1) 

(2.5.2) 

(~), we get, using 

A(~), ~] ~- 0 , (2.5.3) 

[]~+(~),~] = ~+(~) (2.5.4) 

A(~,~)= Ac0,a), (2.5.5) 

B+(~)= e ~+(0,~) . (2.5.6) 

Nevertheless, there is definite methodological interest in the following question: 

Does there exist in the quantum case an operator ~(~,~), allowing one to describe the tem- 

poral evolution of the transition matrix ~g~(~), analogous to the operator M in the class- 

ical case (Sec. 1.5)? 

A positive answer to this question is given by the following proposition. 

Proposition 2.5.1. The Heisenberg equation of motion for the quantum transition matrix 

on a finite interval 

can be represented  in the form analogous to (1.5.24):  

where the operator ~(a,a)has the form 

�9 ~ �9 + 

Proof. We denote the commutator g [ ~ , ~ $ ; ( * ) ]  by the symbol ~ ( * )  and we f ind the d i f -  

ferentiai equation with respect to the variable m~, to which this quantity is subordinate. 
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For this we differentiate ~(~) with respect to ~, using (2.1.24). We get 

(2.5.8) 

Using the equat ion  of  mot ion (2 .1 .6 )  f o r  ~(~)  and i t s  conjugate equat ion ,  we reduce 

(2.5.8) to the following form 

�9 
~ (2.5.9) 

Before moving further, we formulate the following lemma. 

LEMMA 2.5.1. One has the equation: 

~: (~)] = 0. (2.5.10) 

We shall not give the proof of Lemma 2.5.1, since it is carried out with the help of the 

same method of "extension" which was used in Proof i of Lemma 2.2.1 in Sec. 2.2. Here by 

virtue of the equations ~= ~r 0 the result, as also in Sec. 2.2, is independent of the 

sign. 

Using Lemma 2.5.1, we transform (2.5.9), moving ~+(~) to the right, and ~(~ml to the 

left. We get: 

(2.5.11) 

On the  o t h e r  hand, the  r i g h t  s i d e  of  ( 2 . 5 ~  which we deno te  by ~ 1 , ( ~ )  , s a t i s f i e s  

exactly the same differential equation. In fact, differentiating the right side of (2.5.7) 

with respect to ~ and using (1.5.28), we get 

m (2.5.12) 

Since the quantities ~ (~ and J~ ~, satisfy the same differential equation and the 

same initial condition 

= ~m~ CA)----- 0, (2.5.13) 

we conclude that they in fact coincide, which is what had to be proved. 

Analogously, one can prove the quantum analogs of (1.5.25-27). 
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CONCLUSIONS 

We summarize. In the present paper, for the example of the nonlinear SchrDdinger equa- 
tion we developed a new method of exact quantization of completely integrable field-theoret- 
ic models. This method allowed not only the reproduction of known results for the quantum 
nonlinear SchrDdinger equation, obtained earlier with the help of the Bethe substitution, 
but also getting a series of new results, namely, constructing a generating function for 
the quantum integrals of motion and operators of birth--annihilation of elementary excita- 
tions. In comparison with the method of Bethe substitution our method has the advantage 
that it allows one to construct and study eigenvectors of the Hamiltonian by a purely alge- 
braic method, without writing down the explicitly corresponding wave functions in a coordi- 
nate representation. 

A central role in the method we propose is played, as we saw, by the B-matrix, which 

gives its name to the method. The use of the k-matrix allows us compactly and effectively 
to calculate the commutation relations between the matrix elements of the quantum transi- 
tion matrix, without resorting to infinite series, as was done, e.g., in [22, 26], which 
appeared after the author's paper [14]. 

We list some problems concerning the quantum nonlinear Schr~dinger equation, which still 
remain unsolved: 

i) It would be desirable to find an effective method of construction of quantum inte- 
grals of motion analogous to the Riccati equation in the classical case. This would allow 
one to definitively free oneself in studying quantum integrals of motion from references to 
results obtained With the help of Bethe substitution. 

2) To construct in the realms of the method of the R-matrix operators of birth and an- 

nihilation of connected states of ~particles ~*(k)and ~(k). 

3) To construct the generating function of the quantum ~-operators analogous to the 

way this was done for the classical case in Sec. 1.5. 

After the publication of [13, 14], problems connected with the quantum generalization 

of the method of the inverse problem attracted the attention of a large number of investi- 

gators, both in the USSR and abroad. In the Soviet Union work on the quantum method of the 

inverse problem was conducted at the Leningrad Branch of the Mathematics Institute (LOMI) 

under the direction of Faddeev [13-21]. Of the foreign authors one should single out Thack- 

er (USA, Batavia) [22-25] and Honerkamp (GFR, Freiburg) [26, 27]. 

We list the basic directions in which the quantum method of the inverse problem is de- 

veloping at the present time: 

i) Quantum relativistically invariant completely integrable models [17], in which the 

method of the R-matrix was successfully applied to the quantization of the sin-Gordon equa- 

tion. 

2) The study of completely integrabie lattice spin models, such as the Heisenberg ferro- 

magnet [18] and the X~-model [19]. 

3) The investigation of models with several kinds of particles, having isotopic sym- 

metry [20, 21]. 

4) And, finally, the very long-range direction, intensively developed recently -- the at- 

tempt to solve the inverse scattering problem for the auxiliary linear equation, i.e., to 

express the field operators, for example, ~f(~) and ~+(~), for the n.S.e, in terms of the 
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scattering data A(~) and ]~+(~). The solution of this problem is of great interest for quan- 

tum field theory, since it would allow the effective study of Green's functions of complete- 

ly integrable quantum field systems. Some results in this direction are obtained in [23- 

25, 28] for the nonlinear Schr~dinger equation. 

In conclusion, it is necessary to mention the classical version of the R-matrix method 

developed in Chap. I of the present paper. This method allowed one not only to simplify the 

calculations connected with the computation of the Poisson brackets, but also to get a new 

result such as the expression for the generating function of the M-operators. Thus, in the 

theory of classical completely integrable equations there arises a new object, the ~-matrix. 

The place which the ~-matrix occupies in the method of the inverse problem is still not en- 

tirely clear. One does not know, e.g., the precise class of ~-operators, which have a ~- 

matrix. In connection with this there is great interest in the problem of generalizing the 

method of the ~-matrix to nonultralocal ~,-operators in the terminology of Faddeev [16], 

i.e., ~-operators, the Poisson brackets between whose matrix elements contain derivatives 

of the ~-function. 

SUPPLEMENT 

In the Supplement we gather together the Poisson brackets (in the classical case) and 

commutation relations (in the quantum case) between the matrix elements of the transition 

matrices for finite, semi-infinite, and infinite intervals. All the formulas are written for 

real values of ~ and ~. 

i. Summary of Poisson brackets between matrix elements of the classical transition 

matrix T~(~) for the finite interval [~,~] . 

We recall that the matrix T~(~) has the form (i.i.ii): 

The desired Poisson brackets are given by (1.2o11): 

,~ ~ ~ ~ �9 

Below are written six independent matrix elements of (1.2.11) of the 16 possible ones. 

[ = o ,  (s1) 

�9 t ! ~ - d ~  t ~ v  , ' I "  i , . ,  

[ 1~, (~), "~'~/(/~)}'---- A-'~;-. (CI,~ ~, ()~)r ~1,)-~'(~) I~:~ (f.)), ( S3 ) 

o, (ss) 

The r e m a i n i n g  10 r e l a t i o n s  a re  o b t a i n e d  f r om  the  ones l i s t e d  by complex  c o n j u g a t i o n ,  

i n t e r c h a n g e  o f  ~ and ~ , and the  use o f  t he  a n t i s y m m e t r y  o f  the  P o i s s o n  b r a c k e t s .  
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2. 

matrix ~_(x,~) for the semi-infinite interval (-oo,~]. 

Summary of Poisson brackets between matrix elements of the classical transition 

~-(X,i) has the form 

( ) T_(~,~)= ~-(~,~), ~-(~,~) , 

The matrix 

; t = ~ .  

We recall that the matrix elements ~_(m~) and ~_(~) admit analytic continuation with 

respect to ~ to the upper half-plane, and ~_(~) and ~_(~,j) to the lower (see Sec. i.i). 

Original formula for Poisson brackets (1.3.11): 

{ T- (~,;b, 7_ (~, ~)~ = ~'(;l-#)T_ (~, ;bT- (x,~)-~_ (~,;bT_ (x,~) ~. oI-ja). 
Independent matrix elements: 

[ a= (~,, ~), Q,_('X, ~,)} = O, ($7) 

~ '  f~_(~:,~) ~'_ (=, ~,), (s8) [ a_(| ~_(=,7~)}=- ,1-p~+~o 
[ (;,. (~,)0, ~-(~r ~ (a_ (~,~)~_ (=,jU)--~.(~)(I,.(~j~)), (S 9) 

[ ~.-(=.i),~(~,v.)}=- ~. ;~-f+r a_(x.~)~ (=,ju.), (SlO) 
o, (Sll) 

{~- (~ ~), "~- (',.M')) ---- { a._ (=/~) ~._ (=,jw,) (S12) ~,-~+i,o" 

In formula ($9) regularization of the denominator is not necessary, since the numerator 

vanishes for ~----~ . Here the Poisson bracket admits analytic continuation to the same half- 

plane with respect to ~ and ~. 

3. Summary of Poisson brackets between matrix elements of the classical transition 

matrix ~+(~)for the semi-infinite interval [~,.~). 

The matrix T+(~, ~) has the form: 

The matrix elements ~+(w~i) and ~+(~,~) admit analytic continuation with respect to 

to the upper half-plane, and ~(m,~) and ~.(z,~) to the lower (see Sec. i.i). 

Original formula for Poisson brackets (1.3.12): 

Independent matrix elements: 

[(;{'+(~r (;l't-( ~r = 0, (S13) 

#,-f,+.~,O 

{ fir§ (,,)l), ~% (,,jt~)}_--_ ~_--~.(~+(X,~) (;t+ (X~)-O~+(,~)*~+(..%jr (S16) 
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In connection with (S16) one can make a remark analogous to that made in Paragraph 2 

about ($9). 

4. Summary of Poisson brackets between matrix elements of the classical transition 

matrix T(~) on the infinite interval (-(x~,oo). 

The matrix T(~) has the form 

T(~) = = 

~(~ ) ,  ~(~) , 

The matrix element C(~) admits analytic continuation with respect to ~ to the upper 

half-plane, ~(~) to the lower. The matrix elements ~(~)and ~(~) , generally speaking, do 

not admit analytic continuation (see Sec. i.i) o 

Original formula for Poisson brackets (1.3o14): 

| T(~>, T(2)} 
Independent  ma t r ix  e lements :  

. 

matrix T~r"4'(~) for the finite interval[~4,~$]. 

The matrix ~(~)has the form (2.1.18) 

--- ~'+ (~-~>T(~,T(r ~'_ d-2,) �9 

(S17) 

(SlB) 

[ Cd>, p,(v~)} = o, (sl9) 

[ fi,(~), g,(fl~)}= O, ($20) 

%-'~'bl~ ~ 0 (I,(A).~(.,4~.) i ($21) 

:{ B(~), ~Q(jtb)}~--- 0, ($23) 

[~{~), ~(~)}=- 2~'( '  I ~t(A)I%~(A-j ~') �9 ($24) 
Summary of commutation relations between matrix elements of the quantum transition 

Original formula (2.2.1) : 

N 

= TC <~>T~ (A)R(~-~. 

Independent commutation relations: 

(s25) 

($26) 
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] ~  ~ + ~,z ~ ~ -  ,~r | )"R % , ($27) 

($28) 

($29) 

($30) 

All other Commutation relations are obtained by Hermitian conjugation and interchange 

of ~ and ~ . 

Here and later all commutation relations are given in one form: on the left side is 

the product of two matrix elements, on the right side is a linear combination of matrix ele- 

ments with coefficients having (~-~)in the denominator. 

6. Summary of commutation relations between matrix elements of the quantum transition 

matrix ~_(~) for the semi-infinite segment (-~,~] �9 

The matrix ~_(z,~) has the form: ( " / 
T'_ (=,A)= + . , ~=~ 

2. 

The analytic properties of the matrix elements of T_(~,~) are the same as in Paragraph 

Original formula (2.3.4): 

~ , - ~ - ~ , o  - 

Independent commutation relations: 

+ + ~ z  t + 

g-(=J,}]L(~,p) = ]~-(~,.DJB-{| - 

7. 

matrix T§ for the semi-infinite interval [~,+~). 

The matrix ~+(~,~) has the form: 

($31) 

($32) 

(~33) 

($34) 

($35) 

($36) 

Summary of commutation relations between matrix elements of the quantum transition 
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The analytic properties of the matrix elements are the same as in Paragraph 3. 

Original formula (2.3.5) : 

Independent commutation relations: 

:,-~.~.i.o " 

, ~ ~ + . A.~=,~)A.{=,p,)-- A.(=,:A.(=,~) ~-7-~o ~B;(=,~:B. ~=,p, 

B,(=,~B,(~,,:o = B+(=,p)B+(~, ,~, 
* § i * 

8~ 

matrix ~(~) for the infinite interval (-~o, ~) . 

The matrix ~(~)has the form: 

($37) 

($38) 

($39) 

($40) 

($41) 

($42) 

Summary of commutation relations between matrix elements of the quantum transition 

The analytic properties of the matrix elements are the same as in Paragraph 4. 

Original formula (2.3.6) 

Independent commutation re la t ions:  

Ac~,~ At:.) = Ago Ac,~), ($43) 

A(~) A+(~) = A+(~) A(~) : ($44) 

~(,)A(~)----- ( i+ '~ i~+$0')~(~)B(r , ($45) 

A(t)~*(~) = (i + *~ ") r ( f i )  g (~) ($46) t_7-;~.o 
B (X)]~(jI.;.) ----- ;(~)3(~), ($47) 

($48) ~ , - ~ * ~ . u  - - .  
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SOLUTIONS OF THE YANG--BAXTER EQUATION 

P. P. Kulish and E. K. Sklyanin UDC 517.43+530.145 

We give the basic definitions connected with the Yang--Baxter equation (factoriza- 
tion condition for a multiparticle S-matrix) and formulate the problem of classi- 
fying its solutions. We list the known methods of solution of the Y--B equation, 
and also various applications of this equation to the theory of completely inte- 
grable quantum and classical systems. A generalization of the Y--B equation to the 

case of Z~-graduation is obtained, a possible connection with the theory of repre- 

sentations is noted. The supplement contains about 20 explicit solutions~ 

0. By the Yang--Baxter equation [i, 2] is meant the following functional equation: 

for a collection of functions ~C~) of a complex parameter ~, depending on four indices 

~~,running through values from I to some natural number N. In (i) and later we under- 

stand summation over repeated indices. 

Equation (i), which first appeared in [i, 2], has many applications to the theory of 
completely integrable quantum and classical systems and exactly solvable models of statis- 
tical physics. In recent years it has undergone intensive study~ Here the profound connec- 
tion of (1) with such areas of mathematics as group theory and algebraic geometry has be- 
come more and more apparent. 

The present paper is an (apparently the first)attempt to give a systematic survey of 
the facts accumulated at the time it is written relating to the solutions of (i). The ac- 
count is structured in the following way. In Sec. i we give the basic definitions and we 
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