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Abstract. The motion of a single charged particle in 
a Paul trap in the presence of the damping force is investi- 
gated theoretically and the modified stability diagrams in 
the parameter space are calculated. The results show that 
the stable regions in the a-q parameter plane are not only 
enlarged but also shifted. Consequently, the damping 
force causes instability in some cases, contrary to intu- 
ition. As a by-product of the calculation, we derive new 
theoretical approximate expressions for the secular-oscil- 
lation frequency. In the limiting case of no damping, these 
formulas are in good agreement with early measurements 
done by Wuerker et al. 

PACS: 07.60. - j 

The motion of charged particles confined in a Paul trap is 
composed of a superposition of two parts, a fast oscilla- 
tion called the micromotion synchronized with the driving 
field and a slow oscillation called the secular motion. In 
the standard configuration of the Paul trap, the stability 
and the normalized secular-oscillation frequency of 
a single particle are determined by two dimensionless 
constants denoted by a and q. In early experiments, 
Wuerker et al. made a visual observation of the motion of 
aluminum microparticles (a few microns in diameter) in 
a Paul trap [1]. They measured the secular-oscillation 
frequency of a single confined particle when a = 0 (zero- 
applied dc voltage) as a function of q, which is propor- 
tional to the amplitude of the ac voltage. The observed 
frequencies were compared with a theoretical approxim- 
ate formula which was calculated from the harmonic 
pseudopotential neglecting the micromotion. Agreement 
was good only when the parameter q was small. On the 
other hand, when a few or more particles were stored, they 
observed that the particles were arrayed as a crystal (or- 
dered state) or moved around in a random fashion like 
a cloud (disordered state), depending on the parameters 
a, q, or the background pressure. This experiment and 

recent observations of similar order-disorder transitions 
of trapped ions [2~41 suggest that the damping force 
corresponding to collisional cooling or laser cooling plays 
an important role in the dynamics of the particles in 
a Paul trap. 

In the present paper, we deal theoretically, in connec- 
tion with these experiments, with two fundamental prob- 
lems concerning the dynamics of a single particle in a Paul 
trap, i.e., the effects of the damping force and approximate 
formulas for the secular-oscillation frequency. First, we 
investigate the influence of the damping force on the 
stability of motion of a single particle, although it is not 
understood yet how this problem is related to the dynam- 
ics (other than the motion of the center of mass) of multi- 
particle systems. We treat a simple case in which the 
damping force is proportional to the velocity of the par- 
ticle. Statistical fluctuations are neglected. This situation 
is appropriate particularly for collisional cooling of 
a microparticle by a background gas [1]. The equations 
of motion are then a set of Mathieu's equations with 
a damping term. Although this type of equation is a 
standard mathematical problem as shown in some 
textbooks [5-7], there has been no detailed discussion, 
so far as we know, about the stability of three-dimen- 
sional motion of a particle in the presence of the damping 
force. For  example, it has not been illustrated explicitly 
how the stability diagram in the a-q parameter plane is 
modified by the damping force. Our analysis shows 
that the stable parameter regions (stable regions, for 
short) are not only enlarged, as we can expect intuitively, 
but also shifted. As a consequence, it happens in some 
cases that a set of the values of a and q giving the stable 
confinement in the absence of the damping force, falls in 
the unstable region in the presence of damping. In the 
stable regions (except on the boundaries) in the presence 
of damping, the particle exhibits a damping oscillation 
converging to the center of the trap. Second, as a by- 
product of the analysis, we derive new approximate for- 
mulas for the secular-oscillation frequency. It is then 
shown that, in the limiting case of no damping, these 
formulas are in good agreement with the experimental 
data of Wuerker et al. [1]. 
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1 Condition for stable confinement Here. we define an infinite de terminant  A (12) by 

We consider a particle of mass  M and electric charge Q in 
a Paul  t rap  with a ring d iameter  2ro and an end-cap 
separa t ion 2Zo. We assume that  the damping  force F is 
given by F = - Dr, where v is the velocity of the particle 
and D is a constant.  Then, when the ac vol tage of peak  
ampl i tude Vo and angular  frequency O in series with the 
dc voltage Uo is applied between the ring and the end 
caps, the equat ions of particle mo t ion  are given by 

dZu du 
dz--y + 2 ~ - ~  + (a. - 2q .cos2z)u  = 0, (1) 

where u stands for x, y, or  z (the z-axis is the symmet ry  
axis). The dimensionless variables and constants  z, ~:, a.  
and q. are defined by 

= Ot/2, (2) 

~: = D/Mf2, (3) 

ax = a y  = - (1/2)az = -- 8QUo/M~22(r2o + 2z2), (4) 

and 

qx = qy = - (1/2)qz = 4QVo/MOZ(r~ + 2Zo2). (5) 

If  ~ = 0, (1) is the Math ieu ' s  equation.  Even if ~c ¢ 0, 
however,  by using a t rans format ion  

u = w exp( - ~:z), (6) 

(1) can be reduced to the Math ieu ' s  equat ion  for w with 
the pa rame te r  a replaced by a - ~c2: 

d Z w  
d,c2 + (a - ~2 - -  2qcos2z)w = O, (7) 

as shown in tex tbooks  [5 7]. In  (7), the subscripts of a and 
q are omit ted  for simplicity. Since the propert ies  of the 
Math ieu  functions have been studied in detail, the dis- 
cussion of the stability of a particle in the case of  ~c ~ 0 
appears  s traightforward.  But it is not  so because, owing to 
the damping  factor e x p ( -  ~cz) in (6), u m a y  be stable 
(bounded) even if w is unstable (unbounded).  We neglect 
the effect of the finite size of the trap. 

The  complete  solutions of (7) can be expressed by 

w = A exp(/2z)~b(~) + Bexp(  -/2~)q5( - z), (8) 

where A and B are arb i t ra ry  constants  and/2 is a function 
of a - ~c 2 and q. We can assume that  ~b(z), which repres- 
ents the micromot ion ,  is a periodic function of z with 
a per iod n and is wri t ten in the form 

qS(z)= ~ C~exp(2szi). (9) 
S = oO 

F r o m  the condi t ion that  exp(/2z)qS(z) is a solution of (7), 
we obta in  a recurrence relation for C~ 

Cs -~- ~s(Cs-1 -1- Cs+l) = O, (10) 

where 

~ = q[(2s  - /2 i )  2 - a + ~c2] -a .  (11) 

If  (10) holds, exp( -/2z)qS( - -c) is also a solution of (7). 

4(/2) = 

4-2  1 4 -2  
~ - 1 1  

~o 1 ~o (12) 

where all matr ix  elements outside of the three diagonals  
are zero. Then, the condi t ion that  the infinite set of equa-  
tions (10) for all s have non-tr ivial  solutions, Cs requires 

A(/2) = 0. (13) 

F r o m  (13) and a relat ionship between A (/2) and A (0) [5]: 

I n . 2 n/2i-] 
A(/2) = 2 A(0)s inZ~x/-a  - x 2 - sin ~ - j  

x (cos n/~i - cos n x / a  - ~c2) - 1, (14) 

we obtain  the final exact expression for/2 as: 

2i [ n ~ ]  1/2 
/ 2 =  ± - - s i n  - i n  A(O)sin2-~x/a-~ 2 , (15) 

where A(0) is a function of a - tc 2 and q as given by (12). 
As is seen f rom (15) or (12),/2 has an arbi trar iness of 

+ 2ni (n is an a rb i t ra ry  integer) and can be writ ten as 

/ 2=  + ( ~ + f l i ) + 2 n i , ( ~ > 0 , 0 < f l _ < l ) .  (16) 

Then,  c~ + fli is a complex,  imaginary  or real number  
corresponding to the following three cases, fl represents 
the dimensionless secular-oscil lation frequency nor-  
malized by £2/2. 

Case I: 

27~ 
A (0) sin 5 x ~ - -  ~:2 > 1 

In this case, 

and fl = 1. Since c~ ¢ 0, one of the two terms of (8) diverges 
as r ~ oe and therefore, w is unstable. However ,  since u is 
composed  of two terms with exponent ia l  factors 
exp[  - (~c - ~)r]  and exp [  - (~ + ~)~], respectively, u is 
stable if c~ < ~c and unstable if c~ > K. When  c~ = ~c, one of 
the two terms represents a non -damping  oscillation. 

Case II:  

2 7c 
0 _< A (0)sin ~ x / a  - tc 2 _< 1 

In this case, c~ = 0 and 

7"[" 71/2 
fl = 2 s i n -  1 [A(0) s i n 2 ~ ~ J  , (18) 
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which takes a value between 0 and 1. Since c~ = 0, w is 
stable and u represents a damping  oscillation with 
a damping  factor e x p ( -  K-c). Therefore, the mot ion  is 
stable. 

Case III: 

2 7~ A(0)sin ~ w / a - -  ~c 2 < 0 

In  this case, 

2 
-- sinh -1 - A ( 0 ) x ~  (19) 

7C 

and fl -- 0. As in Case I, u is stable if ~ _< K and unstable if 
> ~. If  ~ = ~, the non-damping  term gives a constant  

displacement f rom zero, superposed with the micromo-  
tion. 

In  summary,  the bounda ry  of stability is given by 
-- ~. In the stable regions, except on the boundaries,  the 

solution represents a damping  oscillation which converges 
to zero. The normalized secular-oscillation frequency is 1, 
0 and in-between, corresponding to Case I, Case I I I  and 
Case II, respectively. 

All the calculations so far are exact, but  the formulas 
containing A(0) are not  closed in the sense that  A(0) 
consists of  an infinite number  of  terms. For  evaluat ion of 
these formulas, we must  either use some closed approxim- 
ate expressions, as derived in the next section, or  repeat 
numerical  calculations by replacing A(0) with a finite 
determinant  of successively higher orders until they con- 
verge sufficiently. 

In  order  for a particle to be stable three-dimensionally, 
the above requirement must  be satisfied for two sets of  
parameters  (as, qz) and ( -  ½az, - ½ q z )  simultaneously 
from (4) and (5). The areas A and B in Fig. 1 show two 
calculated main  stable regions in the a=-q= plane when 
x = 1.0. The values of ~c of order  1 used here are typical for 
a submicron particle in a background  gas of a pressure 
higher than ~ 0.01 Torr.  The corresponding stable re- 
gions A'  and B' for ~: = 0 are also shown for comparison.  
It  is seen, as one can expect, that  the stable regions are 
enlarged when ~c ¢ 0. At the same time, however, the 
stable regions are shifted. As a consequence, a stable 
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Fig. 1. Stability diagram in the az qz plane. Two main  stable regions 
A and B for ~: = 1.0 and the corresponding regions A' and B' for 
x = 0 are shown 
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Fig. 2. Stability diagram in the ~c-q= plane when az = 0 
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Fig. 3. 3 x 3 subsections of the stable regions A (/eft) and B (right) in 
Fig. 1. Dashed line (i) is the boundary between Case I (/3 = 1) and 
Case II (0 < fl < 1) with respect to the motion in z-direction, and line 
(ii) represents that between Case II and Case III (fl = 0) of the same 
motion. Lines (iii) and (iv) are the corresponding boundaries with 
respect to the motions in x- and y-directions 

region or a por t ion of  it in the absence of damping  lies 
outside of the stable regions in the presence of damping. In  
other  words, the damping  force causes instability in some 
cases, cont rary  to intuition. In the regions of stable con- 
finement for ~c ¢ 0, except on the boundaries,  the particle 
exhibits a damping oscillation converging to the center of 
the trap. 

On  the as = 0 line in Fig. 1, which means zero-applied 
dc voltage, the stable range of  qz is extended from 
0 < qz -< 0.91 for tc = 0 to 0 < qz < 2.4 for ~c = 1.0. Figure 
2 shows the bounda ry  of stability in the ~c - qz plane when 
as = 0. Note  that  two stable ranges of q= appear  when 

exceeds 1.75 and they merge into each other when 
~c exceeds 2.4. This means the linkage of A and B for large 
values of  n. 

The stable regions A and B in Fig. 1 can be divided 
further into 3 x 3 subsections, as shown in Fig. 3, corres- 
ponding  to the above-ment ioned three cases of fl = 1, 
0 _< fi _< 1 and fl = 0 for each mot ion  in two or thogonal  
directions. 

2 Approximate formulas of the secular-oscillation 
frequency and comparison with experiments 

As a next step, we derive closed approximate  formulas of 
the secular-oscillation frequency from (18) and compare  
them with experimental data. Since there is no systematic 
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measurement done in the presence of the damping force, 
we are concerned with the theoretical formulas in the 
limiting case of ~c = 0 and compare them with the experi- 
ments of Wuerker et al. [1]. However, all the formulas in 
the following are applicable to the general case if a is 
replaced by a - tc 2. 

When ~: = 0, the normalized secular-oscillation fre- 
quency/3 in the stable regions is given by 

[- ~ 71/2 
/3 = 2 sin- 1LA(0)sin2y,/a j = . (20) 

If the infinite-order matrix in (12) is approximated by the 
central 3 x 3 matrix to calculate A (0), we can obtain a for- 
mula in which sin2(re/3/2) is exact to the first order of a and 
q2 as 

/3 : 2 sin-1 ( 2 \ / a  + ~ ) .  (21) 

Expansion of the right-hand side of (21) to the lowest- 
order term leads to the well-known approximate formula 

,/ e 
/3 = a -~ ~ ,  (22) 

which can be obtained also from the harmonic 
pseudopotential calculated by averaging the driving force 
over one cycle of the ac field [1]. 

By using a recurrence relation for the determinants of 
the central (2n + 1) x (2n + 1) and (2n + 3) x (2n + 3) ma- 
trices in (12) and putting n --+ oo, we obtain a formula in 
which sinZ(rt/3/2) is exact to the second order of a and q2 as 

2 
/3 = - s i n -  t 

7"C 

[2N/a  +q2 7.C2 -1- ~2 __7.C2 

(23) 

Wuerker et al. [1] measured the secular-oscillation fre- 
quency /3 in the z-direction (denoted by /3z in [1]) as 
a function of q~ when the dc voltage was zero, i.e., az = O. 
When a = O, (22), (21) and (23) are reduced to, respectively, 

<z~, 0.5 
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Fig. 4. Theoretical and experimental secular-oscillation frequency 
fl as a function of q when a = 0. The theoretical approximate 
formulas fi(1), fl(2) and fl(3) are given by (24), (25) and (26), respective- 
ly, in the text. The experimental data of Wuerker et al. are shown by 
circles 

formula rio) agrees with the experiment when q is small 
but deviates appreciably from it when q >_ 0.4, as was also 
pointed out in [1]. On the other hand, the new formulas 
/?(2) and fl(3) are in good agreement with the experimental 
data over the whole stable range 0 < q < 0.91. 

A still higher-order approximate formula than (23) is 
necessary to calculate fi for the other stable region B' in 
Fig. 1. 

Practically exact numerical values of fi can be cal- 
culated from (20) by using a determinant of a sufficiently 
high order in A(0). The difference between the "exact 
values" and fl(3) in the range 0 < q _< 0.91 is only 0.001 at 
most. 

Another well-known relation fi~ = 2/3x ( =  2/3y) be- 
tween the secular-oscillation frequencies in two ortho- 
gonal directions, when az = 0, is also an approximate 
formula. This fact is verified experimentally in Fig. 1 of [1] 
as a deviation of the/3z = 2/3x line from the az = 0 line. We 
can obtain a more accurate approximate formula from 
(25) as 

2 in( ) (27) 

/ 3 ( 1 )  - -  q x/~, (24) 

fi(2)=_re 2sin 1(r17~22~2) 
and 

/3(3)=2sin- l~-~  / q2 (1~28 ~z2'~ ~-] 
[_2~/ 2 + ~ ) q  J" 

The three functions /3o), fl{2) and fl(3) are plotted in 
Fig. 4 by the long-dashed, short-dashed and solid line, 
respectively. The experimental data of Wuerker et al. [1] 
are shown by circles in the same figure [8]. The known 

3 C o n c l u s i o n  

We treated theoretically the dynamics of a single particle 
in a Paul trap in the presence of the damping force. It was 

(25) shown that the regions in the a-q plane for stable confine- 
ment are not only enlarged but also shifted compared to 
those for no damping force. In addition, new approximate 
expressions for the secular-oscillation frequency were ob- 
tained and, in the limiting case of no damping, they are in 

(26) good agreement with the experiments of Wuerker et al. 
Theoretical studies of the effects of the damping force on 
a system of two or more particles are in progress. 
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