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0. Introduction 

This paper is devoted to inversion formulas for an integral transform /~+~q/, carrying a 
function f on R n to its integrals over k-dimensional planes in R ~ (its precise definition is 
given below). Inversion formulas are solutions of the problem of reconstructing the function 
f on R n from its integral transform Jq/. The transform carrying a function on R n to its inte- 
grals over hyperplanes (the case k = n - 1) is called the Radon transform; inversion formulas 
for it are well known (cf. [i, 2]). In [3] inversion formulas are given for the case of 
planes of arbitrary even dimension k, and in [4] there is a class of inversion formulas for 
the case of odd k. The difference between even and odd k is that for even k the inversion 
formulas are local. This term means that to reconstruct the function at a point it is only 
necessary' to know its integrals over planes near tbis point; now for odd k the inversion 
formulas are nonlocal. For example, on R ~ to reconstruct a function at a point it is neces- 
sary to know its integrals over all lines in R ~. However in an astonishing way for odd k 
one can also get local inversion formulas. This is precisely the goal of the present paper° 
We note that numerical calculations with the nonlocal formulas from [4] require n-fold inte- 
gration at the same time that the calculations with the formulas of the present paper require 
(3k)-fold integration. 

1. Definition of the Transform f ~ f  

Let f be a finite function on R n. We take arbitrary ~ R  ~ and a k-frame ~ = (al ..... 
~k), where a i ~Rn(i = 1,~..,k). Then the collection of vectors x = ~Ita +... +~t~ + 8, where 
t = (t I ...... t k) runs through R ~, forms a k-dimensional plane h in R". The transform /~Jq/ 
is defined by the following formula: 

(~qf) (a, ~) = ~ / (alt 1 + . . .  + ~ t ~  + ~) d t l  . . . dt~. ( 1 ) 
R k 

I t  i s  ea sy  to  see  t h a t  (~ ] ) (a ,  ~) depends o n l y  on t he  p l a n e  h i t s e l f  and t he  measure  o f  h de-  
f i n e d  by t he  c h o i c e  o f  the  k - f r ame  a.  

2. Inversion Formulas for the Case of Even k [3] 

First we note that the problem of reconstructing the function f from the function ~/ is 
overdetermined for k < n - 1 since the manifold Hk, n of k-dimensional planes inR n has dimen- 
sion greater than n for k < n; to reconstruct f it suffices to know the restrictions of ~] 
to certain n-dimensional submanifolds of Hk, n. For this reason there exists many different 
inversion formulas. For even k one can get the class of inversion formulas of [3] in this 
way. 

+ 
From the function ~ ~/ we construct a differential k-form '×~ on the manifold H k n of 

oriented k-dimensional planes in R n. First it is convenient to define x~ not on H~, n but on 
the manifold E~,~ ×JR", where Ek, n is the manifold of k-frames a: 

. . . . . .  ~=, o~. ~ 7o-~ A..  
i i 

(~ , =j being the coordinates, respectively, of the vectors 8 and aj). It is easy to see that 
under the natural projection ~: Ek. n × Rn-~H~.~ this form lowers from E~,n × R n to H~, n [ the 
plane h = w(a, 8) is the collection of vectors x = alt I +... + akt k + 8]. 

It is proved in [3] that the restriction of ×~ to the submanifoldH~CH~,r~ of planes 
passing through an arbitrary fixed point x~R n is a closed form on H x. Here for any k-di- 
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mensional cycle N ~ H ~  the following equation holds: 

I×~ = c(~)l(x) (3) 

and there exist cycles y (for example the Euler cycle) for which c(y) ~ 0. The inversion 
formula (3) obtained is local, i.e., to reconstruct the value of the function f at the point 
x from it it suffices to know the values of ,~ = ~/ only on the set of planes infinitely close 
to x. 

3. Inversion Formulas for the Case of Odd k [4] 

The definition of the form xcp and (3) are also preserved for odd k. However, for odd k 
we have c(7) = 0 for any k-dimensional cycle ? C//x and for the transformation ] ~ ~/ there 
only exist nonlocal inversion formulas. A class of such formulas is constructed in [4] ; in 
them instead of the differential form ×qD the density XxcP on the manifold of k-dimensional 
planes passing through the point x is used. * 

We give the construction of Xx~. We shall define k-dimensional planes inR n by equations 
of the form x~ -~ ailxm+ 1 + . . . + aikx n -~- b~ (i = I ..... m), where m = n - k. In abbreviated no- 

tation: x' = Ax" + b, wherex' ~-- (xl, . . xm) ,x" ---- (xm+1, • • xn), b = (b I, . • bin), A =lla~iIli=l ..... m. 

We use ai~ and b i as coordinates on the manifold H k n of k-dimensional planes. In these 
9 * 

coordinates the function ~/is defined by the following equation: 

( ~ / )  (A, b) = J' I (Ax"  + b, x") dx", dx" :: dxm+ 1. • • d.xn. 

We note that the submanifold Hx0 of planes passing through the fixed point x 0 = (x' 0, x o) con- 
sists of planes with coordinates (A, b), where b = x~ -Ax' 0. In view of this we can identify 
the elements of Hx0 with (m x k)-matrices A, and vectors from the tangent spaces TAHx0 are 
also naturally identified with (m x k)-matrices. 

Let A I .... ,A k be linearly independent vectors in TAHx0 We introduce a pseudodifferen- 
tial operator £(A I .... ,A k) inRm, whose symbol c(A I ..... AI~; ~) is defined by the following 
equations : 

c (A 1 . . . .  , A~; ~) = I dot II ci~ (A~ . . . . .  AU; ~)II I, 

where 

c~i(A 1 . . . . .  A~; ~) = ~ ~,a~, i, ] = t . . . . .  k. 

We define the k-density %~ on Hx0, where ~ = ~/, as follows: 

(XxoT) (A; A a . . . . .  A ~) = e (A x . . . . .  A ~) ~ (A,  b) [b=x6_Ax; ( 4 )  

(the operator ~ acts on ~ as on a function of b~Rm). 

One can get the value of the function f at the point x 0 by integrating the k-density Xx.~ 
over certain special k-dimensional submanifolds ?cH~. Let ~ be such that the number of 
planes h~, belonging to the hyperplane <6, x - x0> = 0 is identical for almost all ~ ~ 
(Rn)'kx0 and nonzero. Then 

I ~x0~ = C (~) / (X0) , where C (~) ~ 0. ( 5 ) 
? 

We note that by (4) calculation of the density at a point reduces to (n - k)-fold inte- 
gration. Thus the reconstruction of the function f at a point by means of (5) requires n- 
fold integration.% 

Note. The inversion formula (5) is also valid for odd k. 

*By a k-density on a manifold X is meant a function 9(x; Yl ..... Yk) of z~X and k linearly 

independent vectors y, ..... y~ TzX, satisfying the following condition: if y~ = ~g~jvj(i=i ..... k), 
J 

then v (z; Yl ..... y~) = ] det [Ig~Jll Iv (x, y, ..... y~). Similarly to differential k-forms one can integrate 
any k-density over k-dimensional submanifolds. 
#For special choice of ~ (for example, if T is the Euler cycle) the inversion formula (5) 
can be reduced to calculation of an integral of multiplicity less than n. 



4. The Operator dv 
In this paper, for arbitrary k we shall obtain a new class of inversion formulas. Just 

as for the local inversion formulas (3) the integrals of the differential form ~ lie at the 
base of their construction. 

Let H 0 be the manifold of oriented k-dimensional planes in R ~, passing through the point 
0. We fix an arbitrary k-dimensional oriented submanifold ?~H 0. We denote by T + x the 
submanifold of planes obtained by paral~el translation of planes from T by the vector x. We 
define an operator ~v from the space of functions ~ =~/ to the space of functions on R ~ by 
the following formula: 

(g~)  (z) = (2m) -~ ~ ×~. (6) 

Remark. For odd k d y e 0  f o r  any c y c l e  T- Hence fo r  odd k the  o p e r a t o r  g~ depends only  
on the  boundary ~T of  the  manifold  T. 

5. Crofton's Function 

We want to describe the composition J~ of the operators ~ and Jv. To this end we asso- 
ciate with each k-dimensional oriented submanifold ~CH 0 a function onl(R~'~0, which we 
call the Crofton function and denote by Crfy (~). 

By G~, where ~(R~)'~0, we denote the manifold of all subspaces h~Ho, belonging to 
the hyperplane <~, x> = 0. Let us assume that k < n - I; then G~ is an orientable cycle in 
H 0 endowed like H 0 itself with a canonical orientation. (For odd k this orientation is de- 
fined by the orientation of R n and the direction of the vector ~ and for even k it is inde- 
pendent of the orientation of R n and the direction of ~.) Since dimT = codimG~ = k, for sub- 
manifolds 7 and G5 in H 0 in general position their intersection index T'G~ is defined. 

Definition of the Crofton Function for the Case k < n - i: 

Cr~ ([) = ?.G~. (7) 

In what follows we assume about T that the function CrfT(~) is defined for almost all 
~(Rn)'~0. This automatically holds if T is in an algebraic k-dimensional submanifold of 

H 0 • 

Remark. The definition of the Crofton function is compatible with the definition of the 
Crofton symbol Cry(~) introduced in [5] in the construction of nonlocal inversion formulas: 
CrT(~) is defined there as the number of points of intersection of y and GE where, in con- 
trast with the present situation, ~ and G~ are manifolds of nonoriented subspaces. 

We define the Crofton function for the exceptional case k = n - I. In this case dimy = 
dimH 0 and G~ consists of two points (the subspace <~, x> = 0 with the two opposite orienta- 
tions). For even k we define CrfT(~) as the number of points of intersection of y and G~: 
Cr~(~)~ [~ ~ G~[. For odd k we set Crf~(~) = 0 if I? ~ G~I ~ 0, 2; now if ? ~ G~ consists of 
a unique oriented space h, then we set drfx(~) = ±i where the sign is determined by whether 
or not the orientation of h is compatible with the direction of the vector ~. 

It follows from the definition of the Crofton function that 

Cr~ ( - ~ )  = ( -~)~ Crg (~). (s )  

6. THEOREM I. The composition J~ of the operators .~ and, 5~ defined by (I) and (6) 
is a pseudodifferential operator on the space of functions on R ~ with symbol 

c (~) = Cr~ (~). 

Proof. We have 

(£/v'~/) (x) = (2~i)-~ I ~_. ak! (at-ff z) dt da~' A • A da~ 
d x  ~1 . . .  a x  ~lt 

V R ~ (Rn) ,  V (Rn)  ' j = l  

where f is  the  Fou r i e r  t r ans fo rm of  the  f u n c t i o n  f ,  ~ ( . )  i s  the  d e l t a - f u n c t i o n ,  and 

co~ (~) = <[,  d ~ , )  A - . -  A <[,  d~k>. 



It follows from this that Jv~ is a pseudodifferential operator with symbol 

c (~) = I l] 8 (<~, =D) ~ (~ (9) 
~j=l 

We see that the integral (9) is equal to Crfy(~) for almost all~(Rn)'~0. For this 
it suffices to consider the case when ~ is a small disc intersecting G~ in at most one point 
and hence either ? ~ G~ =~ and CrfT(~) = 0 or IY ~ G~ I = I and CrfT(~) = ±i. We introduce 
coordinates s = (s I ..... s k) on X and define in each oriented subspace h(s)~ a basis ~l 
(s) ..... ak(S) depending smoothly on s. Then it follows from (9) that 

c (~) 8 (u i (s)) ~ ds, ds = d s l . . ,  dsk, 

where  uj (~ = <~, a j  (~> U = t . . . . .  ~ ,  D (u)/D (s) i s  t h e  J a c o b i a n .  When ~ ~G~ = ~5 t h e  f u n c t i o n s  
u j ( s )  do n o t  v a n i s h  s i m u l t a n e o u s l y  f o r  any  s ;  c o n s e q u e n t l y ,  c ( ~ )  = 0 = C r f ~ ( 5 ) .  Now i f  ¥ 
and G~ i n t e r s e c t  i n  t h e  p o i n t  s o and  a r e  t r a n s v e r s e  a t  t h i s  p o i n t ,  t h e n  

c (f) = sgn (D (u)/D (0)I~=~, 

and h e n c e  c ( 5 )  = ± C r f ~ ( 5 ) .  I t  i s  e a s y  t o  s e e  t h a t  t h e  s i g n s  o f  D ( u ) / D ( s ) l s = s 0  and C r f ~ ( 5 )  
a l s o  c o i n c i d e .  

COROLLARY. The composition of operators (3~,~)(3v,~), where ~i, ~2 are two oriented k- 
dimensional submanifolds of H 0, is a pseudodifferential operator with symbol 

c (~) = Cry,  (~) Cry,  (~). 

In particular, the symbol of the operator (jv~)s is equal to (Crf~(~)) 2. 

7. Quasicycles and the Inversion Formula 

We call an oriented k-dimensional submanifold ~H0 a quasicycle if ICrf~(~)l is almost 
everywhere a nonzero constant; we denote this constant by c(7). In particular, 7 is a quasi- 
cycle if ~ ~ I = I for almost all ~(Rn)'~0. 

Remark. For odd k the Crofton function itself is not constant for any quasicycle ~. 

The next theorem follows directly from Theorem 1 (Corollary). 

THEOREM 2. If $ is a quasicycle in H0, then (~v~)' = c~(y) E, where E is the identity 
operator. Thus, for the integral transform f ~+~ = 2] one has the following inversion for- 
mula: 

~v~v~ = cS (Y) [. (10) 

We note that reconstruction of the function f at one point according to this formula 
reduces to the calculation of a (3k)-fold integral. 

8~ Example: the Case k = 1 

In this case H 0 can be identified naturally with the unit sphere S n-1 in Bn,×~ is a 
1-form on S n-l. As ~ one can take an arbitrary smooth path on S n-1 from the point a to the 
point b. Then 

+~ 'S ( J v ~ / )  (x) = ~ t -1 (l (bt + x) - -  / (at + x)) dt, 

where it is necessary to understand the integral in the sense of principal value. The symbol 
of the operator $v~ is equal to c (~) = I/2 (sgn <~,b>--sgn <~,a>). The path 7 is a quasicycle 
if and only if its ends a and b are diametrically opposite: b = -a. 

9. Note 

Theorem 1 easily generalizes to the case of operators of more general form: 

(39) (x) = (2~i) -~ i I ×~, 
Vx+~ 

where the submanifold YxC/~r 0 generally depends on the point x. 

(ii) 



THEOREM i' The composition $~of the operators .2 and~ defined by (i) and (II) is a 
pseudodifferential operator with symbol 

c (z,  ~) = c , . f ~  (~). 
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SPECTRAL ASYMPTOTICS OF POLYNOMIAL PENCILS OF DIFFERENTIAL 

OPERATORS IN BOUNDED DOMAINS 

K. Kh. Boimatov and A. G. Kostyuchenko UDC 517.946 

I. Introduction. The Formulation of the Fundamental Result 

The foundations of the theory of polynomial operator pencils have been established by 
Keldysh in his basic works [i, 2]. Some results of the investigations in this direction 
have been presented by Shkalikov and Markus [13]. 

This paper is devoted to the calculation of the spectral asymptotics of polynomial pen- 
cils of differential operators, defined on bounded domains. 

i. Let Q C /~ be a bounded domain with a boundary of class C ~. In the space L2(~) £ we 
consider the operator 

L (k) = ~ as, j (x) liDS, ( I .  1 ) 
I~ZJ+jm~m 

where a=,j(x)~C- (~; EndC~) (I= I ~-]ra<km), X ~ C, D~ = (WiOx I, • .., @/iOx~), k, nz ~ ~ are integers. 
We assume that a0,k(X) is the identity matrix for all x ~ ~. 

We consider the operator 

A'= E a~.o(x)D~, D ( A ' ) = C ~ ( f t / ,  

and the closed extension A of the operator A' such that 

D (A) C W~ 'k (Q)z. (1 .2 )  

For  t h e  domain of  d e f i n i t i o n  of  t he  o p e r a t o r  p e n c i l  L(X) we t a k e  t h e  domain of  d e f i n i t i o n  
D(A) of the operator h. 

The spectrum of the pencil L(%) consists of the set of points ~ C  such that L(D) does 
not have a continuous inverse. If ker L(10) ~ 0, then the number X 0 is called an eigenvalue 
of the pencil L(~). By the multiplicity of the eigenvalue X0 we mean (see [2]) the number 
of vectors in the canonical system of eigen- and associated vectors, corresponding to the 
eigenvalue 10. 

The symbol of the pencil (i.I) is defined by the formula 

L (~, x, s) = ~ Y, aa, j (x) ~ts ~. 
/=o i~l=m(~--i) 
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