I. M. Gel'fand and M. I. Graev

0. Introduction

This paper is devoted to inversion formulas for an integral transform $i \mapsto \Re i$, carrying a function f on \mathbb{R}^n to its integrals over k-dimensional planes in \mathbb{R}^n (its precise definition is given below). Inversion formulas are solutions of the problem of reconstructing the function f on \mathbb{R}^n from its integral transform $\Re i$. The transform carrying a function on \mathbb{R}^n to its integrals over hyperplanes (the case k = n - 1) is called the <u>Radon transform</u>; inversion formulas for it are well known (cf. [1, 2]). In [3] inversion formulas are given for the case of planes of arbitrary even dimension k, and in [4] there is a class of inversion formulas for the case of odd k. The difference between even and odd k is that for even k the inversion formulas are local. This term means that to reconstruct the function at a point it is only necessary to know its integrals over planes near this point; now for odd k the inversion formulas are nonlocal. For example, on \mathbb{R}^2 . However in an astonishing way for odd k one can also get local inversion formulas. This is precisely the goal of the present paper. We note that numerical calculations with the nonlocal formulas from [4] require n-fold integration.

1. Definition of the Transform $f \mapsto \mathcal{R}f$

Let f be a finite function on \mathbb{R}^n . We take arbitrary $\beta \in \mathbb{R}^n$ and a k-frame $\alpha = (\alpha_1, \ldots, \alpha_k)$, where $\alpha_i \in \mathbb{R}^n$ $(i = 1, \ldots, k)$. Then the collection of vectors $x = \alpha_1 t_1 + \ldots + \alpha_k t_k + \beta$, where $t = (t_1, \ldots, t_k)$ runs through \mathbb{R}^k , forms a k-dimensional plane h in \mathbb{R}^n . The transform $f \mapsto \mathcal{R}f$ is defined by the following formula:

$$(\mathcal{R}f)(\alpha,\beta) = \int_{\mathbf{R}^k} f(\alpha_1 t_1 + \ldots + \alpha_k t_k + \beta) dt_1 \ldots dt_k.$$
⁽¹⁾

It is easy to see that $(\mathcal{R}f)(\alpha, \beta)$ depends only on the plane h itself and the measure of h defined by the choice of the k-frame α .

2. Inversion Formulas for the Case of Even k [3]

First we note that the problem of reconstructing the function f from the function \mathcal{R}_f is overdetermined for k < n - 1 since the manifold $H_{k,n}$ of k-dimensional planes in \mathbb{R}^n has dimension greater than n for k < n; to reconstruct f it suffices to know the restrictions of \mathcal{R}_i^{\dagger} to certain n-dimensional submanifolds of $H_{k,n}$. For this reason there exists many different inversion formulas. For even k one can get the class of inversion formulas of [3] in this way.

From the function $\varphi = \mathscr{R}f$ we construct a differential k-form $\mathscr{R}\varphi$ on the manifold $H_{k,n}^{\dagger}$ of oriented k-dimensional planes in \mathbb{R}^n . First it is convenient to define $\mathscr{R}\varphi$ not on $H_{k,n}^{\dagger}$ but on the manifold $E_{k,n} \times \mathbb{R}^n$, where $E_{k,n}$ is the manifold of k-frames α :

$$\varkappa \varphi = \sum_{i_1, \ldots, i_k=1}^{n} \frac{\partial^k \varphi \left(\alpha, \beta \right)}{\partial \beta^{i_1} \ldots \partial \beta^{i_k}} d\alpha_1^{i_1} \wedge \ldots \wedge d\alpha_k^{i_k}$$
⁽²⁾

 $(\beta^{i}, \alpha^{i}_{j})$ being the coordinates, respectively, of the vectors β and α_{j}). It is easy to see that under the natural projection $\pi: E_{k,n} \times \mathbb{R}^{n} \to H_{k,n}^{+}$ this form lowers from $E_{k,n} \times \mathbb{R}^{n}$ to $\mathbb{H}_{k,n}^{+}$ [the plane $h = \pi(\alpha, \beta)$ is the collection of vectors $x = \alpha_{1}t_{1} + \ldots + \alpha_{k}t_{k} + \beta$].

It is proved in [3] that the restriction of $x\varphi$ to the submanifold $H_x \subset H_{k,n}^+$ of planes passing through an arbitrary fixed point $x \in \mathbb{R}^n$ is a closed form on H_x . Here for any k-di-

Institute of Applied Mathematics, Academy of Sciences of the USSR. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 25, No. 1, pp. 1-6, January-March, 1991. Original article submitted October 1, 1990.

mensional cycle $\gamma \subset H_x$ the following equation holds:

$$\int_{\gamma} \varkappa \varphi = c(\gamma) f(x)$$
(3)

and there exist cycles γ (for example the Euler cycle) for which $c(\gamma) \neq 0$. The inversion formula (3) obtained is local, i.e., to reconstruct the value of the function f at the point x from it it suffices to know the values of $\varphi = \Re f$ only on the set of planes infinitely close to x.

3. Inversion Formulas for the Case of Odd k [4]

The definition of the form $\varkappa \varphi$ and (3) are also preserved for odd k. However, for odd k we have $c(\gamma) = 0$ for any k-dimensional cycle $\gamma \subset H_x$ and for the transformation $i \mapsto \Re f$ there only exist nonlocal inversion formulas. A class of such formulas is constructed in [4]; in them instead of the differential form $\varkappa \varphi$ the density $\chi_x \varphi$ on the manifold of k-dimensional planes passing through the point x is used.*

We give the construction of $\chi_x \varphi$. We shall define k-dimensional planes in \mathbb{R}^n by equations of the form $x_i = a_{i1}x_{m+1} + \ldots + a_{ik}x_n + b_i$ $(i = 1, \ldots, m)$, where m = n - k. In abbreviated notation: x' = Ax'' + b, where $x' = (x_1, \ldots, x_m)$, $x'' = (x_{m+1}, \ldots, x_n)$, $b = (b_1, \ldots, b_m)$, $A = || a_{ij} ||_{\substack{i=1,\ldots,m\\j=1,\ldots,k}}$

We use a_{ij} and b_i as coordinates on the manifold $H_{k,n}$ of k-dimensional planes. In these coordinates the function $\Re f$ is defined by the following equation:

$$(\mathcal{R}f)(A, b) = \int f(Ax'' + b, x'') dx'', dx'' = dx_{m+1} \dots dx_n.$$

We note that the submanifold H_{X_0} of planes passing through the fixed point $x_0 = (x'_0, x''_0)$ consists of planes with coordinates (A, b), where $b = x'_0 - Ax''_0$. In view of this we can identify the elements of H_{X_0} with (m × k)-matrices A, and vectors from the tangent spaces $T_A H_{X_0}$ are also naturally identified with (m × k)-matrices.

Let A^1, \ldots, A^k be linearly independent vectors in $T_A H_{X_0}$. We introduce a pseudodifferential operator $\hat{c}(A^1, \ldots, A^k)$ in \mathbb{R}^m , whose symbol $c(A^1, \ldots, A^k; \xi)$ is defined by the following equations:

$$c (A^1, \ldots, A^k; \xi) = |\det || c_{ij} (A^1, \ldots, A^k; \xi) || |,$$

where

$$c_{ij}(A^1,...,A^k;\xi) = \sum_{s=1}^m \xi_s a_{si}^j, \quad i,j = 1,...,k$$

We define the k-density $\chi_{x_0}\phi$ on H_{X_0} , where $\phi=\mathscr{R}f$, as follows:

$$(\chi_{x_{0}}\varphi) (A; A^{1}, \ldots, A^{k}) = \hat{c} (A^{1}, \ldots, A^{k}) \varphi (A, b) |_{b = x'_{0} - Ax'_{0}}$$
⁽⁴⁾

(the operator \hat{c} acts on φ as on a function of $b \in \mathbb{R}^m$).

One can get the value of the function f at the point x_0 by integrating the k-density $\chi_x \varphi$ over certain special k-dimensional submanifolds $\gamma \subset H_{x_0}$. Let γ be such that the number of planes $h \in \gamma$, belonging to the hyperplane $\langle \xi, x - x_0 \rangle = 0$ is identical for almost all $\xi \in (\mathbb{R}^n)' \setminus 0$ and nonzero. Then

$$\int_{\gamma} \chi_{x_0} \varphi = c(\gamma) f(x_0), \text{ where } c(\gamma) \neq 0.$$
(5)

We note that by (4) calculation of the density at a point reduces to (n - k)-fold integration. Thus the reconstruction of the function f at a point by means of (5) requires n-fold integration.[†]

Note. The inversion formula (5) is also valid for odd k.

*By a <u>k-density</u> on a manifold X is meant a function $v(x; y_1, ..., y_k)$ of $x \in X$ and k linearly independent vectors $y_1, \ldots, y_k \in TxX$, satisfying the following condition: if $y'_i = \sum_i g_{ij} y_j$ (i=1,...,k),

then $v(x; y'_1, \ldots, y'_k) = |\det ||g_{ij}|| |v(x, y_1, \ldots, y_k)$. Similarly to differential k-forms one can integrate any k-density over k-dimensional submanifolds.

⁺For special choice of γ (for example, if γ is the Euler cycle) the inversion formula (5) can be reduced to calculation of an integral of multiplicity less than n.

4. The Operator \mathcal{I}_{γ}

In this paper, for arbitrary k we shall obtain a new class of inversion formulas. Just as for the local inversion formulas (3) the integrals of the differential form $\varkappa \phi$ lie at the base of their construction.

Let H_0 be the manifold of oriented k-dimensional planes in \mathbb{R}^n , passing through the point 0. We fix an arbitrary k-dimensional oriented submanifold $\gamma \subset H_0$. We denote by $\gamma + x$ the submanifold of planes obtained by parallel translation of planes from γ by the vector x. We define an operator \mathcal{I}_{γ} from the space of functions $\varphi = \mathcal{R}_f$ to the space of functions on $\mathbb{R}^{\hat{n}}$ by the following formula:

$$(\mathcal{J}_{\gamma}\varphi)(x) = (2\pi i)^{-k} \int_{\gamma+x} \varkappa \varphi.$$
(6)

<u>Remark.</u> For odd $k \mathcal{J}_{\gamma} \equiv 0$ for any cycle γ . Hence for odd k the operator \mathcal{J}_{γ} depends only on the boundary $\partial \gamma$ of the manifold γ .

5. Crofton's Function

We want to describe the composition $\mathcal{I}_{\gamma}\mathcal{R}$ of the operators \mathcal{R} and \mathcal{I}_{γ} . To this end we associate with each k-dimensional oriented submanifold $\gamma \subset H_0$ a function on $(\mathbb{R}^n)' \setminus 0$, which we call the Crofton function and denote by $\operatorname{Crf}_{\gamma}(\xi)$.

By G_{ξ} , where $\xi \in (\mathbb{R}^n)' \setminus 0$, we denote the manifold of all subspaces $h \in H_0$, belonging to the hyperplane $\langle \xi, x \rangle = 0$. Let us assume that k < n - 1; then G_{ξ} is an orientable cycle in H_0 endowed like H_0 itself with a canonical orientation. (For odd k this orientation is defined by the orientation of \mathbb{R}^n and the direction of the vector ξ and for even k it is independent of the orientation of \mathbb{R}^n and the direction of ξ .) Since dim $\gamma = \operatorname{codim} G_{\xi} = k$, for submanifolds γ and G_{ξ} in H_0 in general position their intersection index $\gamma \cdot G_{\xi}$ is defined.

Definition of the Crofton Function for the Case k < n - 1:

$$\operatorname{Crf}_{\gamma}(\xi) = \gamma \cdot G_{\xi}.$$
(7)

In what follows we assume about γ that the function $\operatorname{Crf}_{\gamma}(\xi)$ is defined for almost all $\xi \in (\mathbb{R}^n)' \setminus 0$. This automatically holds if γ is in an algebraic k-dimensional submanifold of H_0 .

<u>Remark.</u> The definition of the Crofton function is compatible with the definition of the Crofton symbol $Cr_{\gamma}(\xi)$ introduced in [4] in the construction of nonlocal inversion formulas: $Cr_{\gamma}(\xi)$ is defined there as the number of points of intersection of γ and G_{ξ} where, in contrast with the present situation, γ and G_{ξ} are manifolds of nonoriented subspaces.

We define the Crofton function for the exceptional case k = n - 1. In this case dim $\gamma = \dim H_0$ and G_{ξ} consists of two points (the subspace $\langle \xi, x \rangle = 0$ with the two opposite orientations). For even k we define $\operatorname{Crf}_{\gamma}(\xi)$ as the number of points of intersection of γ and G_{ξ} : $\operatorname{Crf}_{\gamma}(\xi) = |\gamma \cap G_{\xi}|$. For odd k we set $\operatorname{Crf}_{\gamma}(\xi) = 0$ if $|\gamma \cap G_{\xi}| = 0$, 2; now if $\gamma \cap G_{\xi}$ consists of a unique oriented space h, then we set $\operatorname{Crf}_{\gamma}(\xi) = \pm 1$ where the sign is determined by whether or not the orientation of h is compatible with the direction of the vector ξ .

It follows from the definition of the Crofton function that

$$\operatorname{Crf}_{\gamma}(-\xi) = (-1)^{k} \operatorname{Crf}_{\gamma}(\xi).$$
(8)

<u>6. THEOREM 1.</u> The composition $\mathcal{I}_{\gamma}\mathcal{R}$ of the operators \mathcal{R} and \mathcal{I}_{γ} defined by (1) and (6) is a pseudodifferential operator on the space of functions on \mathbb{R}^n with symbol

$$c(\xi) = \operatorname{Crf}_{\nu}(\xi).$$

Proof. We have

$$(\mathcal{I}_{\gamma}\mathcal{R}f)(x) = (2\pi i)^{-k} \int_{\gamma} \int_{\mathbf{R}^{k}} \sum \frac{\partial^{k} f(\alpha t + x)}{\partial x^{i_{1}} \cdots \partial x^{i_{k}}} dt d\alpha_{1}^{i_{1}} \wedge \cdots \wedge d\alpha_{k}^{i_{k}} =$$

$$=(2\pi)^{-n/2-k}\int\limits_{\mathcal{V}}\int\limits_{\mathbf{R}^{k}}\int\limits_{(\mathbf{R}^{n})'}\tilde{f}(\xi)\,e^{i\langle\xi,\,\,\alpha t+x\rangle}\,d\xi\wedge dt\wedge\omega_{\xi}(\alpha)=(2\pi)^{-n/2}\int\limits_{\mathcal{V}}\int\limits_{(\mathbf{R}^{n})'}\tilde{f}(\xi)\,e^{i\langle\xi,\,\,x\rangle}\prod_{j=1}^{k}\delta\left(\langle\xi,\,\alpha_{j}\rangle\right)\,d\xi\wedge\omega_{\xi}(\alpha),$$

where \tilde{f} is the Fourier transform of the function f, $\delta(\cdot)$ is the delta-function, and

$$\omega_{\xi}(\alpha) = \langle \xi, \ d\alpha_{1} \rangle \wedge \ldots \wedge \langle \xi, \ d\alpha_{k} \rangle.$$

It follows from this that $\mathcal{J}_{\gamma}\mathcal{R}$ is a pseudodifferential operator with symbol

$$c(\xi) = \int_{\gamma} \prod_{j=1}^{n} \delta(\langle \xi, \alpha_j \rangle) \omega_{\xi}(\alpha).$$
(9)

We see that the integral (9) is equal to $\operatorname{Crf}_{\gamma}(\xi)$ for almost all $\xi \in (\mathbb{R}^n)' \setminus 0$. For this it suffices to consider the case when γ is a small disc intersecting G_{ξ} in at most one point and hence either $\gamma \cap G_{\xi} = \emptyset$ and $\operatorname{Crf}_{\gamma}(\xi) = 0$ or $|\gamma \cap G_{\xi}| = 1$ and $\operatorname{Crf}_{\gamma}(\xi) = \pm 1$. We introduce coordinates $s = (s_1, \ldots, s_k)$ on γ and define in each oriented subspace $h(s) \in \gamma$ a basis α_1 $(s), \ldots, \alpha_k(s)$ depending smoothly on s. Then it follows from (9) that

$$c(\xi) = \int_{\gamma} \prod_{j=1}^{k} \delta(u_j(s)) \frac{D(u)}{D(s)} ds, \quad ds = ds_1 \dots ds_k,$$

where $u_j(s) = \langle \xi, \alpha_j(s) \rangle$ (j = 1, ..., k), D(u)/D(s) is the Jacobian. When $\gamma \cap G_{\xi} = \emptyset$ the functions $u_j(s)$ do not vanish simultaneously for any s; consequently, $c(\xi) = 0 = \operatorname{Crf}_{\gamma}(\xi)$. Now if γ and G_{ξ} intersect in the point s_0 and are transverse at this point, then

$$c \ (\xi) = \text{sgn} \ (D \ (u)/D \ (s)) \mid_{s=s_{s}}$$

and hence $c(\xi) = \pm Crf_{\gamma}(\xi)$. It is easy to see that the signs of $D(u)/D(s)|_{s=s_0}$ and $Crf_{\gamma}(\xi)$ also coincide.

<u>COROLLARY</u>. The composition of operators $(\mathcal{J}_{\gamma_1}\mathcal{R})(\mathcal{J}_{\gamma_2}\mathcal{R})$, where γ_1 , γ_2 are two oriented k-dimensional submanifolds of H_0 , is a pseudodifferential operator with symbol

$$c (\xi) = \operatorname{Crf}_{\gamma_1} (\xi) \operatorname{Crf}_{\gamma_2} (\xi)$$

In particular, the symbol of the operator $(\mathcal{I}_{\gamma}\mathcal{R})^2$ is equal to $(Crf_{\gamma}(\xi))^2$.

7. Quasicycles and the Inversion Formula

We call an oriented k-dimensional submanifold $\gamma \subset H_0$ a quasicycle if $|Crf_{\gamma}(\xi)|$ is almost everywhere a nonzero constant; we denote this constant by $c(\gamma)$. In particular, γ is a quasicycle if $|\gamma \cap G_{\xi}| = 1$ for almost all $\xi \in (\mathbb{R}^n)' \setminus 0$.

<u>Remark.</u> For odd k the Crofton function itself is not constant for any quasicycle γ .

The next theorem follows directly from Theorem 1 (Corollary).

<u>THEOREM 2.</u> If γ is a quasicycle in \mathbb{H}_0 , then $(\mathcal{I}_{\gamma}\mathcal{R})^2 = c^2(\gamma) E$, where E is the identity operator. Thus, for the integral transform $\mathbf{f} \mapsto \varphi = \mathcal{R} \mathbf{j}$ one has the following inversion formula:

$$\mathcal{J}_{\gamma}\mathcal{R}\mathcal{J}_{\gamma}\varphi = c^{2}\left(\gamma\right)f.$$
(10)

We note that reconstruction of the function f at one point according to this formula reduces to the calculation of a (3k)-fold integral.

8. Example: the Case k = 1

In this case H_0 can be identified naturally with the unit sphere S^{n-1} in \mathbb{R}^n , $\varkappa \phi$ is a 1-form on S^{n-1} . As γ one can take an arbitrary smooth path on S^{n-1} from the point a to the point b. Then

$$(\mathcal{Y}_{\gamma}\mathcal{R}f)(x) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} t^{-1} \left(f\left(bt+x\right) - f\left(at+x\right) \right) dt,$$

where it is necessary to understand the integral in the sense of principal value. The symbol of the operator $\mathcal{J}_{\gamma}\mathcal{R}$ is equal to $c : (\xi) = 1/2 (\operatorname{sgn} \langle \xi, b \rangle - \operatorname{sgn} \langle \xi, a \rangle)$. The path γ is a quasicycle if and only if its ends a and b are diametrically opposite: b = -a.

9. Note

Theorem 1 easily generalizes to the case of operators of more general form:

$$(\Im\varphi)(x) = (2\pi i)^{-k} \int_{\gamma_x + x} \varkappa \varphi, \qquad (11)$$

where the submanifold $\gamma_x \subset H_0$ generally depends on the point x.

THEOREM 1'. The composition \mathcal{IR} of the operators \mathcal{R} and \mathcal{I} defined by (1) and (11) is a pseudodifferential operator with symbol

$$c(x, \xi) = \operatorname{Crf}_{\gamma_r}(\xi).$$

LITERATURE CITED

- I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Integral Geometry and Questions of 1. Representation Theory Related to It [in Russian], Fizmatgiz, Moscow (1962).
- 2. S. Helgason, The Radon Transform [Russian translation], Mir, Moscow (1983).
- I. M. Gel'fand, M. I. Graev, and Z. Ya. Shapiro, "Integral geometry on k-dimensional 3.
- planes," Funkts. Anal. Prilozhen., 1, No. 1, 15-31 (1967). I. M. Gel'fand and S. G. Gindikin, "Nonlocal inversion formulas in real integral geom-4. etry," Funkts. Anal. Prilozhen., 11, No. 3, 12-19 (1977).

SPECTRAL ASYMPTOTICS OF POLYNOMIAL PENCILS OF DIFFERENTIAL OPERATORS IN BOUNDED DOMAINS

K. Kh. Boimatov and A. G. Kostyuchenko

UDC 517.946

1. Introduction. The Formulation of the Fundamental Result

The foundations of the theory of polynomial operator pencils have been established by Keldysh in his basic works [1, 2]. Some results of the investigations in this direction have been presented by Shkalikov and Markus [13].

This paper is devoted to the calculation of the spectral asymptotics of polynomial pencils of differential operators, defined on bounded domains.

1. Let $\Omega \subset R_n$ be a bounded domain with a boundary of class C^{∞} . In the space $L_2(\Omega)^{\ell}$ we consider the operator

$$L(\lambda) = \sum_{|\alpha| + jm \leq km} a_{\alpha, j}(x) \lambda^{j} D_{x}^{\alpha}, \qquad (1.1)$$

where $a_{\alpha,j}(x) \in C^{\infty}(\overline{\Omega}; \text{ End } \mathbb{C}_q)$ $(|\alpha| + jm \leq km), \lambda \in \mathbb{C}, D_x = (\partial/i\partial x_1, \ldots, \partial/i\partial x_n), k, m \ge 1$ are integers. We assume that $a_{0,k}(x)$ is the identity matrix for all $x \in \Omega$.

We consider the operator

 $A' = \sum_{|\alpha| \le m|k} a_{\alpha, 0}(x) D_x^{\alpha}, \quad D(A') = C_0^{\infty}(\Omega)^l,$

and the closed extension A of the operator A' such that

$$D(A) \subset W_2^{mk}(\Omega)^l. \tag{1.2}$$

For the domain of definition of the operator pencil $L(\lambda)$ we take the domain of definition D(A) of the operator A.

The spectrum of the pencil $L(\lambda)$ consists of the set of points $\eta \in C$ such that $L(\eta)$ does not have a continuous inverse. If ker $L(\lambda_0) \neq 0$, then the number λ_0 is called an eigenvalue of the pencil L(λ). By the multiplicity of the eigenvalue λ_0 we mean (see [2]) the number of vectors in the canonical system of eigen- and associated vectors, corresponding to the eigenvalue λ_0 .

The symbol of the pencil (1.1) is defined by the formula

$$L(\lambda, x, s) = \sum_{j=0}^{k} \sum_{|\alpha|=m(k-j)} a_{\alpha, j}(x) \lambda^{j} s^{\alpha}.$$

Institute of Mathematics, Computer Center, Academy of Sciences of the Tadzhik SSR. M. V. Lomonosov Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 25, No. 1, pp. 7-20, January-March, 1991. Original article submitted April 24, 1990.