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MOTION OF TWO PULSATING SPHERES IN AN IDEAL INCOMPRESSIBLE FLUID

A. V. Burov UDC 532.58

The problem of the interaction of two pulsating spheres in an ideal incom-
pressible fluid was first investigated in detail by Bjerknes [1]. However,
his and subsequent studies on this subject [2-5] were restricted to the
interaction forces between the spheres, whereas the law of their motion

was not considered because of the much greater complexity of the correspond-
ing problem. The aim of the present paper is to find an approximate analytic
solution to the problem of the motion of two pulsating spheres in an ideal
incompressible fluid filling the entire space exterior to the spheres under
the assumption that the flow of the fluid is irrotational.

The System of Equations of Motion

Suppose two spheres with masses my (here and in what follows, k = 1, 2), whose
radii a; may depend on the time t, move along the line of their centers, which we take
as coordinate axis, and we denote by x, the coordinates of the centers of the spheres
and by b the distance between the centers. We assume that the spheres can execute small
pulsations, the relation a; < b holding throughout the motion, and their external forces
are absent. We shall describe the motion of the spheres approximately by the system of
equations [6]

d 2
';i? (Lyds—Miz) + 6npas®as®b—hiyi,=0, Ly=my + —3-npah3, " M=2npa,®a,®b—? (1)

(the second equation is obtained by interchanging the indices and reversing the sign of
the last term), where p is the density of the fluid, and the dot denotes differentiation
with respect to t. The accuracy of the description depends on the parameter s=[gi§{%b—Q]{

which at moderate values of the ratio of ax to b can already be very small (for example,
for two air bubbles in water of diameter 0.1 mm separated by 1 mm we have € = 1.25-107
« 1).

Let I and T be a certain characteristic length and characteristic time. It follows
from dimensional considerations [7] that the equations of motion (1) can be reduced to
dimensionless equations containing two independent dimensionless parameters, which we
take to be o:

d B B
— Ail.li —— 4+ 33— l'l1ﬁz‘=0
d.[- y.'! yln
(2)
w=t/T, zp=usl, y=ui—uz, a=Rl(fsn)®, Vi=*/nR®, Adp=on+ Vi, B=ViVs ox=9my/(2npl%)

(the second equation is obtained by interchanging the indices and reversing the sign of
the last term), where the dot denotes differentiation with respect to T.

Adding the equations of the system (2) term by term, we obtain the first integral
(A —-By’3)ﬁ1 + (Ag —-By'3)ﬁ2 = C = const of it, from which, using the fact that
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y = 43 — Uy, we find expressions for uy:

C +(4,—By—%) 3
g LA By (3)
As+A4,—-2By—3
(the expression for ﬁz is obtained by interchanging the indices and reversing the sign
in front of the round brackets in the numerator).

If we substitute the expressions for ﬁk in one of the equations of motion (2), we
obtain a single equation instead of two. To avoid lengthy calculations in what follows,
we restrict ourselves to the case C = 0 (when C # 0, no new fundamental difficulties
arise). Then, substituting (3) in the first of Eqs. (2), we obtain tc accuracy ¢

d 2F 3DE A4 B
—[D(“_—)ﬂ]‘ =0, D=—""" p= (4)
dv y* ¥t Ay+4, A+A,

The problem can now be formulated as follows: for given functions E(t) and D(t),
find a solution of Eq. (4) satisfying the initial conditions y(0) = yo and y(0) = Yo+
The solution of Eq. (4) will correctly describe the motion of the spheres as long as
the fundamental assumption is valid, i.e.,

max{Ey-}~e <1 (5
(t}

Integration of the Equation of Motion

If D > 0 during the whole time of the motion, then, making the substitution y = Z(y),
we reduce Eq. (4) to the form

az E

—_—Z
dy y(y*+2E)

Assuming that the functions E and F do not depend on y explicitly, we can formally
integrate Eq. (6) as a linear equation with respect to Z(y):
-1,5 1.5

Z(y) = (sz_f) [ ci-ﬁj(ur%) dy]

whence, determining Cy from the initial conditions, we obtain to order ¢ an equation for
finding y:

——F, F=hD (6)

38, 3 E E E
Z(y)=y=yo(1+ °—~.)+F0yo<1—1.5 ° —3——-)-Fy 145 — (7)
¥yt yo? ¥ ¥

Equation (7) can be formally integrated over T and written in the integral form
%

y=Wy, Wy=y+ jy-dr (8)
[

where y is determined by the right-hand side of (7).

We shall solve the integral equation (8) iteratively, setting y(©) =y, yn)=Wylr~1
n=4,2,...

Then the first approximation can be written in the qum

y(“=Wyw)=y0+G(T) +y0_3H('E), G(T) = (yo-{*yoFo)T—yo (F—Fo) H(‘C) == 1.{—)5 [zyo(Eo—E) - Foyo (Eo+2E) + 3ymFE]dr

To terms of order ¢, the second approximation has the form

T T

E,
wmzyﬁ4ﬁ-jFGdr—w"3IFHdr+15 .
¢ ]

¥o®

T E T FE
20— Foyo) T~ 3 (Go+ Foy ———dt + 45— @ 1§:))
(2g0—F oyo) Go+Fo 0)55‘ oi ) DGJ' Y T

As will be seen from what follows, the second approximation is already equal to the
asymptotic behavior of the exact solution of Eq. (4) for nonpulsating spheres, so that in
the case of small pulsations of the spheres we can restrict ourselves to the second
approximation.
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Motion of Nonpulsating Spheres

In this case D, E = const, and Eq. (4) can be exactly solved in quadratures:

bt 9F | 15 9 | 15
j(1+——> dy=y'o(1+ ) *
s y® Yo®

where the integral on the left-hand side cannot be expressed in terms of elementary
functions; however, making calculations to order €, we can obtain the approximate solu-
tion

3E 1 1
y=yo+yo(1+—————)1+1.5E (———— ) (10)
yo® ¥* oy

which corresponds to the expression (9) if in it we set E, F = const.

The expression (10) determines the solution if three constants are known: Yo &0,
E. The number of determining constants can be reduced to two if we introduce the new
variable Y = y/yg and by q(Y) denote the combination 1.5E/(Y3y8), setting Y, = y(0)/
vo = 1, Yo = &o/yo, 4dp = q(Yg). Then the expression (10), which determines the motion
of nonpulsating spheres, can be written to order ¢ in the simpler form

Y(ifQ*i'Qc) =1+Yo(1+3go)17

Motion of Pulsating Spheres

Suppose the spheres execute small pulsations, so that their dimensionless volumes
Vi vary periodically about certain mean values (V). We set

Vi=(Va) (1+w), (=0, §=max {junu(r)|}<1
(k1)

Then from (2), (4), (6) we obtain to order §
E=(EY(1+e), F=(B)+f; (&), (P=0; le|, [fl~8<l, e=Yivi+Tavs, [=01v1+0m0,

A (V)4
———————— N 0 TS e ——————————————
Ap+d. 1 (Ap((AD+idy)

=1~

Here, yg and 09 are obtained by interchanging the indices.

Substituting the expressions found for E and F in the right-hand side of (9), we
obtain to order §

(B ° {+e 1 1
YO =g+yo(fomf) + [Z]o+yofo ( 1-45 )] ( o - fdt) L5 { L Qo Yofo) T — —— + —— +
ye® : ¥ed Yo? g2
(11)
k4 L T
. e {—fo i i
2(go+yofo) [ J‘ —dr + 3yoj' dr| +3 j‘ —dtd,  g(t)=yo+ (Jo+yofo)T
1] ga [ g‘ 1] gZ °

If the spheres do not pulsate, then e, £ = 0, and (11) takes a form corresponding
to that found earlier for the case of the solution (10).

If at the initial time the spheres are at rest (&0 = 0), then, retaining in (11)
only the most important terms, we have y(z) = yo(1 + fOT), from which we see that when
fo > 0 the pulsating spheres begin to move away from each other, while for fg < O they
approach each other.

LITERATURE CITED

1. V. Bjerknes, Vorlesungen iiber hydrodynamische Fernkridfte, Vols. 1 and 2, Barth, Leipzig
(1900, 1902), pp. 338, 316.

2. Acoustic Coagulation of Aerosols [in Russian], Goskhimizdat, Moscow (1961), p. 184.

3. E. P. Mednikov, Acoustic Coagulation and Precipitation of Aerosols [in Russian], Izd.
Akad. Nauk SSSR, Moscow (1963), p. 263.

4. Applied Acoustics [Collected Papers], No. 1 [in Russian], Taganrog (1968), p. 256.

5. M. A. Mironov, "Bjerknes forces in a viscous medium and acoustic coagulation of
aerosols," Akust. Zh., 22, 941 (1976).

474



H. Lamb, Hydrodynamics, Dover (1932).

6.
7. L. E. Sedov, Similarity and Dimensional Methods, London (1959).

DESTABILIZATION OF FLOWS WITH FREE SURFACE BY HIGH-FREQUENCY WAVES

A. B. Ezerskii UDC 532.59.013.4

When wave packets of small but finite amplitude propagate in liquids and
gases average fields (average flows, average displacements of the inter-
faces between different liquids, etc.) arise because of the nonlinearity
of the media [1, 2], their amplitude being proportional to the square of
the wave amplitude. The present paper is an investigation of such fields
that arise when a packet of surface waves propagates on a horizontally
inhomogeneous flow. It is shown that the average flows induced by the
waves can strongly destabilize or stabilize the main flow.

We investigate the following mechanism by which the packet of surface waves in-
fluences the main flow. Suppose a slowly varying flow arises as a result of flow of
the considered fluid past an obstacle (see Fig. 1). The nature of the flow depends on
the Froude number Fr = U/Vgﬁ} where U is the flow velocity, H is the depth of the flow,
and g is the acceleration due to gravity (it is assumed that if there is only a hori-
zontal component it is uniform over the depth). If Fr < 1, the flow is subcritical,

a quiescent flow; if Fr > 1, then it is supercritical [3]. If a wave packet propagates
in a horizontally nonuniform flow, and the maximal Froude number Fr is near 1, then the
average quantities due to the wave (the corrections to H and U) can change Fr and,
therefore, stabilize or destabilize the flow.

We calculate the mean values n, and u, due to propagation of a steady packet of
surface waves n-—a(x)el(wt"kx) We shall assume that the surface waves are irrotational:
= 3p/0x, v = /3y (¢ is the potential, and x and y are the horizontal and vertical
components of the velocity), u, does not depend on the vertical coordinate y, and U =
Ug + {ly, where {} is the vorticity of the main flow. From the Euler equations averaged

with respect to the phase 0 = wt — kx, we obtain

du, d(U(H)u O(uHH a a ap y\*? a 2
- (U(H)u.) ~0 (w.H) +g__£=____ _2 _ _E 1)
at oz dz dz dz dz dy J

Here, { ) denotes averaging over 8, Hy = H + h. Note that the value of the right-
hand side of (1) does not depend on y:

() -(G)) e

If § = 0, then (1) can be obtained by averaging the Bernoulli equation. From the
kinematic condition averaged with respect to 6 on the surface of the fluid n we have

e OWUMH)Me 0 a o9
bR (AU =~ —{f Quren — (2)
at oz 5r U=~ < KL >

Equation (2) is the law of conservation of mass during the propagation of the sur-
face wave.

In the stationary approximation, 3/9t = 0, Eqgs. (1)-(2) can be integrated:

(o) () ()
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