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MOTION OF TWO PULSATING SPHERES IN AN IDEAL INCOMPRESSIBLE FLUID 

A. V. Burov UDC 5 3 2 . 5 8  

The problem of the interaction of two pulsating spheres in an ideal incom- 

pressible fluid was first investigated in detail by Bjerknes [i]. However, 

his and subsequent studies on this subject [2-5] were restricted to the 

interaction forces between the spheres, whereas the law of their motion 

was not considered because of the much greater complexity of the correspond- 
ing problem. The aim of the present paper is to find an approximate analytic 

solution to the problem of the motion of two pulsating spheres in an ideal 
incompressible fluid filling the entire space exterior to the spheres under 

the assumption that the flow of the fluid is irrotational. 

The S y s t e m  o f  E q u a t i o n s  o f  M o t i o n  

S u p p o s e  two s p h e r e s  w i t h  m a s s e s  m k ( h e r e  and i n  w h a t  f o l l o w s ,  k u 1,  2 ) ,  whose  
r a d i i  a k may d e p e n d  on t h e  t i m e  t ,  move a l o n g  t h e  l i n e  o f  t h e i r  c e n t e r s ,  w h i c h  we t a k e  
as  c o o r d i n a t e  a x i s ,  and  we d e n o t e  by x k t h e  c o o r d i n a t e s  o f  t h e  c e n t e r s  o f  t h e  s p h e r e s  
and by  b t h e  d i s t a n c e  b e t w e e n  t h e  c e n t e r s .  We a s s u m e  t h a t  t h e  s p h e r e s  c a n  e x e c u t e  s m a l l  
p u l s a t i o n s ,  t h e  r e l a t i o n  a k << b h o l d i n g  t h r o u g h o u t  t h e  m o t i o n ,  and  t h e i r  e x t e r n a l  f o r c e s  
a r e  a b s e n t .  We s h a l l  d e s c r i b e  t h e  m o t i o n  d f  t h e  s p h e r e s  a p p r o x i m a t e l y  by t h e  s y s t e m  o f  

e q u a t i o n s  [ 6 ]  

d 2 
- -  (Ll~i-M~2) + 6~palaa2Sb-4~lx2 =0, La=mh + ---3-~Pahs, M=2~pai 3a~Sb -~ (1)  
dt 

( t h e  s e c o n d  e q u a t i o n  i s  o b t a i n e d  by i n t e r c h a n g i n g  t h e  i n d i c e s  and  r e v e r s i n g  t h e  s i g n  o f  
t h e  l a s t  t e r m ) ,  w h e r e  p i s  t h e  d e n s i t y  o f  t h e  f l u i d ,  and t h e  d o t  d e n o t e s  d i f f e r e n t i a t i o n  

w i t h  r e s p e c t  t o  t The a c c u r a c y  o f  t h e  d e s c r i p t i o n  d e p e n d s  on t h e  p a r a m e t e r  s=[max{akb-'}] 3, 
�9 (~,t) 

Which at moderate values of the ratio of a k to b can already be very small (for example, 

for two air bubbles in water of diameter 0.i mm separated by 1 mm we have s = 1.25"10 -4 

<< I ) .  

Let 1 and T be a certain characteristic length and characteristic time. It follows 

from dimensional considerations [7] that the equations of motion (i) can be reduced to 

dimensionless equations containing two independent dimensionless parameters, which we 

take to be ak: 

B 

dr y3 ] y4 
(2)  

x=t/T, xk=akl, y=~i--/z2, ak=Rhl(~[9~) '/~, V~=a/3J~Rk3, A~=Czk+Vh, B=VtV2, o~=9ma/(2~xpl 3) 

(the second equation is obtained by interchanging the indices and reversing the sign of 

the last term), where the dot denotes differentiation with respect to T. 

Adding the equations of the system (2) term by term, we obtain the first integral 

(A 1 --By-3)5l + (A 2 --By-3)@ 2 = C = const of it, from which, using the fact that 

Leningrad. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, 

No. 3, pp. 159-162, May-June, 1983. Original article submitted June 25, 1981. 

472 0 0 1 5 - 4 6 2 8 / 8 3 / 1 8 0 3 - 0 4 7 2 5 0 7 . 5 0  �9 1983 Plenum Publishing Corporation 



= 61 -- 62, we find expressions for ilk: 

C +(A2--By-3)9 

Ai+Az--2By -3 

( t h e  e x p r e s s i o n  f o r  fi2 i s  o b t a i n e d  by i n t e r c h a n g i n g  t he  i n d i c e s  and r e v e r s i n g  t he  s i g n  
in front of the round brackets in the numerator). 

If we substitute the expressions for Uk in one of the equations of motion (2), we 

obtain a single equation instead of two. To avoid lengthy calculations in what follows, 

we restrict ourselves to the case C = 0 (when C ~ O, no new fundamental difficulties 

arise). Then, substituting (3) in the first of Eqs. (2), we obtain to accuracy 

( 3 )  

- -  D i ~ - - ~ 9 2 = 0 ,  D = - - ,  E ( 4 )  
d'r yS ] At+A2 At+A2 

The problem can now be formulated as follows: for given functions E(T) and D(T), 

find a solution of Eq. (4) satisfying the initial conditions y(O) = YO and y(O) = YO" 

The solution of Eq. (4) will correctly describe the motion of the spheres as long as 

the fundamental assumption is valid , i.e., 

max{Ey-~}~ s << i (5) 

I n t e g r a t i o n  o f  t h e  E q u a t i o n  o f  M o t i o n  

I f  D > 0 d u r i n g  t h e  w h o l e  t i m e  o f  t h e  m o t i o n ,  t h e n ,  m a k i n g  t h e  s u b s t i t u t i o n  ~ = Z ( y ) ,  
we reduce Eq. (4) to the form 

dZ E 
9 Z=-~ ,  F=lnD (6) 

dy y (ya + 2E) 

Assuming that the functions E and F do not depend on y explicitly, we can formally 
integrate Eq. (6) as a linear equation with respect to Z(y): 

whence, determining C I from the initial conditions, we obtain to order ~ an equation for 
finding # : 

Z(y)=~)=Oo i4 : +F0y0 I-1.5 - 3 - -  - P y  _t-4.5 ~E (7) 
YO 3 7 UO 3 y3 \ y3 

Equation (7) can be formally integrated over T and written in the integral form 

y=Wy, Wy=yo + ~ ~ d'~ (8) 
ig 
0 

where ~ i s  d e t e r m i n e d  by t he  r i g h t - h a n d  s i d e  o f  (7 ) .  

We shall solve the integral equation (8) iteratively, setting y(O)=yor y('):Wy(n-i); 
n~i, 2,... 

Then the first approximation can be written in the form 

Y(I)=WY~~ G(T)=(z)o+yoFo)'~-yo(F-Fo) g(x)= t.5[ [2~0(Eo-E)- Foyo(Eo+2E)+ 3y,uFE]dT 
o 

To terms of order ~, the second approximation has the form 

Eo E FE 

o Y~ o (Y~ 3 o (Y~ 

As will be seen from what follows, the second approximation is already equal to the 

asymptotic behavior of the exact solution of Eq. (4) for nonpulsating spheres, so that in 

the case of small pulsations of the spheres we can restrict ourselves to the second 
approximation. 
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Motion of Nonpulsating Spheres 

In this case D, E - const, and Eq. (4) can be exactly solved in quadratures: 

y 
+ 2E i.5 + 2E ~ ,.5 r 

where  t h e  i n t e g r a l  on t h e  l e f t - h a n d  s i d e  c a n n o t  be  e x p r e s s e d  i n  t e r m s  o f  e l e m e n t a r y  
f u n c t i o n s ;  h o w e v e r ,  m a k i n g  c a l c u l a t i o n s  t o  o r d e r  E, we c a n  o b t a i n  t h e  a p p r o x i m a t e  s o l u -  
t i o n  

y= yo+ Oo ( l + ~oZ ) .~ + i.5E ( ty~ yo2.11 

w h i c h  c o r r e s p o n d s  t o  t h e  e x p r e s s i o n  (9)  i f  i n  i t  we s e t  E,  F = c o n s t .  

The e x p r e s s i o n  (10)  d e t e r m i n e s  t h e  s o l u t i o n  i f  t h r e e  c o n s t a n t s  a r e  known:  YO, Y0, 
E. The n u m b e r  o f  d e t e r m i n i n g  c o n s t a n t s  c a n  be  r e d u c e d  t o  two i f  we i n t r o d u c e  t h e  new 
v a r i a b l e  Y = Y/Y0 and  by  q(Y) d e n o t e  t h e  c o m b i n a t i o n  1 . 5 E / ( y 3 y ~ ) ,  s e t t i n g  Y0 = y ( 0 ) /  
Y0 = 1, Y0 = Y0/Y0, qo = q(Yo )" Then  t h e  e x p r e s s i o n  ( 1 0 ) ,  w h i c h  d e t e r m i n e s  t h e  m o t i o n  
o f  n o n p u l s a t i n g  s p h e r e s ,  c a n  be  w r i t t e n  t o  o r d e r  E i n  t h e  s i m p l e r  fo rm 

Y(t-q+qo) =l+l~0(t+3q0) T 

(10 )  

Motion of Pulsatin~ Spheres 

Suppose the spheres execute small pulsations, so that their dimensionless volumes 
V k vary periodically about certain mean values (Vk). We set 

~=(Vh)(i+vD, (vk>= O, 8 = max{ l~ ) [}<  i 
(k.,) 

Then f r o m  ( 2 ) ,  ( 4 ) ,  (6)  we o b t a i n  t o  o r d e r  5 

E=(E)(I+e), F=(F)+]; (e), (/)=0; le[, [ / l ~ 8 < i ,  e=~v,+~2v2, I=a,v~+o~v2 

(Vi) (VI)(A2) 

'It = i (At)+(Aa)-' ot"~ (A,)((A,)+(A,)) 

Here, Y2 and g2 are obtained by interchanging the indices. 

Substituting the expressions found for E and F in the right-hand side of (9), we 

obtain to order 

[ ( Yoa ]J (E}\x( ~ ) [ i+eo ' 1 y(~)=g+y0(t0-I)+ ~o+y0/0 1-4,5--=|1 r / -  ldr § - - ( 2 ~ , - y 0 / 0 ) r - - - + - - +  
o [ yQ3 yo 2 gZ 

2(~~ ~ dr + d g 1 ~Yo ~ d r  g(~)=Y0+(~0+y0/0)r 
g~ ) g 1 +  

I f  t h e  s p h e r e s  do n o t  p u l s a t e ,  t h e n  e ,  f ~ 0 ,  a nd  (11)  t a k e s  a fo rm c o r r e s p o n d i n g  
t o  t h a t  f o u n d  e a r l i e r  f o r  t h e  c a s e  o f  t h e  s o l u t i o n  ( 1 0 ) .  

I f  a t  t h e  i n i t i a l  t i m e  t h e  s p h e r e s  a r e  a t  r e s t  %Yo = 0 ) ,  t h e n ,  r e t a i n i n g  i n  (11)  
o n l y  t h e  m o s t  i m p o r t a n t  t e r m s ,  we h a v e  y ( 2 )  = y o (  1 + f0T)  ' f rom w h i c h  we s e e  t h a t  when 
f0  > 0 t h e  p u l s a t i n g  s p h e r e s  b e g i n  t o  move away f rom e a c h  o t h e r ,  w h i l e  f o r  f0  < 0 t h e y  
a p p r o a c h  e a c h  o t h e r .  

(11 )  
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DESTABILIZATION OF FLowS WITH FREE SURFACE BY HIGH-FREQUENCY WAVES 

A. B. Ezerskii UDC 5 3 2 . 5 9 . 0 1 3 . 4  

When wave packets of small but finite amplitude propagate in liquids and 

gases average fields (average flows, average displacements of the inter- 

faces between different liquids, etc.) arise because of the nonlinearity 

of the media [I, 2], their amplitude being proportional to the square of 

the wave amplitude. The present paper is an investigation of such fields 

that arise when a packet of surface waves propagates on a horizontally 

inhomogeneous flow. It is shown that the average flows induced by the 

waves can strongly destabilize or stabilize the main flow. 

We investigate the following mechanism by which the packet of surface waves in- 

fluences the main flow. Suppose a slowly varying flow arises as a result of flow of 

the considered fluid past an obstacle (see Fig. I). The nature of the flow depends on 

the Froude number Fr = U/g/~, where U is the flow velocity, H is the depth of the flow, 

and g is the acceleration due to gravity (it is assumed that if there is only a hori- 

zontal component it is uniform over the depth). If Fr < i, the flow is suberitical, 

a quiescent flow; if Fr > i, then it is supercritical [3]. If a wave packet propagates 

in a horizontally nonuniform flow, and the maximal Froude number Fr is near I, then the 

average quantities due to the wave (the corrections to H and U) can change Fr and, 

therefore, stabilize or destabilize the flow. 

We calculate the mean values Nc and u c due to propagation of a steady packet of 

surface waves n =a(x) ei(et-kx). We shall assume that the surface waves are irrotational: 

u = ~/Sx, v = 3~/3y (~ is the potential, and x and y are the horizontal and vertical 

components of the velocity), u c does not depend on the vertical coordinate y, and U = 

U 0 + ~y, where ~ is the vorticity of the main flow. From the Euler equations averaged 

with respect to the phase 0 = wt -- kx, we obtain 

ORo a (U(HI) ~ )  a (aoH) 
�9 + 

at Ox Ox 

Here, < ) denotes averaging over 9, H 1 = H + h. Note that the value of the right- 

hand side of (I) does not depend on y: 

=(o--kU(H,)) ]a]2 

If ~ = 0, then (i) can be obtained by averaging the Bernoulli equation. From the 

kinematic condition averaged with respect to 8 on the surface of the fluid n we have 

+ + -- (HU~)= - Q~z+~ l 
Ot ax ax 

Equation (2) is the law of conservation of mass during the propagation of the sur- 

face wave. 

In the stationary approximation, 3/3t = 0, Eqs. (1)-(2) can be integrated: 

i 

(1) 

(2)  

( 3 )  
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