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We have found a static electrically charged solution to the Einstein-Maxwell 
equations in a (2 + 1)-dimensional space-time. Studies of general relativity in 
lower dimensional space-times provide many new insights and a simplified 
arena for doing quantum mechanics. In (2+l)-dimensional space-time, 
solutions to the vacuum field equations are locally flat (point masses are conical 
sigularities), but when electromagnetic fields are present Tabr and the 
solutions are curved. For a static charge Q we find E = Q P / r  and 
ds 2 = _(xQ2/2~  ) ln(rc/r) dt 2 + (2rc/~cQ2)[ln(r,/r) ] - 1 dr 2 + r 2 d~2 where r c is a 
constant. There is a horizon at r=r~  like the inner horizon of the 
Reisner-Nordstr6m solution. We have produced a Kruskal extension of this 
metric which shows two static regions (I and III) with r < rc and two dynamical 
regions (lI and IV) with r > re. A spacelike slice across regions I and III shows a 
football-shaped universe with charge Q at one end and - Q  at the other. Slices 
in the dynamical regions (II and IV) show a cylindrical universe that is 
expanding in region II and contracting in region IV, Electromagnetic solutions 
to the Einstein-Maxwell field equations in lower dimensional space-times can be 
used to provide new insights into Kaluza-Klein theories. In terms of the 
Kaluza-Klein theory, for example, electromagnetic radiation in a (2 + 1)-dimen- 
sional space-time is really gravitational radiation in the associated (3 + 1)- 
dimensional Kaluza-Klein space-time. According to Kaluza Klein theory the 
absence of gravitational radiation in (2 + 1)-dimensional space-time implies 
(correctly) the absence of electromagnetic radiation in (1 + 1)-dimensional 
space-time. 

1. I N T R O D U C T I O N  

I n  t he  f i rs t  p a p e r  in  th i s  series,  G o t t  a n d  A l p e r t  ]-1] e x a m i n e d  g e n e r a l  

r e l a t i v i t y  in  a ( 2 +  1 ) - d i m e n s i o n a l  s p a c e - t i m e  a n d  e x p l o r e d  p o i n t  m a s s  
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solutions and simple cosmological solutions. In the present paper, we will 
present an exact electrically charged solution to the combined 
Einstein-MaxweU equations. Studies of general relativity in a (2+ 1)- 
dimensional space-time carried out by a number of authors [1-5]  have 
proven instructive in a number of ways. They provide examples of quasi- 
regular singularities [1 ], serve as an arena in which simplified quantum 
mechanical calculations can be carried out [2-5]  and illustrate some of the 
subtle ways in which the dimensionality of space-time affects physics. One 
interesting application was that the exact solutions for point masses in 
(2 + 1)-dimensional space-time [1, 2, 3] led directly to exact solutions for 
strings in (3+l)-dimensional space-time Gott [6]. The first look at 
(2 + 1)-dimensional space-time was Abbott's [7] charming little book in 
1884 called Flatland which described a whole universe with only two- 
spatial dimensions. Recently Dewdney [8] explored how many aspects of 
everyday physics would behave in such a world. In what follows Latin 
indices (a, b, m, n) run from 0 to 2, the signature of the metric is ( - ,  +, + ). 

On the surface, general relativity retains many of its familiar features 
in a (2 + 1)-dimensional space-time. The metric g,,n, connection coefficients 
Fmab, and the Reimann curvature tensor Rabcd a r e  defined in the usual way. 
Einstein's equation still holds [1, 2, 3]: G,~n--(R,,,-�89 R)= KTm,. In 
(3 + 1) dimensions, the constant ~c is determined by the neccessity that 
Einstein's equations reduce to Newton's equations in the nonrelativistic 
limit, which forces ~:=8z~G (G is Newton's gravitational constant). In 
(2 + 1) dimensions, as we shall see, there is no Newtonian limit, and so 
remains an arbitrary constant. We note that in geometrized units, where x 
is dimensionless (and c = 1), that Gu~ has units of curvature or (length) -2, 
and Tu~ has units of mass density or (mass) (length) -2, which makes mass 
dimensionless as well. The metric tensor gmn has six independent com- 
ponents, as does Rmn and Rabcd ( c f .  Weinberg [9]). Since Rmn and Rabcd 
have the same number of independent components, Rabca can be given from 
Rm,, alone 

Rabcd = gacRbd- gadRbc- gbc Rad + gbdRac- �89 gbd-- gad gbc) gmnRmn (1) 

This becomes especially important in the absence of mass, where Tmn = O. 
From Einstein's equation Rmn = 0 also, and therefore R~bcd = 0 as well. This 
precludes any curvature at all in the vacuum, whether in the form of 
gravitational waves or attraction at a distance. (This is obviously different 
from the (3 + 1)-dimensional case, where R ~ a  has 20 independent com- 
ponents while R,~ has only 10, and the Sehwarzschild solution generates 
curvature outside the radius of a massive body.) The required flatness of 
space-time in the vacuum would seem to make the physics of gravity in 
(2 + 1) dimensions almost trivial. 
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It has been shown, however, by Gott and Alpert [1] and indepen- 
dently by Deser, Jackiw, and t 'Hooft [2] and Giddings, Abbot and 
Kuchar [3] that, although the presence of mass cannot induce curvature 
per se at a distance, it does affect the space around the mass point. The 
space is locally flat, but conical in form. The metric around a point mass is 
[1 ,2 ,3 ]  

27z ~2 r 2 
d s 2  = -dt2 + ~ -  KMJ dF2 + dq~2 (2) 

This metric is analogous to the Schwarzschild metric around a point mass 
in (3 + 1) dimensions. This metric, however, does not lead to a black hole, 
and it can easily be seen that this metric corresponds to flat space-time by 
the simple transformations 

27~ 

~b' = (2~ ~ M )  
2~z J g/ (4) 

This gives the obviously flat metric 

ds 2 = _dr2 + dr,2 + / 2  d~,2 (5) 

We must be careful to notice that the limits of q~' are now different from the 
limits of ~b: 0 ~< ~b ~ 2~z, and 0 ~ ~b' ~< 2~ - ~cM. The cone has an angle deficit 
of KM induced by the presence of mass. This has the effect of causing 
initially parallel light rays to converge as they pass on different sides of the 
particle, even though there is no curvature or Newtonian attraction. This 
type of singularity is called quasi-regular, having the property that as r --* 0, 
the Riemann curvature is bounded but the circumference is not equal to 
27~r. 

Another solution of the Einstein's equation in three dimensions is a 
static, dust-filled universe of radius ro [1, 2]. The metric is 

d s  2 = - - d r  2 q- ro2(dO 2 + sin 2 0 d~b 2) (6) 

This is a universe with energy density 1/Kro 2 but zero pressure (there is no 
attraction between the particles). The total area of the universe is 47fro 2, 
giving total mass 4~/~c, independent of the size of the universe (recall that 
mass is dimensionless). 
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Electromagnetism also becomes simplified in (2 + 1) dimensions. 

0 E 1 E 2 

F""  = - E  1 0 B (7) 

- E 2  - B  0 

Now the electric f ield/~= (El, E2) is still a vector, but the magnetic field B 
is a scalar. It is easily seen that by extrapolating the metric into (4 + 1) 
dimensions, the magnetic field would become a tensor with six independent 
components. We see that although the electric field E can always be viewed 
as a vector, it is only in (3 + 1) dimensions that the magnetic field happens 
to be a vector as well. 

The equation of motion for a test charge of mass m and charge e is 

e d x  a d2x  " d x  a d x  b 
- - F %  = + (8) m dz d'v 2 ]~nab"'~ 

In (3 + 1) dimensions Maxwell's equations are 

F,,~;~ + F~a;~ + f ~,;a = 0 (9) 

F ~ ; ~  = k J  ~ where k = 4rt (10) 

The analogue of (9) in (2 + 1) dimensions would naturally be 

Fab;c + Fca:b + Fbc;a :=- O (11) 

For flat space-time the only nontrivial solution to this equation arises from 
the case that all indices are different, which gives 

- 0 E ~ + 0 E 2  OB OB 
0 -- 0----f-- 0x + -~- = curl (/~) + 0---}- (12) 

which is obviously analagous to the (3 + 1)-dimensional vector equation 

0 = V x s  O/~ 0t (13) 

except that with only two spatial dimensions the curl of a vector is a scalar, 
which gives only one equation, as opposed to the three equations implied 
by the vector equation (13). It should also be noted that V ' / ~ = 0 ,  which is 
the other equation that arises from (9) in four dimensions, has no analogy 
in Flatland where B is a scalar. From (10) we expect the analogous 
equation to be 

Fab;b = k J  ~ (14) 
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with the constant k to be determined. For a = 0, this reduces to Gauss' Law 
(again using Cartesian coordinates for flat space-time) 

0El + e~;2 = V" ~ =  kp 
~x ~y 

(15) 

where p is (surface) charge density. Just as Gauss' Law gives us an r 2 
dependency for the electric field of a stationary point charge in three spatial 
dimensions, it gives an r -1 dependency in two spatial dimensions. 
Rewriting Gauss' Law in integral form 

f E.~dl=kQ (16) 

and inserting E = Q?/r 

kQ=f E.tidl=f]'QrdO=2~Q giving k = 2~c ( 17 ) 

Thus we can rewrite the (2 + 1)-dimensional counterpart  of (12) as 

ab F ;b=27~J a (18) 

Actually, the choice 2~ arises only from our decision to use Gaussian units. 
The factor of k could always have been absorbed into the definition of the 
unit of charge, as is the case with inks units. It is also a common conven- 
tion to set k = 1, absorbing dimensional factors into the charge, but we will 
continue to use Gaussian units. 

Setting a = 1, 2 in (18) we get (again with Cartesian coordinates) 

~B ~?E1 
@ at 2~J1 (19) 

0B 0E2 
c~x c~t - 2~J= (20) 

Which are analogous to Maxwell's equation in four dimensions 

Vx/~- - f f t -  = 2~a v (21) 

Apparently there is some sort of analogy to the curl of B, even when B is a 
scalar. Equations 19 and 20 can even be expressed in a more compact 
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equation if we introduce a new operator R, which acts on a vector by 
rotating it 90 ~ in the clockwise direction 

RF= R(FI~ + F2)3 ) -= F2~ - F 1 )3 (22) 

RV = R -~x SC Oy y = -~y Yc - -~x y" (23) 

( t + O__ ) OF2 OF,=curl (P) (24) V . (R f f )=  ~xS: Oyp "(F 25c-F lp)= Ox By 

RRff= RZF= - F  (25) 

(RV) A = R(VA) (26) 

This notation lets us express Maxwell's equations in Flatland as 

V' /~  = 2rtp (27) 

RVB - -~- = 2 r J  (28) 

curl (/~) + ~ B = 0  (29) 
~3t 

One other important set of equations involving the electromagnetic 
tensor is its relation to the stress-energy tensor. In four dimensions 

1 
T ~'v = ~ (g~t~F~F ~t~ - �88 ~ )  (30) 

In three dimensions this becomes 

1 
z m n  a b 1 m n  ab  = ~ - ~ ( g a ~ F ~ P - z g  FabF ) (31) 

where again the change from 4n to 2~ comes from the use of Gaussian 
units. That the factor of �88 remains the same, regardless of the number of 
dimensions, is very important. For a proof of (31) see Alpert [10], or just 
follow a derivation of (30) using the least-action principle from any 
textbook, but integrate over dx 2 dt instead of dx 3 dt. 

It is by these equations that all gravitational and electromagnetic 
interactions will be governed in (2 + 1)-dimensional space-time. 

2. AN EXACT STATIONARY CHARGED SOLUTION 

We now investigate the curvature induced in the space exterior to a 
static charge Q. When electromagnetic fields are present, space is no longer 
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a vacuum-- tha t  is, Tab# O, SO the space-time is curved. We consider the 
effects of a stationary, radial, electric field, E r = E(r), B = 0, Eo = 0, which is 
static and axially symmetric (we use polar coordinates where the charge is 
centered at r =0) .  The only nonzero components  of the electromagnetic 
field tensor are therefore/7o1= E(r), F l ~  -E(r) .  

Maxwell's first equation for curved space-time 

Fab;c + Fca;b + Fbc;. = 0 (32) 

is satisfied trivially. Since we are considering the space outside a body of 
charge Q we must find an expression for E(r) that satisfies the source-free 
Maxwell equation 

Fab;b = 0 (33) 

When a = 0, we obtain 

0 -~" F~  ~- F~176 "~ f'111 +/212 ) (34) 

When a = 1, we note that Fl~ = 0 (the solution is static) and obtain 

0 = Fl~ + 170oo + F:o2 ) (35) 

The a = 2 equation is trivially satisfied. 
Since we have limited ourselves to an axially symmetric, static electric 

field, the metric is time-independent and axially symmetric as well. 
Therefore we can adopt  the Schwarzschild form 

ds 2 = - A ( r )  dt 2 + B(r) dr 2 + r 2 dO 2 (36) 

where A and B are functions of r only. Since 

(Fllo + 1-~ + F2o2) = 0 (37) 

the a = 1 Maxwell equation is trivially satisfied. Substituting E(r) for F ~ in 
the Maxwell a = 0 equation yields 

dE(r) 
dr j- E(r)(A'/2A + B'/2B + 1/r) = 0 (38) 

where ' indicates a derivative with respect to r. Dividing by E(r) and 
integrating gives 

In E(r)= --In r - -  (�89 A -- (�89 B +  C' (39) 
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(where C' is constant). Thus 

C 
E(r)  

rA + 1/2(r) B + 1/2(r) (40) 

where C is another constant. Substituting this result into (31) we find the 
only nonzero components of Thm are 

C 2 
/~o=TI=-T222= 4rcr 2 (41) 

Substituting these into Einstein's field equations yields 
A(r )=- (~ :Q2/27t ) ln( r / rc )=  l /B(r) ,  and E r =  Q/r where r c is a constant. 
The metric is thus 

ds 2 = ~ m dt 2 + - ~  In dr 2 + r 2 dO (42) 

The parameter r c determines the scale of the system analogous to R = 2 G M  
in the Schwarzschild metric. It is interesting to note, however, that rc is 
independent of Q, a dimensionless quantity. It is easily checked that t is 
timelike and r is spacelike only for r < re, but discussion of this is delayed 
until Section 3. 

The only nonzero connection coefficients are 

/~01 ~ 1 [ln (~c)l 1 ~---~ /~010 (43) 

oo= j Yr ln__7  (44) 

Fi l l  = ~lrl I ln ( ~ ) 1 - 1  (45) 

F122 tcQ2=-~-~- r In (r)~ (46) 

F212 = 1/r = F221 (47) 

The only nonzero component of Rab is 

1 xQ2 
R22 - r 2 2re (48) 
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and the Ricci scalar is 

R = R ~  = R 2 2  = tcQ2 1 
2~r r 2 (49) 

This result might seem curious at first because R, the Ricci curvature 
scalar, is always identically zero in four dimensions for electromagnetic 
fields. The vanishing of R is not a general result, however, and in fact only 
occurs in four dimensions, as can be demonstrated 

1 
T =  T ~  = ~ ( g~Yg~uF~U '~ - �88 6~F~aF ~) (50) 

1 
= 4---~ (F~ FY~ - �88 4 F ~ F ~ )  = 0 (51) 

since 
~cT~ = R ~ -  ~6 ~R (52) 

x T =  - R  (53) 

R = - x T =  0 (54) 

In three dimensions, however, the trace of the Kronecker  delta is not 4, but 
3 ,  and 

since 

cd  1 a c d  T~, = (FcdF - ~ 6  ~FcaF ) (55) 

1 
T =  ~-~ (FcaU d -  �88 3FcaU a) (56) 

1 
T = ~ FcaU a (57) 

a 1 a tcT~o= R a-~(~ j R  (58) 

x T =  - 1 R  (59) 

1 
R = - -2KT= --to 4--'~ FcaUa (60) 

It is very important  that the factor of �88 in the equation for T~b be indepen- 
dent of the number  of dimensions, as derived from the action principle. 

For r c > r > r m  we can construct an embedding diagram for the 
solution at t = 0 in a euclidean space with ds2= dx2+ @2+ dw 2 and where 
r2=  x 2 +  y2 (see Fig. 1). The constant r m is given by 

r m = r c e x p ( -  27r/tcQ 2) (61) 

at r = rm, gll  = 1. For  0 < r < r m the solution at t = 0 can be shown in an 
embedding diagram in a Minkowski space with d s 2 = - d w 2 + d x 2 + @ 2  

842/18/10-3  
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K 
I" 

Fig. 1. Embedding diagram for the static solution (regions I, III). For r > r,~ the embedding 
space is euclidian ds2= dxa+ @2+ dw 2. For r < rm the embedding space is Minkowskian, 
dsZ= dx a + @ 2  dw 2. We have put these pieces together to form a single diagram. The 
maximum radius is r = rc. 

where r 2 = x 2 + y2; see Fig. 1. We may combine the two diagrams as shown 
in Fig. 1. 

As will be shown in Section 3, this picture is incomplete. 

3. KRUSKAL EXTENSION 

Let us examine the behavior of the electrostatic metric in more detail. 
The metric is 

~cQ2"~ ( ~ )  ~:~d- L 2 r t  [-1 ( ~ ) ] - a  r 2 ds2= m dt2 +----A-v / n d r 2 +  d(~ (62) 

as r ~ O gtt ~ - o o  grr -'* O + 

as r ~ re--  gt t  "* O- -  grr "* O() 

as r ~ rc+  g .  ~ O +  grr"'~ --r 

as r ~ 0() g t t  "-~ O0 grr ~ 0 -  

The behavior of the metric near r = re, go0 -~ 0, and gH ~ oo is very 
similar to the behavior at the Schwarzschild radius of a black hole. 

As r becomes greater than re, t changes from timelike to spacelike, and 
r changes from spacelike to timelike. Qualitatively, it is the same as what 
happens at r = 2 G M  in the Schwarzschild metric, except the change occurs 
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going from small r to large r instead of the other way around. In fact, it is 
even more similar to the case of the Reisner Nords t r6m black hole with 
charge IQ[ < M, where there are an inner and outer horizon at r and r+.  
If we could somehow force r+ ~ 0% then r c would be very much like r . 

To be certain the black hole analogy holds we must be sure that the 
apparent  singularity associated with the metric at r = rc arises purely from 
the coordinate system. First we check that the proper distance from r = 0 to 
r = ro is finite. If this distance is infinite, it hardly matters what happens at 
rc since no observer' could arrive there in a finite time. To determine the 
proper distance, let us choose a radial curve from 0 to r~ for which time is 
constant ( dt = dq} = 0). 

. . . .  ( 27.~ ~1/2 (r. ~]--1/2 TC1, c 1/2 
s(O, r c , : f o  d s - f l  \tcQ2/I I - l n \ ~ / A  a r = - - 0 - ( 2  ) (63) 

which is finite. 
Second, we must be sure that the invariant curvature scalars of the 

metric are nonsingular at rc. F rom Weinberg [9]  we find that there are 
only three invariant curva ture  scalars associated with the metric in three 
dimensions 

det R 
R, Rm.R  m~ and (64) 

det g 

Recalling that all Rmn 
vature scalars are 

R = R22 = ~cQZ/(2gr ~) 

R m n R  mn = R22 R22 = ~ - -~  j ~-4 

= 0  except R22 = ~cQ2/2~r, the three invariant cur- 

(65) 

(66) 

det R 0 
det g = ----7 = 0 (67) 

none of which shows any singularities at rc, although there is a true 
singularity in the curvature at r = 0. 

Having now shown that the apparent  singularity at rc is purely an 
artifact of the coordinate system (t, r, ~b), we now find a new coordinate 
system, analogous to the Kruskal  coordinates of a black hole, in which the 
apparent singularity does not appear  (cf. Misner, Thorne, Wheeler [11]).  
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F o r  r < rc we can define Kruska l  coordinates  

u =  - l n  F ~ ) ]  cosh \4z~rc j (68) 

[ - l n ( ~ )  /r\71/2[ 1 [  ( t~cQ2"] v= r F \ ~ / A  s i n h \ 4 - ~ G /  (69) 

such that  the metr ic  becomes  

8~Zr c 2 
ds 2 = xQ2F(r/G ) ( - d v  2 + du 2) "~ r2 dO 2 (70) 

Where  r is now a function of u and v, defined implicitly by the equa t ion  

u 2 - v 2 = -F(r/rc) ln(r/rc) (71) 

and F is the solut ion of the integral  equa t ion  

~o pdX 1--ff-~x -- In Iln(p) F(p)l  (72) 

The funct ion F(p) is defined 

/ l n p  ( lnp)2  ( lnp)3  
F(p) = e x p  ~l--~lV. + 2--~2.~ + ~ 7 ~ .  + ' '  ") (73) 

thus 
p - 1  

F'(p)= F(p) Ip-~n p] (74) 

It  is easily seen that  any interesting behav io r  in F(p) or F'(p) will be at 
p = 1 or  p = 0. One  can show that,  in the limits as p ~ 1 or  p ~ 0, F(1)  = 1, 
F ' ( 1 ) =  1, F ( 0 ) = 0 ,  and F ' ( 0 )  = 0 .  

No te  that  F(r/G) is perfectly well-behaved at  r = r~ so that  the metr ic  
is nons ingular  as desired. The  metr ic  does become singular at  u 2 -  v 2 =  1 
(r = 0) where there is a real curvature  singularity. Thus  the metr ic  is valid 
for all values of (u, v) such that  u 2 - v 2 < 1. This region can be divided into 
quadrants :  

(1) U2-- U2:>0 /-/>0 ( r < G )  

( I I )  /d 2 - -  V 2 < 0 V > 0 (r > rc) 
(75) 

( I I I )  u 2 - v 2 > 0 u < 0 (r < re) 

(IV) u 2 - v 2 < 0, v < 0 (r > rc) 
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~ .  T r = ~  #~=c c 

2rc  ., 

II 

f 
~ j  t=rc 

II ~ t = r  c I 

- :////" '~,, '~'\, t =0 

./ ".,,. t=-r c 
/,/ h 

,/ \ 
/" \.. r=O 

Fig. 2. Kruskat diagram of the electrically charged (2 + 1 )-dimensional space-time. The 
singularities at r = 0 containing the charges + Q and -Q are shown as saw-toothed curves, 
The embedding diagram of Fig. 1 is relevant for any t = constant slice through regions I and 
III. The embedding diagram of Fig, 3 is relevant for any r = constant slice in region II or IV, 

as shown in Fig. 2. The original (r, t) coordinates for r < r c cover only 
quadrant I. We can define (r, t) coordinates in each quadrant with r always 
given by (71) and 

t -= 7-07Q2 tanh -~ (I, III) (76) 

4.r. 
t =  ~cQ2 tanh -~ (II, IV) (77) 

Where in each quadrant with these (r, t) coordinates the metric is given by 
(62). Note that in (I, III), where r < re, r is spacelike and t is timelike, while 
in (II, IV), where r > re, r is timelike and t is spacelike. 

One would like to show that the metric in terms of u and v is 
geodesically complete for timelike and null geodesics. While this will not be 
attempted here we can show that the metric is complete for a large family 
of timelike geodesics, namely ones for which t =cons t  and ~b =cons t  in 
quadrant II. We do this by showing that the total proper time between 
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v = O  and v =  oe for u = O  (which is the same as the total proper time 
between r = rc and r = oc for t = O) is infinite. 

fr ~176 f ~ / 2~ x~l/2 1- (~c)l  1/2 
c rc  

There are obvious similarities to the Schwarzschild case with the u -  v 
plane turned on its side. From this diagram we can see that the horizon at 
r = rc is not an event horizon but is qualitatively very similar to the inner 
horizon r_ of a charged black hole in four dimensions. 

We can construct embedding diagrams of this space-time as follows. 
The first slice is along the hypersurface t = 0 from one r = 0 to r = rc and 
back to the other r = 0  (i.e., from u =  - 1  to u =  +1 along the line v = 0 ) .  
As the reader can see, this is just the same embedding diagram as in Fig. 1. 
Figure 3 is an embedding diagram for a spacelike slice in region II  or IV. 
This is along one of the cylindrical hypersurfaces r = const > rc which are 
shown as hyperbolas in Fig. 2. Along this hypersurface, the electric field 
lines are constant (E = Q/r) and the field lines arise from charges that are 
infinitely far away (Gauss's law is still satisfied). Remember,  however, that 
in this section of the universe r is timelike; it is t that is spacelike. As time 
progresses r increases and the cylinder expands. Thus we can see that 
Fig. 3 quadrant  II  represents an evolving cosmology. This universe does 
not expand isotropically, since the Hubble constant is dependent on direc- 
tion. 

While this space-time is a solution of the classical Einstein-Maxwell 
equations, new problems will be brought  in when quantum mechanical 
effects are added. One important  effect would be particle-pair creation in 
the high electric fields encountered as r ~ 0. If the solution is unstable then 
we could have a situation where only region IV forms similar to what hap- 
pens in the Reisner Nords t r6m solution in (3 + 1)-dimensional space-time. 

s 

Fig. 3. The embedding diagram for an r = constant  slice in region II or IV is a cylinder. The 
embedding space is euclidean ds 2 = d x  2 + d y  2 + d w  2. 
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4. APPLICATIONS TO KALUZA-KLEIN THEORIES 

One interesting application of such solutions to the Einstein-Maxwell 
equations in a (2+  1)-dimensional space-time is in investigations of 
Kaluza-Klein theories. In its original version the Kaluza-Klein theory 
[12, 13] added one extra compact spacelike dimension to our (3+  1)- 
dimensional space-time. The Einstein-Maxwell equations in (3 + 1)-dimen- 
sional space-time were then equivalent to just the Einstein equations in the 
(4 + 1)-dimensional Kaluza-Klein space-time. Thus the Einstein-Maxwell 
equations in a (2 + l)-dimensional space-time (x, y, t) must be equivalent 
to just the Einstein equations in the Kaluza-Klein (3 + 1)-dimensional 
space-time (x, y, z, t). This is just the ordinary space-time of general 
relativity except that the z dimension is compact and gzz = 1. It is easy to 
show that Maxwell's equations (11, 18) in a (2 + 1 )-dimensional space-time 
admit solutions that are transverse electromagnetic waves with E perpen- 
dicular to the direction of motion and in phase with the scalar B field. For 
example 

Ex = - E o  cos[og(t - y)]  (79) 

Ey=o (80) 

B=Eo cos [~o(t- y)] (81) 

is a solution representing an electromagnetic wave propagating in the y 
direction at speed c. In the Kaluza-Klein (3 + 1)-dimensional formulation 
of this [14] we see that this solution is (in the limit of small Eo [i.e., to 
first-order terms in E0]) produced by a gravity wave with g,v = t/,~ +h,~ 
where h,v = 0 except for 

hxz = hz~, = (~c/~) 1/2 Eoo) -1 sin[co(t - y)]  (82) 

This is a gravity wave propogating in the y direction at speed c with 
an "x" polarization. The " + "  polarization is not allowed due to the 
Kaluza-Klein constraint gzz = 1. Thus with the Kaluza-Klein unification of 
gravity and electromagnetism we see that the photons we see in a (2 + 1)- 
dimensional space-time are really just ordinary gravitons. Gravity waves in 
the Kaluza-Ktein space-time propagating in the x or y directions look like 
electromagnetic waves and Kaluza's constraint that the metric coefficients 
be independent of z means that any propogation must be perpendicular to 
the z direction. Thus it is not surprising that we do not see any gravity 
waves or gravitons in the (2+ 1)-dimensional formulation of general 
relativity. The Kaluza-Klein gravitons are used to make photons and there 
are not any left to play the role of gravitons. This formulation can be 
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extended to still lower dimensional space-times. The Einstein-Maxwell 
equations in a (1 + 1)-dimensional space-time are equivalent to just the 
Einstein equations in a (2 + 1)-dimensional space-time. Now we know that 
there are no gravitational waves and no gravitons in a (2 + 1)-dimensional 
space-time (the only solution of the vacuum field equations must be locally 
Minkowski space). Thus using the Kaluza-Klein formalism we expect this 
to imply that there are no electromagnetic waves and no photons in a 
(1 + 1)-dimensional space-time. Indeed this turns out to be the case. When 
we formulate Maxwell's equations in a (1 + 1)-dimensional space-time we 
find that the only nonzero components of the electromagnetic field tensor 
are F ~  - F I ~  El.  There is no B field and no electromagnetic radiation. 
The E field at a given location simply measures the number of charges to 
the left of you on the line minus the number of charges to the right of you. 
Shake a charge at a distance and it produces no change in the E field at 
your location, unless and until the charge actually crosses your position. 
There is no action at a distance, no electromagnetic radiation, and no 
photons, just as the Kaluza-Klein theory would have predicted. More 
details of this have been presented in [14] and will be treated in an up- 
coming paper [ 15 ]. 

Given that we have obtained a solution to the Einstein-Maxwell 
equations in a (2 + 1)-dimensional space-time it would be interesting to 
look at the associated (3 + 1)-dimensional Kaluza-Klein solution. A study 
of geodesics in such a model representing charged and uncharged particles 
might provide some interesting insights. 

Note. Shortly after completing work on the electrically charged 
solution we found that Deser and Mazur [16] had also obtained a 
solution. Their metric is static, is expressed in isotropic coordinates, and 
only applies in regions I and III. They did not find the Kruskal extension. 
They noted in passing that M. Melvin (private communication) had also 
obtained a solution in Schwarzschild coordinates, but gave no further 
details. Our static metric (eq. 42) which covers regions I and III is in 
Schwarzschild coordinates and was discovered by one of us (M. A.) in 1982 
[10]. Our Kruskal metric (eq. 70) covers regions I, II, III, IV. 

NOTE ADDED IN PROOF 

Melvin's paper has now appeared in print [17]. We would also like to 
mention early work on point mass solutions by Staruszkiewicz [18]. His 
paper correctly noted that the point mass solution is conical, but not that 
the angle deficit is proportional to the mass. 
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