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ABSTRACT. This paper addresses a relatively common "scientific" (as opposed to philo- 
sophical) conception of intertheoretic reduction between physical theories. This is the sense 
of reduction in which one (typically newer and more refined) theory is said to reduce to 
another (typically older and "coarser") theory in the limit as some small parameter tends 
to zero. Three examples of such reductions are discussed: First, the reduction of Special 
Relativity (SR) to Newtonian Mechanics (NM) as ( v / c )  z ~ 0; second, the reduction of 
wave optics to geometrical optics as )~ ~ 0; and third, the reduction of Quantum Mechanics 
(QM) to Classical Mechanics (CM) as h ~ 0. I argue for the following two claims. First, 
the case of SR reducing to NM is an instance of a genuine reductive relationship while the 
latter two cases are not. The reason for this concerns the nature of the limiting relationships 
between the theory pairs. In the SR/NM case, it is possible to consider SR as a regular 
perturbation of NM; whereas in the cases of wave and geometrical optics and QM]CM, 
the perturbation problem is singular. The second claim I wish to support is that as a result 
of the singular nature of the limits between these theory pairs, it is reasonable to maintain 
that third theories exist describing the asymptotic limiting domains. In the optics case, 
such a theory has been called "catastrophe optics". In the QM/CM case, it is semiclassical 
mechanics. Aspects of both theories are discussed in some detail. 

In an important paper (Nickles 1973) on reduction in physical theories 
Thomas Nickles argues that there are two distinct concepts of reduction 
appearing in the literature. The first is the usual "philosophical" sense 
which crudely speaking, depends on the deducibility of the reduced theory 
from the more fundamental reducing theory. It is often suggested that this 
sort of reduction leads to the explanation of the reduced by the reducing 
theory. But Nickles notes a second use of"reduction" - more often found 
in the writings of physicists than philosophers. In this sense the more 
fundamental theory is said to reduce to the less fundamental (typically 
superseded) theory in a limiting domain. 

This paper is in part concerned with this second, physicists', sense of 
theory reduction; what Nickles called "reduction2". I agree that this is 
a legitimate use of the term "reduction", but I claim that its form and 
plausibility depends crucially on the nature of the relationship between 
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the two theories in the limiting domain. It has been said, for exam- 
ple, that special relativity (SR) reduces2 to Newtonian mechanics (NM) 
in the limiting domain where velocities are small compared with the 
speed of light. Similarly, it has been said that quantum mechanics (QM) 
reduces2 to classical mechanics (CM) in the limit as Planck's constant h 
(or h = h/2~r) approaches zero. A third case is the limiting relationship 
between wave optics and geometrical optics. My main motivation for 
studying intertheoretic reduction is not so much to try to make general 
claims about the nature of reduction as it is in understanding the particular 
and peculiar connections and correspondences between certain pairs of 
theories; particularly, between classical and quantum mechanics. It seems 
to me that contrary to popular belief, and in stark contrast to the case of 
SR/NM, there is a very important sense in which no reductive relationship 
obtains between members of the second two pairs of theories. The reason 
for the failure is interesting and leads to new physics and interesting phi- 
losophy which gets obscured if one accepts a claim of reduction at face 
value. 

The paper begins with a discussion of some philosophical literature 
on intertheoretic reduction. I focus particularly on a discussion by Fritz 
Rohflich concerning a form of reduction involving limiting relations be- 
tween theories. A strong case can be made for the claim that NM reduces 
to SR along the lines of Rohrlich's proposal. Following this, I consider the 
case of wave and geometrical optics and then turn to the quantum/classical 
case. The same conclusion is not forthcoming concerning these latter two 
cases. 

A paradigm case where a limiting reduction rather straightforwardly does 
obtain is that of classical Newtonian particle mechanics and the special 
theory of relativity. ~ In the limit where (v /c )  2 --+ 0 SR reduces to NM. 
(I am going to drop the subscript on "reduction" as the kind of reduction 
discussed will be evident from the context.) We will consider this case 
first. 

As Nickles says, "epitomizing [the intertheoretic reduction of SR to 
NM] is the reduction of the Einsteinian formula for momentum, 

m o  v 

p = V2 

C 2 
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(where rao is rest mass), to the classical formula p = raov, in the limit as 
v --+ 0" (Nickles 1973, p. 182). 2 There is no claim, of  course, that every 
formula of  SR will reduce in the limit (v /e )  2 ---+ 0 to a formula of  NM. For 
example, Einstein's famous equation E = me 2 cannot be so reduced since 
E = rrt0 e2 is not a formula of  NM. But this merely expresses the fact that 
SR actually goes beyond NM. 

Fritz Rohflich argues that NM "reduces" to SR (in an attenuated philoso- 
phers'  sense) 3 because the mathematical framework of SR reduces to the 
mathematical framework of NM. Thus, he in effect is claiming that one can 
demonstrate a "phi losophers '"  reduction because a "physic is t s ' "  reduc- 
tion obtains. Here the idea is that the mathematical framework of  NM is 
"rigorously derived" from that of  SR in a "derivation which involves lim- 
iting procedures" (Rohrlich (1988), p. 303). The philosophical reduction is 
attenuated in the sense that he holds that only the mathematical structures 
of  the two theories can be related by this limiting derivational procedure; 
whereas, "the interpretations and the ensuing ontologies [of the two the- 
ories] are in general not so related" (Rohflich (t988), p. 303). Roughly 
speaking, for Rohrlich a "coarser" theory is reducible to a "finer" theory in 
the philosophers'  sense of  being rigorously deduced from the latter just in 
case the mathematical framework of  the finer theory reduces in the physi- 
cists' sense to the mathematical framework of  the coarser theory. In the 
case of NM (the coarser theory) and SR (the finer theory), he expressed 
this as follows: 

(i) ( (V/C)  2 --* 0) lim M(SR) = M(NM) 

Rohrlich also speaks of"val id i ty  domains" or "validity limits". The reduc- 
tion of  NM to SR in virtue of  (i) demonstrates that NM remains valid in 
the domain in which (v /e )  2 << 1. 

The boundary of D [the validity domain of a theory] is reached when p [a characteristic 
dimensionless parameter] is no longer negfigible, It is therefore not sharp but is given as a 
known error estimate (an order of magnitude estimate): it is the error one makes by applying 
that theory (rather than the finer one). The classic example is D (Newtonian Mechanics) 
which is given by p = (v/e) z. (Rohrlich (1988), pp. 301-2) 

In an earlier article Rohrlich and Hardin (1983) speak as follows: 

[R]elativistie particle dynamics (special relativity) leads to Newtonian particle dynamics 
in the limit as terms of order (v/c) 2 and higher are dropped while terms of order v/e are 
kept. The strong inequality (v/c) 2 << 1 thus characterizes the validity limits of Newtonian 
mechanics . . . .  

A validity limit is thus equivalent to a specification of the error made by using the lower 
level [coarser] theory instead of the higher level [finer] theory. Any predictions by the 
lower level theory should be multiplied by a factor 1 + 6 where 6 is an order of magnitude 
estimate of the error made. (Rohrlich and Hardin (1983), p. 607) 
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The use of  the "<<" notation and the characterization of p = (v/c)  2 as an 
order of  magnitude estimate indicate that Rohrlich is using the language 
of  asymptotic analysis and perturbation theory. It is worthwhile to give 
precise meanings to these terms. Given two functions f ( z )  and g(x),  
f ( x )  << g(x)  as x ~ x0 means that l i m ~ x 0  f ( x ) / g ( x )  = 0. To say that 
f ( x ) is atmost  oforder  g( x ) as x --+ xo ( f ( x ) = O[g( x ) ], x ~ x0), means 
that f ( x ) / g( x ) is bounded for x near xo. In other words, l f ( z ) / g( x ) l < M 
for some constant M i fx  is sufficiently close to xo (See Bender and Orszag 
1978). 

Once one adopts this language to characterize the limiting relationships 
between theories, one must also pay attention to an important distinction 
in the theory of asymptotics. This is the difference between a regular and 
a singular perturbation series. A regular perturbation problem is one in 
which the exact solution for small but nonzero values of Id "smoothly 
approaches the unperturbed or zeroth-order solution as E ~ 0". In the 
case of  a singular perturbation problem "the exact solution for E = 0 
is fundamentally different in character from the 'neighboring' solutions 
obtained in the limit E --+ 0" (Bender and Orszag 1978, p. 324). 

Two very simple examples can help illustrate the difference. Suppose 
we wanted to find the roots to the quadratic equation x 2 + x --6E = 0, where 
E is a small "perturbation" parameter. When c = 0 the equation has two 
"zero-order" (O[E°]) roots: x = 0, - 1. It is possible to solve the perturbed 
problem to different orders of E, e.g. O[~ 1] and O[c2], by expanding the 
equation in a power series about the zero-order roots. 4 It will turn out that 
the series will have a finite radius of convergence and the solutions will 
smoothly approach the zero-order roots when E -+ 0. 

On the other hand, the quadratic equation Ex 2 + x - 1 = 0 yields a 
singular perturbation problem. In the limit where E = 0, there is clearly 
only one zero-order root; namely, x = 1. But, the perturbed problem clearly 
has two roots. The equation suffers a reduction in order upon setting the 
parameter ~ equal to zero. It is possible in this case and in many others to 
solve such problems, but the important thing for us to note is that there 
remains a fundamental difference between the limiting behavior as E --+ 0 
and the behavior in the limit where ¢ is identically equal to zero. 

Now, the theory of  elementary asymptotics shows that the fundamental 

formula appearing in the Lorentz transformations of  SR, ~ - v2/c 2, can 

be expanded in a Taylor series as 1 - 1 /2 (v /c )  2 - 1 / 8 ( v / c )  a -  1 / t6(v /c)  6 -  
• . -. Thus, the limit (v/c)  2 --+ 0 is analytic and the perturbation expansion 
is regular and not singular. I believe that this is extremely important. In 
effect it amounts to the claim that (at least some) quantities or formulae of 
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SR can be written as Newtonian or classical quantities plus an expansion 
of corrections in powers of (v/c)  2. 

As a result, I think that there is warrant to Rohrlich's claim that the 
mathematical framework of SR implies the mathematical framework of 
NM when the validity domain of relatively theory is restricted to that of 
NM; i.e., when (v/c)  2 << 1. SR can be understood as a regular perturbation 
of NM with p = (v/c)  2 as the perturbation parameter. 

Rohrlich is certainly aware that limiting relations between theories can 
be very subtle. In fact, he points out that in the (v/c)  2 --+ 0 limit of the 
mathematical framework of SR the invariance properties of the framework 
will actually change from the Lorentz symmetries to Galilean symmetries. 
"[T]he limiting process is highly nontrivial and must be carried out very 
carefully: the symmetry reduction may be the result of group contraction, 
and the limit can only be carried out in suitable group representations" 
(Rohrlich (1988), p. 304). 5 However, I do not believe that he pays suffi- 
cient attention to the differences between regular and singular perturbation 
problems. In his list of examples where the relation: (p --+ 0) lira M(fine) 
= M(coarse) holds, he includes in addition to the SR/NM case, the relation 
between wave optics and geometrical optics as well as that between QM 
and CM. In contrast to the SR/NM case, these perturbation problems are 
singular: As we will see neither the solutions of wave optical equations 
nor of quantum mechanical equations can be expressed in terms of those 
of their corresponding coarser theories plus corrections in powers of some 
parameter p. 

Now, Rohrlich is certainly cognizant of the fact that some kind of 
discontinuity exists between, e.g., wave optics and geometrical or ray 
optics, but he holds that this discontinuity is to be found wholly at the level 
of interpretation or semantics: 6 

[D]espite the continuous change from one [mathematical framework] M to the other in the 
p --+ 0 limit, the interpretation is discontinuous ha the limit. This discontinuity is due to 
the cognitive emergence of a qualititatively new and different description. The equations 
obtained in the limit have a new and different interpretation (semantics) (Rohrlich (1988), 
p. 307). 

I want to claim, however, that the singular nature of the mathematicallimit 
between wave and geometrical optics is responsible for the "emergence" 
of a different description. Furthermore, as we will see, the presence of a 
third theory of the asymptotic domain between these two theories shows 
that the abruptness or discontinuity at the semantic level may in a certain 
sense be less pronounced than Rohrlich asserts. 

Rohrlich's claim that the mathematical framework of CM can be "rig- 
orously deduced" from that of QM in the limit where Planck's constant 
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h --+ 0 (remembering the earlier caveat, note 2, about this being shorthand 
for some dimensionless quantity with h in the numerator approaching zero) 
has been criticized by Hans Radder on different grounds. Radder rightly 
notes that without qualification this claim cannot be correct. He says that 
"the basic problem is that classical observables are mathematically repre- 
sented by functions (on a phase space of generalized coordinates), while 
quantum observables are represented by operators (on a Hilbert space of 
state vectors). Since functions and operators are different mathematical 
entities, it is not possible, even when h is small, to derive an equation of 
functions from an operator equation" (Radder (199t), p. 219). It seems to 
me that part of this worry can be diffused by more carefully considering 
Rohrlich's claim that the mathematical framework of the coarser theory is 
"rigorously derived" from that of the finer theory. Perhaps, Radder under- 
stands this as meaning "can be validly deduced in, e.g., first order predicate 
calculus". But Rohrlich is quite explicit that his idea of a rigorous deriva- 
tion involves a limiting procedure - a "rule of inference" not present in first 
order logic, One defense of Rohrlich is to take his "rule of inference" to be 
the possibility of  finding a regular perturbation expansion for the formulae 
of the finer theory having first terms involving formulae from the coarser 
theory. If this possibility obtains (as in the SR/NM case), it does seem rea- 
sonable to speak of a rigorous derivation. In any event, the worries I have 
expressed about the singular nature of the limiting relationship between 
QM and CM and between wave and geometrical optics remain, and it is to 
a detailed investigation of these relationships that we now turn. 

2. 

The two cases, geometrical optics/wave optics and QM/CM are very simi- 
lar. Both limiting relationships fall under the generic heading of shortwave 
asymptotics. Classical wave optics was preceded historically by geometri- 
cal optics just as QM was preceded by CM. As the geometrical optics/wave 
optics case may be slightly more intuitive, I will first discuss some features 
of this relationship and then use the results to assist in drawing conclusions 
about the QM/CM case. 

The shortwave limit A = 0 of wave optics is the theory of geometrical 
optics. The concept of a wave in this limit makes no sense and the basic 
entities of the theory are light rays. One of the most important aspects of 
ray optics is the fact that rays considered individually, are unimportant. 
Instead, the theory primarily refers to entire families of rays. Consider, for 
example, the common phenomenon of the focusing of a lens. The very 
concept of  a focal point makes no sense if one considers a single ray. 
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If geometrical optics is a limiting case of  electromagnetism or wave 
optics, then we can ask what waves will look like in the limit as A -+ 0. 
They ought somehow to be constructed out of  (or at least to correspond to 
constructions out of) the objects of geometrical opt ics-  namely, families of 
rays. By studying the form of these constructions we will see that the lim- 
iting relationship is in fact a singular perturbation problem. Furthermore, 
we will discover reasons to doubt that any kind of  reduction between the 
two theories is possible. 

In the shortwave limit where A = 0 or k = ~ (k = A/2a ' , the  
wavenumber), rays, not waves are the carriers of energy. Rays propagate 
as normals to "geometrical" wavefronts. (Think of a point source of light. 
The wavefronts will be concentric spheres with the source as their common 
center. Light rays will be those straight lines through the center and, of  
course, normal to each sphere's surface - the wavefront.) Consider Figure 
1. (Berry (1981), pp. 518ff.) 

We have an initial wave front W described by its deviation from the 
plane z = 0 by a height function f (x ,  y). We want to construct, in terms of  
rays, an approximation to a wave at a point say P, which is a superposition 
of contributions from rays that pass through P .  This is natural in that, as 
we have noted, when k is large the energy is carried along the rays. The 



178 ROBERT W. BA'tTERMAN 

rays emanating from the wavefront W are defined in terms of the gradient 
of the so-called optical distance function ¢: Introduce a second coordinate 
system X, Y (with the same z-axis as the x, y system) to label the point 
P: P = ( X, Y, z). The optical distance function is: 

¢(x ,y;X,Y;z)  = [ ( z -  f (x ,y))  2 + ( X -  x) 2 + ( Y -  y)2]1/2. 

In other words, it is just the euclidean distance between the point 
(x, y, f(x, y)) and the point P = (X, Y, z). This assumes that the ray 
propagates in a homogeneous medium without refraction or reflection 
from W to P.  If we imagine that W deviates only gently from the plane 
z = 0, we can use the paraxial approximation to ¢. (Roughly since the 
inclination of the ray from the z-axis will be small, sines of angles may 
be replaced by the angles themselves.) This yields, letting r = (x, y) and 
R = (X,Y):  

¢ ( r , R ,  z ) =  z -  f ( r ) +  
IR-  rl 

2z 

It is useful to think of the points (R, z), i.e. P,  as control parameters 
or control variables - for instance, different places we might perform 
observations. Then the points r would label different possible starting 
points for paths to the point P.  The different r's are called state variables. 
Fermat's principle tells us that the rays, for a fixed value of the control 
parameter R are those paths through P for which the optical distance 
function is an extremum: 

0¢ O. 
Or 

This gives 

0 = V r ( ~ b ( r , R , z ) ) = - V r f ( r )  
R - r  

Z 

Hence, 

r - R  
V r f ( r )  - 

Z 

and the rays are the solutions to this equation. As Figure 2 indicates there 
will generally be more than one ray through P = (R,  z) which we label 
r~(R,  z), # = 1,2, .... 

We are interested in constructing or associating a wave ¢ (R ,  z) with 
this family of rays by allowing different rays through the same point P 
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Fig. 2. 

to "interfere" with one another. So we must use some kind of principle 
of superposition. Therefore, we need to know the contributions in both 
amplitude and phase of each ray rU(R, z). The phase of the #th ray is 
just 27r times the optical distance ~b from the wavefront W to (R, z) in 
units of wavelength. That is, the phase is: k~u(R , z) (k = 27r/)~). The 
intensity (= lamplitudel 2) is given by considering the energy flux through 
an area dA(R) of a tube of rays around the #th ray when there is unit flux 
through dA(r) (see Figure 3). In other words, the amplitude is proportional 
to IdA(rU)/dA(R)l 1/2. 

In fact, it will be given by the square root of the Jacobian determinant 
of the mapping from dr u to dR given by the equation: 

0rU 
(i) det ~-~ (R, z). 

So, the wave ~(R,  z) is, in shortwave approximation, given by the 
interfering ray sum: 

u ~---~--~ (R' z) } 1/2 (ii) ~(R,  z) ~ ~ det { e ik~(R'z) 

It is possible to learn a lot from this equation. In the first place, as promised, 
its expresses the fact that the k --+ c~ limit is nonanalytic or singular. This is 
because k appears in the exponential. Unless the optical distance function 
flu(R, z) = 0 when k = c~, the approximation ceases to exist. Therefore, 
the interference effects do not go away in the limit as k -+ c~; the wave 
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Fig. 3. 
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cannot be written in a series in which the leading term is purely a quantity 
describing rays and subsequent terms are corrections in powers of 1/k. 

Secondly, it may be the case that the point P = (R,  z) lies on a focal 
surface or caustic of the family of rays. If this happens then the formula (ii) 
breaks down completely as the intensity becomes infinite. To illustrate the 
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idea of a caustic or focal surface (a focal point is a special case), consider 
Figure 4. A geometrical wavefront W with normals (rays) is drawn. The 
caustic is the cusp shaped line which is the envelope of the family of rays. 
It serves to separate the region in which ever)- point is the intersection of 
three rays (inside the cusp) from that where each point has only one ray 
passing through it (outside the cusp). Consider a ray r u from W which 
touches a caustic at R. The area dA(R) of a ray tube around r ~ shrinks to 
zero on the caustic. Therefore, the amplitude which, recall, is proportional 
to [dA(r u ) /dA(R)[  1/2 becomes infinite at the caustic. Caustics and focal 
points are primary objects of study in optics; but the interfering ray sum 
(ii) fails exactly at these places. 

We began by asking what waves would look like in the limit as )~ -+ 0 
or k -+ ee. The result (ii) while enlightening is not entirely satisfactory. It 
seems there is no way that the ), --+ 0 limit between wave and geometrical 
optics can be regular. There is no way that ,k or 1/k can be treated as 
a perturbation parameter. So, there is prima facie very good reason to 
disagree with Rohrlich when he places (as in the quote below) the wave 
optics/geometrical optics case as an example of reduction in the same class 
as the SR/NM case. He says: 

Another example is the reduction of geometrical optics, M(GO), to electromagnetic theory, 
M(EM). The characteristic parameter p is here the ratio of the wave length of light to 
the typical size of the objects considered. In the limit as p goes to zero, the fundamental 
equations of GO are derived from those of EM. The ray optics of GO is a limit of the wave 
optics of EM; at the same time, the explicit dependence on the wave length disappears from 
the equations of the theory. (Rohrlich (1988), p. 305) 

The last clause is false. As we have seen, because of the singular nature 
of the limit, the wavelength cannot disappear from the equations as ,~ -+ 
0. Therefore, a straightforward reductive relation of the type Rohrlich 
envisions cannot be possible. There is still a limiting relationship between 
the theories. However, it is not of the proper sort to support a claim of 
reduction even in the attenuated sense in which all that is claimed is 
that the mathematical framework of the one theory can be deduced from 
the framework of the other via some limiting process. The asymptotic 
expansion is not regular. 

There is another important and related reason for doubting that wave 
optics reduces to geometrical optics. This has to do with the fact, already 
noted, that the simple limiting relationship expressed by the interfering 
ray sum (ii) fails completely on caustics. If the control parameter (R ,  z) is 
varied accross a caustic, such as the cusp in Figure 4, the intensity becomes 
infinite. More sophisticated attempts to construct limiting approximations 
have been extremely successful in showing how this singularity is softened 
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by diffraction patterns. In wave optics caustics do not exist since they are by 
definition singularities of ray families, and rays do not exist. But, in the limit 
as A ~ 0 it is possible to describe with remarkable accuracy the intensity 
of light on and near the geometrical caustics. The descriptions depend 
essentially on the nature of the caustic. Thus, it appears that geometrical 
optics plays an essential role in the explanation of certain nonidealized 
physicalphenomena. (The pattern of light intensity in rainbows is a prime 
example.) Let me briefly describe the role geometrical optics has to play 
in these explanations, tt is sometimes asserted that wave optics replaces or 
supersedes geometrical optics. However, the essential nature of the role of 
caustics in the explanations just mentioned is evidence that this assertion 
is simply wrong. We will see that there is really a third explanatory theory 
inhabiting the asymptotic domain between wave and geometrical optics. 

Caustics are catastrophes. That is, they are classified by the mathemat- 
ics of Rene Thom's catastrophe theory. Unlike focal points, some caustics 
are structurally stable in the sense that a slight perturbation of 4) (due, e.g., 
to a small change in the shape of the wavefront) will not alter the basic 
form of the caustic. (A smooth change - a diffeomorphism - in ¢ results 
in a smooth deformation of the caustic.) The structurally stable caustics 
are the catastrophes. The transformability of one caustic into another by 
diffeomorphism results in a partition of caustics into equivalence class- 
es. Two caustics belong to the same class just in case they can be so 
transformed. Each equivalence class is a catastrophe and can be repre- 
sented by a certain polynomial that is linear in the control parameters and 
nonlinear in the state variables. These polynomials are called the normal 
forms of the catastrophes. For example, the normal form ~(s, C) of a 
simple fold catastrophe is, with C representing the control parameters and 
s, the state variables, ~fola(s, C) = s3/3 + Ca. For the cusp catastrophe, 
~cusp(S, C) --- s4/4+C2.~2/2+C1 s. This means that every optical distance 
function that yields a fold caustic can be transformed by diffeomorphism 
in the parameter C into ~fold(S, C). Likewise, those ~b's yielding cusps are 
transformable into ~eusp(S, C). The same holds for higher order catastro- 
phes such as the swallowtail, elliptical umbilic, and the hyperbolic umbilic. 
(See Poston and Stewart (1978) and Berry (1981).) 

Armed with these results from catastrophe theory one can vastly improve 
on the interfering ray sum (ii) in two ways. First one replaces the func- 
tion ~b(s, C) in the phase with the corresponding normal form ~(s,  C). 
Second, since on a caustic the rays su(C) coalesce, it is necessary to 
move to an integral representation where rather than a finite superposition 
of contributions coming from well-separated rays, one takes a continuous 
superposition integrating over all paths 8. Away from the caustics, this inte- 
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gral reduces to the interfering ray sum (ii). 7 But now, instead of diverging 
on the caustics as (ii) did, the integral representation gives one of a finite 
set of nondiverging "diffraction catastrophe" integrals depending upon the 
form of the caustic. 

For the fold catastrophe, the integral is as follows. (C = 0 is the 
caustic.) 

1 
(iii) @ f o l d ( C )  - -  ~ ]-o~ e'i(s3/3+cs) ds 

Fermat's theorem, the ray condition, states that 

0 ~  8 2 4-. C 0 (iv) 0s 

For C < 0 this means that there are two interfering rays s" = i ~ - - O .  For 
C > 0, the roots of(iv) are complex and there are no real rays. The intensity 
I@fola(C)[ 2 gotten from (iii) is shown in Figure 5. It is the square of the 
Airy function [Ai(C)] 2. (See Airy (1838) and Berry (1981), p. 529.) 

The wide grey line in Figure 5a is I@l 2 - the square of the Airy function. 
The thin dark line shows the intensity predicted by the interfering ray sum 
- diverging at the caustic C = 0. As is evident from the figure, the 
intensity peaks just on the bright side (C < 0) of the caustic and decays 
exponentially in the region where C > 0. 
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Rays forming a fold caustic. 

The reason for going into this in as much detail as I have is to exhibit 
how an object or entity ~(s ,  C)  (the normal form of the caustic), which 
falls completely within the domain of geometrical optics, functions in 
a wave-theoretical explanation of the behavior of light near a caustic. 
The diffraction catastrophe integral (iii) is a hybrid formula. It is not 
constructable within orthodox wave optics. There is apparently no way 
to explain the behavior of such natural objects as the rainbow without 
combining in an essential way features of geometrical optics with those of 
wave optics. Therefore, it seems completely wrong to assert that the latter 
somehow reduces (in the sense of replaces or supersedes) the former. 

It is sometimes asserted, correctly I believe, that since the coarser 
theory is really only an approximation, and therefore strictly speaking 
false, it cannot be explained by the finer theory. How can a false theory 
be explained? On the other hand, some have claimed that the finer theory 
can "explain away" the coarser theory (Sklar 1967, p. 112). Sklar, for 
example, means by this that the finer theory can explain why the coarser 
theory "met with such apparent success for such a long period of time and 
under such experimental scrutiny" (Sklar 1967, p. 112). Now Sklar makes 
this assertion about QM explaining away CM, but I think he might have 
said the same thing about wave and geometrical optics as well. 

One way of  understanding this is as follows. The finer theory can explain 
away the coarser by showing that the numerical predictions of the coarser 
theory are, within its domain of validity, essentially indistinguishable from 
those numerical predictions of the finer theory in that domain. In this sense 
the finer theory can explain why numerically the coarser theory worked 
as well as it did. But there is another, more robust, sense of "explains 
away". Consider the case of SR explaining away Newtonian mechanics. It 
seems that one wants to claim that NM is correct as an approximation in its 
descriptions of the phenomena within its domain of validity. Not only are 
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its numerical predictions within the appropriate order of magnitude of those 
of SR, but its characterization of the phenomena is sufficiently qualitatively 
similar to that of SR as wel l  8 This is, I believe a direct consequence of 
the mathematical fact that the SR/NM perturbation problem is regular. 
The limiting behavior a s  (v/c)  2 --+ 0 iS qualitatively similar to that in the 
classical limit when ( v / c ) 2 = O. 

On the other hand, in the wave/geometrical optics case, we have seen 
that the perturbation problem is singular. For k ~ c~ or A --+ 0 (as 
distinct from k = c~ or A = 0), the phenomena described exhibit wave 
properties such as diffraction. There is no way that geometrical optics can 
be correct as an approximation in its description of such phenomena, since 
such wave properties are completely foreign to geometrical optics. This 
does not mean that wave optics cannot "explain away" geometrical optics 
in the weaker sense of showing that its numerical predictions are within 
the appropriate order of magnitude of those of wave optics. However, it 
is another indication that when the finer theory is related to the coarser 
theory by a singular perturbation problem, it is inappropriate to claim that 
the latter reduces to the former in any sense of the term. 

Trying to specify exactly what "is sufficiently qualitatively similar in 
its descriptions of phenomena" means is~ of course, difficult. But I mean 
something more than Rohrlich when he speaks of descriptions that ("cog- 
nitively') emerge on the level of interpretation or semantics. I believe that 
the mathematical form of the equations characterizing the phenomena, and 
used in making predictions about their behaviors, is relevant as well. In 
particular, it seems reasonable to include as a criterion of qualitative sim- 
ilarity the possibility of relating the equations of the finer theory to those 
of the coarser by a regular perturbation problem. In such a case as we 
have seen, the equations of the coarser theory serve as leading terms in an 
analytic expansion. 

We have seen that elements from two incompatible limiting theories 
can be consistently and coherently combined in formulas such as (ii) and 
(iii). This, together with the fact that such a combination is essential for 
explaining and understanding certain phenomena, leads me to believe that 
there is really a third distinct theory in this asymptotic domain between the 
two giants, wave and geometrical optics. Berry and UpsfilI note that this 
"catastrophe optics is unfamiliar and unorthodox, cutting across traditional 
categories within the subject [of optics]" (Berry and Upstill 1980, p. 259). 
Because of its explanatory efficacy and its ability to provide understanding 
of a wide class of optical phenomena (inexplicable on the purely wave 
or ray theories), I believe catastrophe optics warrants being considered 
a separate theory. So, we see that paying attention to the fact that the 
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perturbation problem between wave and geometrical optics is singular has 
led to an entire realm of physics that might have remained obscure had we 
assumed the problem to be similar to the SR/NM limiting relationship. 

I now want to show how similar conclusions may be drawn about the 
so-called reduction of CM to QM. I will demonstrate the singular nature of 
the perturbation problem in this case, and argue that because of this, just as 
in the previous case, there is really a third theory, semiclassical mechanics, 
inhabiting the asymptotic domain between CM and QM. The arguments 
are quite similar to those given above for the optics case, though I will 
address an additional problem related to the distinction between integrable 
or regular and chaotic motion which appears in CM but which apparently 
is absent in QM. This is already an indication that the QM/CM perturbation 
problem is a singular one. 

To begin, note that the most fruitful framework for the geometrical 
description of classical motion is provided by the phase space. This is a 
multidimensional euclidean space in which the complete state of a system 
is represented by a point. 9 As the system evolves according to Hamilton's 
equations of motion, the point representing the system, carves out a one- 
dimensional trajectory in the phase space. The analog of classical phase 
space in the optics case discussed in the last section, would be the space 
gotten by combining (taking the cartesian product of) the space of state 
variables s u with the space of control variables C. Figure 4 showed the cusp 
catastrophe in the two dimensional control space with coordinates R = 
(X, Y), z fixed. We saw there that the caustic organizes the multivaluedness 
of the family of rays - inside the cusp each point is the intersection of three 
separate rays, whereas outside there is only one ray through each point. In 
the combined space s u × C, this is represented by the foldings of a surface 
over the control space as in Figure 6 (Berry t986, pp. 15-6.) ff one projects 
the surface down onto the (X, Y) plane, one finds that within the cusp, 
each point (X, Y) receives three separate contributions (corresponding to 
the three distinct rays through (X, Y)), while outside the cusp it gets only 
one. The caustic itself is a singularity in this projection as the different 
folds coalesce for those values (X, Y) that form the cusp. 

In classical mechanics, as I noted, the state of a system is represented 
by a point (q, p) in phase space. Here q = ( q l , . . . ,  qN) is the generalized 
coordinate for the system and p = (Pl , . - - ,PN) is the corresponding 
generalized momentum. Thus, the classical state is completely specified 
by 2N numbers. On the other hand, in quantum mechanics, the system's 
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state is represented by a wavefunction ~b(q) which is a function of only half 
the canonical coordinates (q, p). We will see shortly how this reduction 
in the number of coordinates is accomplished. The "objects" or entities of 
CM relevant for this discussion are families of trajectories in phase space 
evolving under Hamilton's equations of motion. These are analogous to 
the ray families of the preceding section. Clearly, the analog of the waves 
in wave optics are the quantum mechanical wavefunctions ~(q) .  

According to Rohrlich, just as in the previous case, the mathematical 
frameworks of the two theories are related by a limiting process 

p --+ 0 lira M(QM) = M(CM) where p is (roughly speaking) the ratio of the size of a single 
quantum of some observable in QM to its size in CM. It is dimensionless but proportional 
to Planck's constant h. In the limit, the theory becomes independent of  Planck's constant 
h. (Rohrlich (1988), p. 305) 

As before, I will show that this asymptoti c limit is singular, so that the last 
claim is once again false or misleading and hence, a straightforward claim 
of reduction as in the SR/NM case is not warranted. 

We begin by asking the same question we did earlier. If CM is a limiting 
case of QM, then what will the wavefunctions look like in the limit when 
h --+ 0? We can expect to find a construction analogous to the interfering 
ray sum. That is, we are looking for an association between wavefunctions 
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and families of phase space trajectories or, equivalently, surfaces in phase 
space. 1° 

The association depends crucially on geometric properties of certain 
kinds of  N-dimensional surfaces in the 2N-dimensional phase space - so- 
called Lagrangian surfaces. 11 We will first develop the connection in the 
abstract, and then try to provide it with a physical interpretation. Consider 
a local patch of a two dimensional Lagrangian surface E embedded in 
a four dimensional phase space as in Figure 7. It is possible to consider 

as a function of the coordinates q; namely, p(q). In so doing we treat 
the surface as a function o f  only half  the canonical coordinates (q, p), 
just as quantum mechanical wavefunctions ~b(q). Next, introduce a new 
set of variables Q = (Q1,Q2) to label points on E. (These variables 
are analogous to the introduction of the coordinates X, Y used to locate 
the point R in the optical example of the last section. See Figure 1.) 
Corresponding to the new set of coordinates will be a set of conjugate 
momentum coordinates P = (P1, P2). The full set (Q, P) might, for 
example, be a set of angle/action variables. We can now think of (Q, 
P) as providing a different coordinatization of the entire phase space, 
which is connected to the original coordinatization (q, p) by a canonical 
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transformation provided by a generating function S(q, P) - a function of 
both old and new canonical variables. 12 In other words, 

(v) p = VqS(q, P) and Q = VpS(q, P) or schematically 

(q ,p)  +-- S ( q , P ) - +  ( Q , P )  

The Lagrangian surface E is the set of points in phase space of the form 
(q, p) = (q, VqS(q, P)). The generating function S(q, P) plays the role in 
mechanics of the optical distance function ¢(s, C) in geometrical optics. 

Now the idea is to associate a (semiclassical) wavefunction ~b(q) with 
this Lagrangian surface in such a way that the wave intensity, or rather the 
probability density, is proportional to the density of points in the classical 
coordinate space (in Figure 7 this is the (ql, q2) plane). This density is 
gotten by "projecting down" (]dQ/dql) from E onto q-space assuming 
points on E are uniformly distributed in Q. writing ¢(q)  schematically 
as 

(vi) ~b(q) = a(q)eib(q) 

with amplitude a(q) and phase b(q), then this requirement on the probability 
density yields 

Here we have used the second equation in (v) in computing d Q / d q .  
The phase b(q) of the wavefunction is gotten by appeal to the de Broglie 

relation ~ = h k which relates the momentum p(q) to the wave vector 
of a locally plane wave. This introduces Planck's constant and yields after 
some straightforward manipulation involving the relation, p = VqS(q, P), 
from (v) the phase: 

(viii) b(q) - S(q, P)  
h 

Plugging (vii) and (viii) into (vi) finally yields the wavefunction 

ei/hs(q, P) 
(ix) ~b(q) = K det aq~OPj 

This, of course, has a form very similar to a single term in the interfering 
ray sum (ii). In particular, note the appearance of h in the denominator of 
the exponent. This shows that the limit h ~ 0 of (ix) is singular. 
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In the discussion of the interfering ray sum, no attention was paid to how 
the wave (ii) evolves over time. That is, no wave equation was considered. 
In the present context I want to remedy this situation because CM and QM 
are at base dynamical theories. The construction (ix) will be dynamically, 
and hence, physically significant if the diagram in Figure 8 is satisfied. 

Let E be an initial classical surface evolving in time At into a surface 
Et according to the classical Hamiltonian equations of motion. If ~b(q) 
is the (semiclassical) wavefunction (ix) associated with E, then it will 
evolve in the same time interval At  into the wavefuncion ~t(q) according 
to the SchrOdinger equation. The point is that in the limit as h ~ 0 (the 
semiclassical limit), the association between Lagrangian phase space sur- 
faces and wavefunctions persists over time. Therefore, the wavefunction 
~bt(q) Can be determined from the time evolved surface S t by the same 
construction (ix) used to construct ~b(q) from E. In the semiclassical limit 
the association of a wavefunction with a phase space surface is time trans- 
lation invariant. Basically, equation (ix) is an asymptotic solution of the 
Schrrdinger equation to lowest order in h. 

Let me pause briefly here to elaborate on the significance of the con- 
struction we have just considered. We have shown that an equation inter- 
mediate between CM and QM, equation (ix), can be constructed in a sense 
"from the bottom up". That is, we can construct a new "semi-coarse" equa- 
tion starting from structures (Lagrangian surfaces) present in the coarse 
theory CM. The fact that equation (ix) is also an asymptotic solution of the 
Schr0dinger equation to lowest order in h, as Figure 8 indicates, means that 
the construction m e s h e s  with the "semi-fine" equation one gets by begin- 
ning with the fully quantum mechanical Schrrdinge r equation, expanding 
it in powers of h and then dropping higher order terms. It is, of course, 
legitimate to drop higher order terms only if h can be considered small; 
that is, only if we are already in the semiclassical limit. The fact that these 
two procedures, one from the "top down" and the other from the "bottom 
up" agree, lends plausibility to the claim that the semiclassical equations 
provide something more than approximate methods for solving quantum 
problems. I will again take up this point in Section 5 below. 
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To retum to the discussion, note that as ~ evolves over time it may 
develop folds as illustrated in Figure 9. Note two consequences of this 
evolution. First, the generating function S, and hence p, because of (v), 
becomes multivalued. This corresponds as in Figs. 4, 5b, and 6 to there 
being more than one ray through a given point. In the present case this 
means that two trajectories from different points on the initial surface ~ end 
up in the same time At at the same point in coordinate space. See Figure 
10. Second, just as in the ray sum (ii), the determinant in the amplitude 
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of ~ (q )  diverges to cx~ on a set of singular points of E - those points that 
project onto the (fold) caustic in q-space. 

When folds in E develop and S becomes multivalued, the wavefunction 
away from the caustic may be represented by a superposition of terms of 
the form (ix) - one for each branch p~ = VqS(q,  P) ,  a result very similar 
to the interfering ray sum (ii). Just as in the optics example, the presence of 
caustics signals a failure of the construction we have been discussing. An 
ingenious way of dealing with this problem was developed by Maslov. 13 
One notes that the locations of the caustics of a Lagrangian surface depends 
crucially on the representation being used. For example, consider the phase 
space portrait of a one degree of freedom oscillator shown in Figure 11. 

The q-space caustics of ~ are clearly the points ql and q2 where the pro- 
jection [dp(q)/dqt is infinite. On the other hand, if P, is given a momentum 
space representation: ~ = (q(p), p) = (VpS(p), p), then the projection 
Idq(p)/dq] is obviously not infinite at either ql or q2. There are caustics in 
this representation - p-space caustics - at Pl and P2, but the corresponding 
q-values q(Pl) and q(P2) do not coincide with ql or q2.14 By a construction 
completely analogous to the coordinate space construction resulting in (ix) 
one can associate a momentum space wavefunction X(P) with the surface 
E. Since this will be well-behaved near the coordinate space caustics, it 
is possible to define the coordinate space wavefunction at and near the 
q-caustics as the Fourier transform of this momentum space wavefunction 
X(P) (evaluated using the method of stationary phase). 
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The form of the probability density [~b(q)l 2 will depend crucially, just 
as in the optical case, on the nature of the caustic. That is, it depends on 
the geometric features of the projection of a classical phase space surface. 
These arepurely classical features. Thus, we have constructed, once again, 
a theory which combines coherently and consistently, concepts from the 
two incompatible primary theories. This theory, semiclassical mechanics, 
belongs to the asymptotic domain between CM and QM. 

The existence of such a theory shows that there can be no reduction of 
QM to CM even in the physicists' sense. There are genuine measurable 
phenomena that are not fully understandable in either purely classical or 
purely quantum mechanical terms) 5 They fall, so to speak, between the 
explanatory cracks. Their explanation and understanding is provided by 
semiclassical mechanics. 

4. 

Until now, the fact that CM and QM are dynamical theories has played 
only a small role in our discussion. The one place where questions about 
dynamical evolution did arise, however, was crucial. The semiclassical 
construction receives a large part of its physical significance from its 
time translation invariance as expressed in Figure 8: The semiclassical 
wavefunction constructed according to Maslov's method evolves under the 
Schr6dinger equation, as the Lagrangian phase space surface upon which 
it is based evolves under Hamilton's equations. But, it is only for a very 
restricted class of Lagrangian surfaces that this invariance holds over long 
periods of time. In most cases the invariance of the construction breaks 
down relatively quickly. The surfaces for which the diagram of Figure 
8 holds for large times are those that are invariant or unchanging under 
Hamiltonian evolution. These surfaces have the topology of N-dimensional 
tori or doughnuts in the 2N-dimensional phase space. Dynamical systems 
whose possible trajectories are confined to such invariant tori are known 
as integrable systems. They exhibit regular - that is, periodic or multiply 
periodic - motions. The simplest example is a pendulum in one dimension 
whose torus in two dimensional phase space is the elliptical curve shown 
in Figure 11. A trajectory beginning from some point on the torus remains 
on it forever. 

The semiclassical mechanics of systems whose "underlying" classical 
motions are integrable has been around for a long time. This "theory" is 
essentially a refinement of the old quantum theory of Bohr, Sommerfeld et 
al. It is usually called the EBK theory, after Einstein, Brillouin, and Keller; 
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although, a more descriptive name is Torus Quantization (See Berry 1983 
and Batterman 1991). 

The discussion above, however, has allowed for the possibility of  study- 
ing evolving or noninvariant Lagrangian surfaces. This suggests, prima 
facie anyway, that it might be possible to extend these well-established 
results to systems whose underlying classical motions are not regular and 
integrable, but instead are chaotic. There are, however, serious difficulties 
involved in carrying out this suggestion. These problems provide further 
evidence that a reduction relation between CM and QM is not forthcom- 
ing. 

Classical chaos is a "long time" property of dynamical systems. Were 
one to observe a system for anyfinite period of time and notice apparently 
random and unpredictable behavior, it is impossible to infer with certainty 
that the system is genuinely chaotic. A necessary condition (though not a 
sufficient one, see Batterman 1993a) for a system to be fully chaotic is that 
it possess strongly statistical ergodic properties, the weakest of which is 
ergodicity. But even ergodicity is defined in terms of infinite times; that is, 
in the limit as t --+ ~ .  

We have already seen that reductive relations between theories may 
depend on aspects of taking limits. The question now is how the taking of 
the t --+ cx~ limit relates to the h -+ 0, semiclassical limit. The answer is 
that it does not relate well and as a result, the connection between classical 
and quantum mechanics is in a certain sense doubly singular. This requires 
some explanation. 

Nonintegrable classical Hamiltonian systems are characterized by tra- 
jectories that are free to wander throughout the entire 2N - 1 dimensional 
surface of constant energy in phase space. This is in stark contrast to the 
trajectories of integrable systems which are confined to N-dimensional 
invariant tori. As a surface evolves under a chaotic nonintegrable Hamil- 
tonian, it will generally become more and more convoluted, in the sense 
that the projection of the surface onto coordinate space (as in Figure 10) 
will develop an increasing number of caustics (see Berry et al. 1979 and 
Batterman 1993b). As long as the caustics are sufficiently well separat- 
ed in coordinate space, the semiclassical construction of a wavefunction 
can proceed using Maslov's method to deal with the singularities at the 
caustics. In two dimensions there is a simple geometric criterion for deter- 
mining when caustics are not sufficiently well separated. (See Berry et 
al. (1979) and Batterman (1993b).) Consider the curve E0 in Figure 12a. 
Suppose it evolves so that after At the distinct points labeled 1-3 under 
classical evolution have the same q-value as in Figure 12b (Berry et al. 
1979, p. 37). 
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The constructed wavefunction rOt(q ) expressed as a sum of contribu- 
tions of the form (ix) one for each point above q in Figure 12b, will be 
invalid if the phase space area A enclosed between the line connecting 
the preimages of the contributing points and the curve E0 is of order h. 
Because of the measure preserving nature of the Hamittonian evolution 
this is equivalent to the claim that for contributing points sufficiently near 
q-space caustics, the simple semiclassical construction will fail. As long 
as these failures are isolated, they axe exactly the catastrophes that can 
be dealt with by moving to an integral representation of the diffraction 
catastrophe integral type as in (iii) of Section 2. But, in the t --+ c~ limit, 
such catastrophes are no longer isolated. The Lagrangian surface becomes 
so convoluted that there will be ubiquitous clustering of caustics on scales 
smaller than order h. In that case, the method of diffraction catastrophe 
integrals itself will break down. 

The idea of a clash between the semiclassical and infinite time limits is 
really quite simple. Forfixed time t after the initial time to, it will always 
be possible to construct a semictassical wavefunction associated with the 
evolved classical surface, by letting h --+ 0. This is because for sufficiently 
small values of h, the contributing points will be "far enough" from the 
caustic so that the area (as in Figure 12b) will be greater than order h. On 
the other hand, if we let t --+ ~ first, this construction will fail because 
caustics will cluster on too fine a scale. Since classical chaos is a t -+ c¢ 
property, it is apparently not recoverable in the h --+ 0 limit of quantum 
mechanics, and so we have yet another reason to doubt that there exists a 
genuine reductive relationship between the two theories provided by taking 
limits. 
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Now the fact that the semiclassical construction that we have discussed 
apparently breaks down when the underlying classical motion is chaot- 
ic might prima facie seem to count against the claim that semiclassical 
mechanics is a valid third theory "in between" CM and QM. Instead the 
singular behavior expressed in the failure of the two limits to commute 
is a further indication that there is interesting physics to be done in the 
asymptotic (t ~ oe, h --+ 0) domain. A similar attitude has recently been 
expressed by O'Connor et al. who say that 

it would be rather disheartening to be forced to accept that such a basic structure of 
chaotic classical mechanics as a homoclinic recurrence [a characteristic feature of unstable 
motion in a bounded domain] lies beyond what can reasonably be translated into quantum 
mechanics (via semiclassical mechanics). The consequences of such an e x ce e d i n g l y  short 
time of validity would profoundly affect the utility of semiclassical methods. (O'Connor et 
al. 1992, p. 341) 

Their paper is motivated by a desire to test the idea "that semiclassical 
mechanics must generally fail by the time classical structures are being 
formed on a scale small compared to h,, (O'Connor et al. 1992, p. 342). The 
conclusion they draw is that contrary to popular opinion, "the development 
of classical structures small on the scale of Planck's constant [does not 
herald] the end of quantum-classical correspondence" (O'Connor et al. 
1992, p. 355). 

This quantum-classical correspondence finds its expression in the valid- 
ity of semiclassical mechanics. O'Connor et al. purport to show, through 
detailed consideration of an (admittedly idealized) example, that despite 
the fact that "quantum mechanics smooths over classical fine structure 
. . .  classical fine structure can be used to construct quantum wavefunc- 
tions" (O'Connor et al. 1992, p 354). 16 Thus, current work on the semi- 
classical connections between QM and CM indicates that semiclassical 
constructions are valid (when properly formed) in the long time domain. 
This, to my mind, is a further indication of the legitimacy of treating the 
resulting theory as a distinct, genuine, explanatory theory in its own right, 
and not merely as a set of methods for providing approximate solutions to 
purely quantum mechanical problems. 

5. 

I have been arguing against the claim that QM reduces to CM and that wave 
optics reduces to geometrical optics in the limit as a small parameter (h, A 
respectively) tends to zero. That is, I have been arguing that a physicists' 
reduction or Nickles' "reduction2" does not obtain between members of 
these pairs of theories. Consequently, it would seem that a philosophers' 
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reduction, even in the attenuated sense used by Rohrlich, fails as well. The 
failure of the limiting reduction has, I believe, at least one consequence 
of great philosophical interest. This is the presence of an intermediate 
theory in the asymptotic domain between the members of the theory pairs 

- respectively, catastrophe optics and semiclassical mechanicsJ 7 
One question arises immediately: Do these intermediate theories posit 

an ontology distinct from the ontologies of the two established theo- 
ries? That is, considering the QM/CM case, are there somehow "new" 
or ontologically distinct systems that are the subject matter of semiclassi- 
cal mechanics? I think that the answer is "no". No new ontological level is 
being described. There axe phenomena, such as the morphologies of certain 
wavefunctions, and the statistics of energy levels of certain systems, which 
have not received, and cannot receive adequate explanations on either the 
classical theory or the quantum theory. A proper understanding of these 
phenomena is provided by semiclassical mechanics; but the explanations 
do not make reference to any entities or structures not present in either CM 
or QM already. Thus, there is a new and different explanatory level which 
indicates the presence of a third theory; although, there is no new ontology 
associated with that third theory. 

While semiclassical mechanics is itself a theory capable of explaining 
certain physical phenomena, it can also profitably be viewed as a kind of 
metatheory. Semiclassical mechanics is the theory which describes the con- 
nections or correspondences between CM and QM. It does so by explicitly 
showing how classical structures (e.g. Lagrangian phase space surfaces) 
emerge from QM as h --~ 0. I would claim that further study of limits 
of small parameters between theories, and singular perturbation problems 
will yield a more exact concept of emergence than typically appears in the 
rather murky literature on emergence. Semiclassical mechanics, in describ- 
ing a quantum/classical correspondence in the "direction" from QM to CM, 
shows explicitly and precisely the sense in which classical concepts can 
emerge as the result of studying the limit of a small parameter h. 

In the other direction, in describing a correspondence from CM to QM, 
semiclassical mechanics also plays an extremely important role. It shows, 
contrary to popular opinion, that classical structures play an essential role 
in understanding and explaining quantum evolutions and structures. The 
role these classical (phase space) structures play is manifest only in the 
semiclassical limit as h ~ 0. Nevertheless, they must be important for a 
full understanding of quantum evolutions and the nature of what are (appar- 
ently) purely quantum mechanical structures such as wavefunctions. The 
issues about chaos, briefly discussed in the last section (see also Batterman 
(1993b) for more details) especially makes this clear. There are morpho- 
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logical differences in wavefunctions, the explanations for which make 
essential reference to the nature of "the underlying classical motions". In 
other words, whether the classical motion is integrable or chaotic is key 
to explaining the differences in forms of the wavefunctions. In a certain 
sense, classical structures play a deep explanatory role in QM. Classical 
evolutions drive quantum evolutions. As I said, this role becomes man- 
ifest only in the semiclassical limit: For "relatively large" values of h, 
the classical structures and the role they play are obscured or hidden as a 
result of the uncertainty relations. However, because of their emergence as 
h --+ 0, it seems reasonable to believe that a full understanding of quantum 
mechanics must ultimately refer to them. 

Finally, let me reiterate a point briefly made in Section 3. It is crucial 
for establishing the claim that semiclassical mechanics should be deemed 
a theory in its own right. The talk of correspondences obtaining in the 
two "directions" from QM to CM and from CM to QM as mediated 
by semiclassical mechanics is to be understood in the following sense. 
If we begin with QM and solve the SchrOdinger equation by expanding 
it in powers of h, we arrive at a very useful approximation which has 
historically sometimes been given the honorary title of "theory" - namely, 
WKB theory, the ancestor of modem semiclassical mechanics. However, 
most physicists, I believe, have taken it to be merely a useful tool and do 
not regard it as having any kind of explanatory autonomy. The view I have 
been advocating is that it does have this further status. The reason is that, 
as I have tried to show, one can build up in the direction from CM to QM to 
the "theory" in the manner of the construction outlined in Section 3 of the 
paper. (The same, of course, goes for constructing catastrophe optics from 
the coarser geometrical optics theory.) The fact that the two procedures 
arrive at the same result allows one to provide a partial interpretation for 
the intermediate theory in terms of the entities and structures of the coarser 
theory. In other words, the "top down" approximation gains legitimacy 
as an explanatory theory because one can interpret its success as a result 
of the agreement with the "bottom up" construction. The title "theory" 
should, therefore, no longer be considered merely honorary. 

NOTES 

* I wish to thank Roger Jones and Joe Mendola for valuable comments on this and related 
work. Discussions with Bill Wimsatt also helped me get clear about certain issues related 
to intertheoretic reductions. Of course, they are not responsible for any mistakes and mis- 
interpretations that still remain. 
1 The plausibility of this claim depends to a large extent on what one takes to be the "central 
content" of these two theories. For example, if one considers the theories to be primarily 
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about spacetime structure, then the momentum and relative velocity equations (involving 
the v / c  terms) really can be considered only marginally relevant for considerations of 
intertheoretic reduction; and the argument that follows may not be too convincing. I am 
indebted to Roger Jones for stressing this point to me. His general skepticism with the 
idea that there are particular mathematical equations which capture the central content of a 
given physical theory is well presented in Jones (1991). 
2 It is really better to think of the limit as (v /c )  2 ~ 0 rather than v --~ 0 because as 
(v/c) 2 is a dimensionless quantity the limit will not depend on the units used to measure 
the velocity. Similarly when we discuss the limit as h ---, 0, since h is not dimensionless, 
this is really shorthand for the limit in which some dimensionless quantity containing h in 
the numerator approaches zero. 
3 This is my locution, not Rohrlich's. 
4 See Tabor (1989), pp. 90-2 for more details. 
s Rohrlich (1989) offers a very detailed discussion of the reduction2 of relativistic theories 
to Newtonian gravitational theory. 
6 This is true at least for Rohrlich's articles mentioned already. In a more recent and very 
interesting article Rohrlich (1990) he does note the importance of singular limiting "dis- 
continuous" relationships between the mathematical structures of certain theories. 
7 The integral is evaluated using the method of stationary phase: The only points giving 
positive contribution to the integral in the limit k --~ ~x~ will be those corresponding to 
geometrical rays. These are the stationary points. Because of the rapid oscillations all points 
near these stationary points will have contributions that cancel by destructive interference. 
s See note 1. 
9 If the system has N degrees of freedom, the phase space will be 2N-dimensional. 
10 In Batterman (1993b) I offer an elementary account of this association. Here I will go 
into a bit more detail. The discussion closely follows that of Berry (1983), pp. 195f. 
11 For our purposes here we do not need to discuss the exact definition of Lagrangian 
surfaces. See Littlejohn (1992), or Arnold (1989) for details. 
12 See any text on CM for a discussion of canonical transformations and generating func- 
tions, e.g. Goldstein (1950) or Arnold (1989). 
13 See Maslov and Fedoriuk (1981) and also Littlejohn (1992) for an excellent discussion 
of many of the subtleties of these issues. 
t4 Ill higher dimensions (more degrees of freedom) it may indeed be possible that coordi- 
nate space caustics coincide with momentum space caustics. But Mastov showed that it is 
always possible to find a canonical transformation to another mixed set of qi's and pj 's, 
i ~ j ,  such that in that representation there are no q-space caustics (Litttejohn 1992, p. 26). 
15 An example of the kind of phenomenon I have in mind here is the fact that certain quantum 
systems, e.g. those whose "classical counterparts" are chaotic (see Batterman (1993b) for 
an attempt to explicate this notion of a classicalcounterpart), have eigenstates which when 
plotted as probability contours show what is called "scarring". These are regions where the 
probability density is much greater than one would expect from a "chaotic wavefunction". 
It tums out that the scars or regions of high probability density are concentrated on and 
near classical periodic orbits. Much work in semiclassical mechanics has been devoted to 
explaining the presence of these scarred wavefunctions. Obviously, I do not have the space 
to explain this here. See the excellent review by Heller (1991) for details. 
16 Context indicates that by "quant~am wavefunction" they really intend what I have been 
calling semiclassieal wavefunctions. 
17 An obvious question here is whether this is a general consequence of singular limiting 
relations between theory pairs. My suspicion is that it is, though I am presently unable to 
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provide an argument to that effect. Nevertheless, the following example may support the 
point. Singular limiting relations and methods of dealing with them (the renormalization 
group) are characteristic of the "new" theory of critical phenomena, describing universality 
in the behavior of systems undergoing phase transitions. See Bruce and Wallace (1989) for 
an argument that such investigations genuinely count as new physics. 
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