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O n  a M o d e l  o f  F r i c t i o n a l  S l i d i n g  

Y. ESTRIN 1 and  Y. BRf!CHET 2 

Abstract--A model of frictional sliding with an N-shaped curve for the sliding velocity dependence 
of the coefficient of friction is considered. This type of friction law is shown to be related to dynamic i.e., 
velocity dependent 'ageing' of asperity junctions. Mechanisms of 'ageing' for ductile (Bowden-Tabor) 
and brittle (Byerlee) materials, though different in nature, lead to qualitatively similar N-shaped velocity 
dependencies of the coefficient of friction. Estimates for the velocities limiting the range of negative 
velocity sensitivity of the coefficient of friction are obtained for the ductile case and--albeit with a lesser 
degree of reliability--for the brittle one. It is shown by linear stability analysis that discontinuous sliding 
(stick-slip) is associated with the descending portion of the N-shaped curve. An instability criterion is 
obtained. An expression for the period of the attendant relaxation oscillations of the sliding velocity is 
given in terms of the calculated velocity dependence of the coefficient of friction. It is suggested that the 
micromechanically motivated friction law proposed should be used in models of earthquakes due to 
discontinuous frictional sliding on a crustal fault. 
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Introduction 

A c o m m o n l y  accepted mode l  for  ea r thquakes  on a pre-exis t ing seismogenic 

crustal  fault  (DIETERICH, 1979) is based  on rate-  and  s ta te -dependent  fr ic t ional  

sliding. The  coefficient o f  fr ict ion is cons idered  to depend  on  the sl iding veloci ty  as 

well as on an in ternal  var iable  charac te r iz ing  the state o f  the con tac t ing  surfaces. 

The  ma in  feature  o f  the model ,  giving rise to uns table  f r ic t ional  sl iding and  

a t t endan t  ea r thquakes ,  is a negat ive sensit ivity o f  the shear  stress r to the sl iding 

veloci ty V in the s teady-s ta te  regime of  sl iding (DIETERICH, 1979; RICE 1983; GU 

et al., 1984). 

The under ly ing  mechan i sm is a t t r ibu ted  to some form of  ' age ing '  or  s t rengthen-  

ing o f  surface contac ts  (DIETERICH, 1979; SCHOLZ, 1990). In  this respect,  the only 

d is t inc t ion  between stat ic and  dynamic  fr ic t ion is tha t  in the la t ter  case, the ageing 

t ime is re la ted  to the sl iding velocity.  The  ageing t ime, which is identif ied with 
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the average time of contact of asperities on the sliding surfaces, is inversely 
proportional to V (DmTERrCN, 1979). This implies that the average sliding velocity 
may be represented as 

V = D c / t  w (1) 

where D c is a velocity-independent sliding distance (of the order of the asperity size, 
cf. DIETERICH, 1979 and DIETERICH and KILGORE, 1994) required for temporarily 
rearresting the sliding surfaces by a new population of contacting asperities upon 
the breakaway from the previous one and tw is the average arrest time. It is during 
this time that the asperity contacts are exposed to the ageing process, whatever its 
physical nature. The strengthening effect associated with ageing increases with the 
arrest time and thus decreases with the sliding velocity. 

The above dynamic process of asperity ageing is concurrent with the breakaway 
process (e.g., by shearing of asperities for a ductile material or by asperity breaking 
for a brittle one). This is commonly characterized by a positive rate sensitivity as 
revealed in an 'isostructural' velocity increment test which invariably exhibits a 
positive shear stress increment (DIETERICH, 1979). This jump in stress is followed 
by a transient leading to a steady-state stress level corresponding to the new value 
of V. It was suggested by DIETERICH (1979) to describe the transient by an 
equation for a 'relaxation' with time t of the ageing time ta towards its steady-state 
value tw given by (1): 

dt~ t~ - tw 
- , ( 2 )  

dt tw 

with a relaxation time equal to tw. This leads to an expression for the shear stress 
of the form 

= ~(v ,  ta)~ (3) 

where ~ is the normal stress and #(V, ta) is the rate (V) and state (ta) dependent 
coefficient of friction which in steady-state, when t~ = t,,, depends only on sliding 
velocity. (In the above equation, both stresses are nominal, i.e., they refer to the 
total area of the sliding object.) 

The velocity dependence of z at steady-state (ss) is of paramount importance 
as instability of a sliding regime depends primarily on the sign of the deriva- 
tive d'css/dV. In a generally accepted picture (DIETERICH, 1979; RICE, 1983; 
DIETER~CH, 1993; CHESTER and HIGGS, 1992), Zss monotonically decreasing with 
V is considered in the context of unstable sliding ('stick-slip') on a crustal fault. 
However, some experimental data (SH~MAMOTO, 1986; TEUFEL, 1981; DmTERICH, 
1993), indicate that d z s s / d V  ceases to be negative and a slight increase in ~ss is 
recognizable at high sliding velocities. Since the existence of ascending portions of 
the Zss vs. V curve will have significant consequences for the characteristics of 
unstable frictional sliding, notably for the period of 'stick-slip', we shall discuss 
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possible mechanisms giving rise to such a feature. It will be shown that an 
N-shaped rss vs. V curve should be expected quite generally, for both ductile and 
brittle materials in frictional sliding. The period of stick-slip type relaxation 
oscillations in the unstable sliding regime will be related to the above-mentioned 
N-shaped curve. 

The Case of  a Ductile (Bowden-Tabor) Material 

Direct quantitative observations of frictional contacts during slip (DIETERICH 
and KILGORE, 1994) suggest that ageing of contacting asperities can be related to 
an increase of contact area with the logarithm of time. Here it will be shown how 
creep of asperity contacts under the normal load can give rise to an N-shape 
friction characteristic for a ductile material. The frictional sliding process is 
assumed to be of the Bowden-Tabor type (BoWDEN and TABOR, 1950). Forces 
normal to the surfaces deform the contacting asperities causing them to 'weld' 
together. Forces parallel to the surfaces are determined by the resistance to shear of 
the junctions thus formed. It is further assumed that the normal load P is supported 
by N asperity junctions which constitute only a small fraction of the total asperity 
population (Fig. 1). 

Initial 'instantaneous' loading leads to flattening of asperities so that the height 
of a junction is decreased from hi down to ho. The relation between ho ~hi and the 
lateral size, a, of a columnar asperity junction can be evaluated from the relation 

P ho 
c -- ay (4) 

Na ~" h i 

where a~ is the yield stress under compression. This relation is based on the 
assumption that the area of contact for a single asperity junct ion is inversely 
proportional to its height implying constancy of volume. Since these columnar 
junctions undergo creep under a compressive normal stress, their cross-sectional 
area increases as they shorten with the ageing time t a (Fig. 2) as does the resistance 
to shear. 

v 

Figure 1 
Geometry of asperity junctions (schematic). 
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1:2 
hi-.. _ m 

CREEP 

a 

Figure 2 
Creep of contacting asperities (schematic). 

_i 

The creep rate is given by 

8cree p = 8 o exp(O-loc/S ) (5) 

where S is the strain rate sensitivity of the flow stress, o-lo o is the local normal stress 
acting in an individual asperity junction, and io is a pre-exponential factor consid- 
ered to be stress independent. Both S and 8 o are temperature dependent. In terms 
of the variation of the height h of a junction with the ageing time ta equation (5) 

can be rewritten as 

dh/dt.  

ho 
-- '~o exp(~ 

Using equation (4) the varying stress alo o is expressed as 

P / N  h 
r 

%~ a2(h~/h) - r ho 

leading to 

(6) 

(7) 

ah/dt  . 

h~- - e o e x p ~ - ,  ho)" (8) 

In this derivation it has been assumed that the variation of the asperity height is 
sufficiently small, and h in the denominator on the left-hand side of (8) has been 
replaced by ho. A further assumption is that no additional asperity junctions arise 
during the ageing time when the distance between the two surfaces decreases as the 
length of existing junctions decreases by creep. Under this assumption, a continual 
reduction of normal stress in an asperity results from the increase of cross-sectional 
area which is proportional to the creep rate. If  we were to include the occurrence 
of new asperity contacts resulting from the sliding surfaces coming closer together 
due to the asperity flattening, the stress would also decrease as a function of an 
increase in N. For  small decrements in h, the increment in N and consequently that 
in the total contact area, would be proportional to the creep rate. The concomitant 
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increase in shear force stemming from the growing number of asperity junctions 
would be proportional to the creep rate as well. A simple way to take into account 
both effects is to include a multiplicative correcting factor (1 + ~) in the term 
describing the changes in the cross-section of an asperity junction, thus introducing 
a model parameter ~. 

Integration of (8) yields 

c 0-o  

0-.) e 

In the 'static ageing' case t= is synonymous with the actual ageing time, while in the 
dynamic case, t, obeys (2) and tends towards the steady-state value t~, given by (1). 
Notice that equation (9) states that the total contact area increases with time 
logarithmically. Accordingly the static coefficient of friction will obey a logarithmic 
time dependence in compliance with the classic work by RABINOWICZ (1965). 

Equation (9) was obtained under the assumption that no strain hardening 
occurs during creep. As a consequence, it loses its validity at large times when strain 
hardening accumulates to inhibit creep of asperity junctions. A characteristic 
reduction of the asperity junction for creep to be suppressed, characterized by the 
asperity height h*, can be estimated by equating the stress associated with strain 
hardening, 0 In (h/ho), to the normal stress a~ (h/ho) acting in an asperity junction: 

ho 
h* =~ 1 + O - y ~ O  ' (10) 

Here 0 denotes the strain hardening coefficient. As a~ is smaller than 0, the quantity 
h/ho is always sufficiently close to unity, which justifies the first-order expansions in 
h - h o  made throughout this paper. 

In a somewhat simplified description we will consider creep of asperity junctions 
to reduce their height down to the critical value h* following equation (9) and then 
to terminate at that value of h. The above condition of termination of creep can be 
expressed in terms of a critical ageing time t~* related to h* via equation (9) which, 
in turn, is related to a critical imposed sliding velocity V* according to equation (i). 
That is to say, for velocities V below V* the total contact area will be velocity 
independent. An estimate for V* can be obtained by equating the asperity height h 
given by equation (9) to h* expressed by equation (10) and inserting ta = tw ~ a/V:  

An asperity junction is plastically sheared with a local plastic strain rate of 

~1oc ~ (a/ho) " (1/tw) (11) 

where, as mentioned above, t w can be estimated as a/V.  As the process of shearing 
of asperity junctions and the process of asperity creep are governed by a common 
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mechanism of plastic deformation, the shear stress necessary to produce the local 
strain rate given by (11) can be expressed in a form related to that of eq. (5): 

zloc=~S 2~o / = ~ S  In . (12a) 

The factor 1/2 stems from the Tresca approximation relating the shear strength to 
the tensile strength. Equation (12a) is valid for sufficiently high shear rates. At low 
shear rates, the dependence of the shear rate on shear stress is better represented by 
a linear than an exponential relation. A convenient interpolation of the two limits 
is given by a hyperbolic sine function. Accordingly, in this regime (12a) is replaced 
by 

1 - - 1  1 qoo = ~ Ssh = ~ Ssh (12b) 
\ e o /  

where sh -I denotes the inverse of the sh function. Obviously, for V/(hoi, o) ~> 1, eq. 
(12b) reduces to eq. (12a). With the above equations, we can now calculate the 
velocity dependence of the coefficient of friction. Assuming that the variation in the 
height of an asperity junction during the 'ageing' time ta is small, i.e., that 
(ho -h)/ho ~ 1, the nominal shear stress acting parallel to the sliding surfaces reads: 

_ N~looa2(ho/h)L 2 =-2N 1 + (1 + ~) --ay 

I O" c . 
xln 1 +~(eota) e x p ( G ~ s h - l (  V ~  (13) 

\ s j A  \ho oll 

where L 2 is the total surface area. In equation (13), the parameter ~ accounts for 
the increase in the number of asperity contacts due to creep of the existing ones, as 
discussed above. The dynamic coefficient of friction, 

# = L 2 z / P ,  (14) 

can now be calculated by combining eqs. (13) and (4): 

# = # o  1 + ( 1 + 3 )  In 1+ ,.(40ta) exp . ~  (15a) 
O'y O'y 

where 

l h o l  
# o - -  2 hi - 2 "  

Equation (15a) only holds as long as creep continues, i.e., for V > V*. For V < V*, 
the corresponding expression, 

# = #o. ~ ~ry \ho~o/ 
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describes a monotonic increase of the coefficient of friction with V. For the case of 
V > V* the steady-state (ss) coefficient of friction is given by 

c o ' c  1 P 
#ss = # o (  1 + ( 1 +  ~ ) ~  l n I l +  ( ~ ) ( ~ ) e x P ( S ) ] } .  S s h - @  ( h ~ o )  (16) 

which yields a nonmonotonic, U-shaped /~ versus V curve. A minimum of the 
coefficient of friction corresponds to a sliding velocity 1/2. 

Combining equations (15b) and (16), which together give the coefficient of 
friction in the entire velocity range, one recognizes that the resulting # versus V 
curve is N-shaped (Fig. 3). Qualitatively, the three branches of the N-shaped curve 
can be understood as follows: In the low and the high velocity limits, the total 
contact area does not depend on the sliding velocity, and the velocity dependence 
of the coefficient of friction stems solely from the strain rate dependence of the local 
shear stress: In the intermediate regime, the behavior is dominated by an increase 
in the contact area with an increase of the ageing time associated with a decrease 
in the velocity. It should be noted that in the entire velocity range the isostructural 
(t a = const) response of ~ to a jump in V is positive, (0~/0 In V)structure = S > 0. 

To get a feel for the orders of magnitude of the velocities V1 and V2 correspond- 
ing to the maximum and the minimum of the coefficient of friction, respectively, we 
may take values of parameters representative of  pure metals, e.g., 

4 o ~_ 10 -7 S - 1 ,  O" 5 /0 g 0.25, and ~r5lS ~- 10. 

The results also depend on the condition of the contacting surfaces. For example, 
for laboratory tests on metals one may take ho ~ 1 #m. Estimating V1 by simulta- 
neously solving eqs. (15a) and (15b) yields Vi ~-Doho exp(o-~/0) ~ 2.2. 10 -3 /xm/s- -  
a value in proximity of  V* as evaluated from eq. (9'). By minimizing the expression 
for # given by eq. (16) one obtains V2 ~2 .5 '  lOShoio ~ 2 . 5 .  10-2/xmls. Thus, in 
this estimate, the range of negative velocity sensitivity of the coefficient of friction 
spreads over one decade in velocity. The magnitude of the coefficient of friction at 

~ss' 

/ - [  ~I 
" I ~I I I 

In V 1 In V 2 In V 

Figure 3 
Sliding velocity dependence of the coefficient of friction in the steady-state regime. (Ductile 

case; schematic.) 
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the maximum, evaluated using equations (15b) with the above estimate for V1, just 
slightly exceeds/~o- i.e., it is about 1/2, which is consistent with the reported values 
of the static friction coefficient. It is worth emphasizing that what is commonly 
regarded as the static coefficient of friction is in fact the value of  the dynamic one 
corresponding to a low velocity at the limit of the measurement sensitivity. 

The Case of a Brittle (Byerlee) Material 

In his paper on the fi'iction based on brittle fracture BYERLEE (1967),  suggested 
that it is more appropriate to assume that frictional sliding of many geologic 
materials is governed by brittle fracture of asperities. In other words~ an asperity is 
assumed to fail in a brittle way, rather than by plastic shear. In the brittle case, the 
asperities do not yield plastically, and the number of contacting asperities is 
primarily goverrzed by the surface topography: In this situation one has to distin- 
guish between two principally different velocity regimes. In the high velocity case, 
the initial contact, which is 'tip-on-tip', has no time to evolve, and the stress 
required for sliding is that for crushing the asperities. This is the regime discussed 
by BYERLEE in his original paper (1967). As suggested in the same paper, 
interlocking of asperities may occur, and we shall consider this as an important 
effect in the low velocity range. Given enough time, contacting asperities will slide 
on each other creating fresh contact area. These new adhesive contacts have to be 
sheared for macroscopic sliding to proceed. In what follows we consider these high 
velocity (crushing) and low velocity (interlocking) regimes. 

(i) 'Crushing' Regime (High Velocity). The tip of a normally loaded conical 
asperity (Fig. 4) is crushed (in compression) under the load p and the tangential 
force f needed to break it (in tension) when the following condition (TIMOSHENKO 
and GOODIER, 1951) is satisfied: 

f 

/k 
Figure 4 

Normal (p) and tangential ( f )  forces on a brittle asperity. 
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where T and C denote the tensile and the compressive strength of the material 
respectively, and k is a proportionality constant. It is well known for brittle 

materials such as ceramics that the tensile strength is time dependent. This effect is 
referred to as 'static fatigue' [cf., ASHBY and JONES, 1986] and the time dependence 
can be described by a power-law 

T = To(to/t) 1/" (18) 

where To and to are scaling quantities with the dimensions of stress and time 
respectively, and the exponent n is typically on the order of  ten. For  steady-state 
conditions, the time t in the above expression is obviously the waiting time at the 
asperity, t = tw oc 1/V. Hence, the shear stress ~ is expressed in terms of the normal 
stress o- as 

= . ~r (19) 

where k* = const. This yields the steady-state coefficient of frictions 

+ To to 1/n 

(ii) ' Interlocking Regime'  (Low Velocity). We assume that the rate of sliding of 
two contacting asperities on each other and thus the rate of creation of new 
adhesive area, is proportional to some power of local shear stress acting along the 
common surface. One possible mechanism of  this process is breaking of  what we 
may call 'secondary asperities' on the surface of  the primary ones. Considering this 
particular mechanism which is illustrated by Figure 5 will allow the analysis to be 
more focussed, while capturing the main features which are common to any 
mechanism by which new adhesive surface is created. 

We assume that the upper asperity can slip down the slope of  the lower asperity 
by breaking 'secondary asperities' on its surface. The rate of growth of the length 
of contact l with the dwell time at a 'primary asperity', i.e., the steady-state ageing 
time, G, is given by 

dl 
- b/tb (21) 

dtw 

where b is the average distance between secondary asperities (considered to be of 
the same order of  magnitude as their size) and t b is the average time required to 
break a secondary asperity. The latter quantity is related to the force p via equation 
(18) where 

T ~ p cos 0 
lb (22) 
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/ 

Figure 5 
Formation of an adhesive junction between contacting primary asperities by breakage of secondary 

asperities (schematic). 

Here Ib represents the contact area and 0 is the asperity angle measured from its axis. 
Equation (21) is then rewritten as 

dl b (p cos O ~ n 
d t~=t  o \  robl ] (23) 

which yields, upon integration, 

[=(n + 1)l'('~+"(t~iI('~+"( p cos O~ nl(n + l) 

\ t o /  \ Tob~ ] -b. (24) 

The force necessary to shear an adhesive junction along the contact of length l is 

given by 

f s i n  0 = lbrj (25) 

where f is the force to be applied in the direction normal to the asperity axis, i.e., 
parallel to the fault. The local shear stress in the junction, zj, is related to the local 
strain rate in the junction, 971oc, through an Arrhenius-type equation yielding 

~j = Ssh - '(7:~ ~ (26) 
\7o  / 

where S denotes the strain rate sensitivity of the shear stress and ?)o is the 
pre-exponential function in the Arrhenius equation. 

The local shear stress in a junction can be evaluated as the ratio of the strain 
( ~ h/(h �9 2 tan 0) = 1(2 tan 0)) associated with shearing the junction and the time tw, 

?)1oo = (2tw tan O) - 1  (27) 
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Using equations (24)-(26), the following relation between the total shear force 
F = N f  and the total normal force P = Np (where N is the number of adhesive 
junctions) is obtained 

#ss=FiP=(n + 1)'/@+ 0 S c~ 0 (t.)ii("+i)sh_i(cotanO ~ 
To \~oJ \~1. (28) 

It is readily seen that the coefficient of friction in steady state, #ss,  given by 
equation (28) depends on the waiting time and on the sliding velocity in a 
nonmonotonic way. At low velocities the velocity dependence is described by the 
power-law dependence Yss ~ V l -  1/(n + l) and is dominated by the rate dependence of 
the shear strength. At larger velocities, but still in the 'interlocking' regime, a 
decrease of Pss with V stemming from the other time dependent factor prevails. 

The combined velocity dependence of the coefficient of friction arising from the 
two different velocity regimes is again N-shaped. Qualitatively, for high sliding 
velocities (Byertee regime proper) no junctions have time to form and primary 
asperities have to be crushed. Since the tensile strength increases with strain rate, 
#ss is an increasing function of V. At lower velocities (interlocking regime), 
secondary asperities are broken, and the longer the waiting time, the larger is the 
length of a junction formed along a smooth 'cleaved' slope of a primary asperity. 
In this range of sliding velocities the coefficient of friction increases as V decreases. 
Finally, at very low sliding velocities, asperity junctions are fully formed, and only 
the velocity dependence of the tensile strength is relevant. Here, again, the coeffi- 
cient of friction decreases with decreasing sliding velocity. 

It follows fi'om equation (28) describing friction in the interlocking regime that 
the maximum on the gss vs. V diagram (Fig. 6) corresponds to the following value 
of the sliding velocity: 

a% e n+ 1 ( 2 9 )  
VI - cotan 0 

~tss 

] ]  j u n c # o n s  I 1 

i ' J 
I I 

V 1 V2 

J 
I Rver lee  r e g i m e  

V 

Figure 6 
Sliding velocity dependence of the coefficient of friction in the steady-state regime. (Brittle 
case; schematic. Note that the diagram is drawn strongly not to scale in order to display both ascending 

branches of the curve.) 
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(In this derivation, the sh -1  function has been replaced with the logarithmic one.) 
With 7o of the order of 10-7-10 -6 S -1, a ~-h o -~ 1 #m and n of the order of ten,  the 
velocity V~ is estimated to be of the order of 10 2-10 1 /~m/s and to be significantly 
larger than for ductile (Bowden-Tabor) materials. 

A fortunate circumstance that made it possible to evaluate V 1 is that the time t o 

determining 'static ageing' does not enter eq. (29). Unfortunately, a reliable 
evaluation of the velocity V2 corresponding to the minimum of the coefficient of 
friction is more difficult. An estimation of this velocity signifying a transition from 
the interlocking to the crushiffg-regime and from the intercept of the curves 
described by equations (20) and (28) involves parameters whose values are uncer- 
tain, notably t o. Using, as an example, the parameter values of S /To  =0.1, 
T o / C = O . 1 ,  a = l # m ,  ~o=10-3S  1, n = 1 0  and to=0 .1s ,  one finds that 
V2 ~ 102/~m/s. However, for the reason mentioned, this value cannot be used with 
any confidence, and the above estimate was only meant to demonstrate that an 
N-shaped characteristic is possible for plausible values of the parameters in the 
brittle case as well. Although this is an unsatisfactory situation, we can still 
conclude that the 'N-shapedness' of the # s s  vs. V characteristic found in the 
previous section for ductile materials also holds for brittle ones and thus is a rather 
general feature of frictional sliding. This is true even though the whole range of 
velocities in which this shape can be revealed in a particular system may not always 
be accessible to tests. 

St ick-s l ip  on a Fault  

Both the Bowden-Tabor and the Byerlee types of materials will be treated within 
a common frame: the shear stress z is considered to depend on the 'ageing time' t a 
that is identical to the waiting time t w for steady-state sliding and relaxes to t w 

according to equation (2) otherwise. The waiting time tw is given by a /V .  In steady 
state, the dependence of ~ on V is represented by an N-shaped function a # s s ( V  ) 

shown in Figure 7, along with the curve for ~l~ss(tw). 

We adopt the model of a fault patch embedded in an elastic body (R~c~, 1983; 
DmTERICH, 1993). Stress acting on the patch is determined by remote stressing, slip 
on the patch, and the elastic compliance. The patch is considered as a one-degree- 
of-freedom system. The equation of motion for the slip displacement c~ reads 

z(O -- K6 = o-. #(ta) (30) 

where v(t) is the remotely applied stress and- -K3  is the decrease in stress due to 
fault slip, and K being the elastic stiffness. The right-hand side of the equation 
represents the frictional resistance to sliding that depends on the ageing time t,. The 
function lt(t~) has the property that it reduces to the function #(tw) depicted above 
when t~ relaxes to its quasi-steady state value, tw = Dc V ~ -a /~  according to equa- 
tion (2). The inertia effects have been neglected. 
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Obtss (a) 

i .  

tw 

~5~SS (b) 

1. 

V 

Figure 7 
Dynamic coefficient of friction as a function of (a) the waiting time t~ and (b) the sliding velocity V. 

It is interesting to note (RICE, 1992; ESTRIN, 1995) that mathematically, the 
system described is similar to another system undergoing dynamic ageing, namely, 
to a material exhibiting the so-called Portevin-Le Chatelier effect (KuBIN and 
ESTRIN, 1985; MCCORMICK, 1988). In such a material, dislocations temporarily 
arrested at localized obstacles are additionally pinned by diffusing solutes, the 
pinning effect being an increasing function of the waiting time at the obstacles i.e., 
a decreasing function of the rate of straining. A theory of this phenomenon 
(KUBIN and ESTRIN, 1985) can account for the effects observed. The model of 
frictional sliding under consideration can be treated using the parallel with the 
Portevin-Le Chatelier effect, Stability of sliding with a constant velocity can easily 
be tested by linear stability analysis, i.e., by considering the behavior with time of 
a small perturbation of such a motion. Following a common approach (see, e.g_, 
Gu et  al., 1984; DIETERICH, 1992), we denote a perturbation in b by A6 and a 
perturbation in to by Ata, and linearize equations (30) and (2) with respect to 
these perturbations which are considered to be small. The resulting set of two 
linear differential equations is solved by taking both A6 and At~ to be propor- 
tional to exp(cot) where the sign of the 'growth parameter' co indicates whether the 
perturbation will grow or decay with time. The set of the linearized equations 
mentioned reads: 

dr 
K A 6  + a ~ A t  o = 0 

X + S + ~  <xt~=0. (31) 

The condition for this set of equations to have nontrivial solutions yields for co: 

K V  

co = #d ,u /d  in t~ - KA" (32) 

The onset of instability is signified by the condition that perturbations be growing, 
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i.e., that o be positive. This means that 

d~ 
- -  > K A .  ( 3 3 )  0 " ~  la 

In terms of the sliding velocity dependence of the coefficient of friction this 
inequality is tantamount to 

d#~s KA 
- -  < - - -  (34) 
d l n  V a 

The rate sensitivity of the coefficient of friction has thus to be negative and 
sufficiently large for unstable sliding to occur. For  zero stiffness just the negative- 
ness of  the rate sensitivity is sufficient for instability to occur. 

Let us now go beyond the linear stability analysis and try to elucidate the time 
dependence of  frictional sliding. Following DIETERICH (1992) we consider the case 
of constant rate of  remote stressing, z(t) = Zo + ~t (z o = const), and assume for 
simplicity that 'relaxation' of t a to tw is quasi-instantaneous, so that #(ta) in 
equation (30) can be replaced by #ss(tw). Differentiation of (30) with respect to 

time then gives 

r T l -  d#ss i - ~ v  = ~ f f  IT. (35) 

A steady-state solution corresponding to I)" = 0 is 

V* = ~.. (36) 

Rewriting equation (35) as 

V -  V* 
r T -  

O" d#s s 
K d V  

(37) 

we recognize that the velocity tends to its steady-state value. This steady state 
cannot be reached if V* happens to fall within the interval (V 1 , V2) of negative rate 
sensitivity of the coefficient of friction. Indeed, suppose V1 < V* < V2. For velocity 
V <  V~, the denominator in equation (37) is positive, and the velocity will 
monotonically increase until at the point V =  V~ the time derivative becomes 
infinite, and the system has to jump onto the opposite ascending branch of  the #ss 

vs. V characteristic. The velocity then acquires the value V = ~'1. As seen from (37), 
the time derivative of V is now negative and the velocity decreases monotonically 
reaching the point V = V2 where the derivative diverges and the system jumps onto 
the low-velocity ascending branch to acquire the value of V = ~'z. This 'looping' 
around the region of negative rate sensitivity will be repeated over and over again 
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CYgss 

r~  ,.o 
v2 Vl v* v2 E 

G~ss 
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Figure 8 
The trajectory of the representing point of the system on the ~rp~ss vs. V diagram: (a) relaxation 
oscillations (stick-slip) for the case of the imposed velocity V* falling within the descending branch of 
the curve; (b) a single 'catastrophic' velocity jump for the case of V* corresponding to the high-velocity 

ascending branch. 

with the variation of V following the "slow-fast-slow-fast" sequence. The type of 
discontinuous oscillations described is commonly referred to as relaxation oscilla- 
tions and it is obvious that the model proposed exhibits stick-slip behavior. It can 
be described as follows: If  the rate of remote stressing imposes a steady-state strain 
rate which the system cannot support it chooses to maintain the prescribed velocity 
on the average by spending part of a cycle in low velocity regime (stick) and part 
in high velocity regime (slip). The transitions between these regimes of sliding are 
discontinuous (Fig. 8a). The time spent in each of the two regimes can easily be 
calculated once the #ss  - V characteristic is known. Thus the time Tstic k spent in the 
stick regime is given by 

= _ a  I v~ ( d # s s / d V )  d V  
Tstick K Jvz V -- V* (38) 

and the time r s l i p  spent in the slip regime by 

f (duss/dV) dV 
TsliP = -- ~2 1 V - V *  " (39) 

The period T of the relaxation oscillations is given by the cycle duration 

T = T~t~c k + T~lip. (40) 

While periodic seismic acitivity is predicted by the model in the range of 
KV1 < ~ < KV~,  it is also interesting to mention that for high rates of stressing 
corresponding to ~ > KV2 a singular seismic activity event will occur. After a jump 
from V~ to I~ 1, the velocity will increase monotonically until the steady-state 
velocity V* = i / K  > V2 will be reached with which subsequent sliding will continue 
(Fig. 8b). 
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Discussion and Conclusion 

The idea that the velocity dependence of frictional sliding may be represented by 
an N-shaped curve is not entirely new. A friction law of this type was proposed by 
BARENBLATT et al. (1981). CARLSON and LARGER (1989) also indicated that such 
type of model might be appropriate, though they did not use this form of frictional 
law in their analysis of earthquake statistics. In the present paper, micromechanical 
models giving rise to N-shaped friction characteristic have been considered. It has 
been shown that for a wide range of materials including ductile (of  Bowden-Tabor 
type) and brittle (of Byerlee type), the sliding velocity dependence of the steady- 
state coefficient of friction should be given by this type of characteristic curve (Fig. 
7). For the Bowden-Tabor case, the N-shapedness of the friction characteristic 
directly follows from the fact that the contact area affected by creep under normal 
load is velocity independent in the limit cases of high and low sliding velocities. The 
descending portion of the curve is associated with the intermediate velocity range 
where the contact area increases with the asperity contact time and decreases with 
growing sliding velocity. The positions of the extrema on this curve can be fairly 
reliably estimated once the surface conditions, particularly, the average asperity 
size, are known. Depending on the material undergoing frictional sliding, the 
predicted general features of the # - V characteristic may or may not be accessible 
to laboratory tests. In the Byerlee case, the N-shaped fi'iction law has been 
predicted for brittle materials with a time dependent tensile strength ('static 
fatigue'). A combination of this effect occurring in the interlocking regime with 
direct asperity crushing mechanism in the high velocity regime has been shown to 
result in this type of characteristic. 

We are not aware of any laboratory measurements that would substantiate the 
N-shape of the friction law. However, nonmonotonic behavior of the coefficient of 
friction with the sliding velocity has been reported repeatedly. We can only speculate 
that the 'inverted U' shape of the # vs. Vcurve for the case of metal-on-metal friction 
(RABINOWITZ, 1965), represents a portion of an N-shaped curve near the maximum. 
The location of the maximum is consistent with the estimate made above for the 
ductile case. Singular observations for minerals or rocks tend to suggest N- 
shapedness, cf. SHIMAMOTO'S (1986) observations on friction of halite, but there can 
be a multitude of reasons for that. DIETERICH and LINKER (1992) have found a 
minimum in the /~ - V curve for granite which is perhaps again a portion of an 
N-shaped characteristic possibly around V2. The variation of the minimum with the 
normal stress shows a tendency consistent with that observed by Dieterich and 
Linker. Of course all this does not warrant the validity of the friction law proposed 
in the present paper and more focused experiments targeting the nonmonotonic 
velocity dependence of friction are needed to verify it. 

In the context of earthquake modeling, the N-shapedness of the friction 
characteristic appears to be of significance, as the periodicity of earthquakes on a 
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fault associated with relaxation oscillations of the sliding velocity (stick-slip) is 
determined by the shape of the ascending branches of the characteristic rather than 
by its behavior in the range of negative rate sensitivity. It is therefore suggested that 
the shape of the coefficient of friction vs. sliding velocity characteristic proposed 
above be employed in earthquake modeling. All other ingredients of the Dieterich- 
Rice-Ruina approach, notably the kinetics of relaxation of the ageing time ta to its 
steady-state value tw (cf., equation (2)), should be retained. A nice feature of the 
model proposed is that for the prediction of the periodicity of seismic activity on a 
fault, only the shape of the ascending branches of the l~ss-  V characteristic 
together with the positions of the extrema, have to be known in the case of remotely 
applied stress. In this stress-driven case, the system never enters the interval of 
negative rate sensitivity. This is, of course, a consequence of neglecting dynamic 
effects in the model. Another consequence is that the velocity ~'1 is overestimated 
in this approach. Inclusion of inertia would also affect the calculation of the 
integrals in eqs. (38) and (39) and make the analysis more complicated. In the 
present paper we chose to keep this part of the problem as simple as possible and 
concentrated on the effect of the form of the friction law. Thermal effects were not 
included for the same reason. 

It should be mentioned that in the relaxation oscillations regime periodic 
occurrence of velocity jumps (i.e., periodic seismicity) is expected from the simple 
model outlined above. In recent years, stochastic models (BURRIDGE and 
KNOPOFF, 1967; CARLSON and LANGER, 1989; BAN and TANG, 1989; CHRIS- 
TIANSEN and OLAMI, 1992), using frictional laws with d#ss/dV < 0 in conjunction 
with spatial coupling were put forward to explain the earthquake statistics, viz. the 
Gutenberg-Richter law. A local # vs. V characteristic of the type proposed in the 
present note, combined with such spatial coupling models, leads to interesting 
statistics of earthquakes. The mentioned parallel of both dynamic strain ageing and 
frictional sliding phenomena being associated with negative rate sensitivity was 
pursued further (LEBYODKIN et  al., 1995). Similarity of the statistics of stress drops 
during tensile deformation of a material exhibiting negative strain-rate sensitivity 
and the earthquake statistics was demonstrated. 

We should like to conclude by stating that by all the existing uncertainties with 
the estimates of the extremal points of the proposed N-shaped friction characteristic 
this kind of velocity dependence of friction has a micromechanical justification and 
does not contradict the experimental evidence, however limited it might be. The 
model deserves further experimental scrutiny, in particular in view of the sensitivity 
of the instability condition and of the intrinsic periodicity of the relaxation 
oscillations, and hence of the associated seismicity, to the details of the friction vs. 
sliding velocity characteristic. Though spatial coupling will lead to a complex 
spatio-temporal pattern of seismic events, the core of the problem is the local friction 
law, and we believe that the N-shaped characteristic proposed in this article has a 
better micromechanical foundation than a monotonic # vs. V law commonly used. 
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