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ASYMPTOTIC BEHAVIOR OF THE NEUTRAL CURVES OF THE LINEAR 

STABILITY PROBLE~ FOR A LA~INAR BOUNDARY LAYER 

V. V. Mikhailov UDC 532. 526 

Asymptotic flow schemes corresponding to two branches of the solution for 

the neutral stability curve of a laminar boundary layer in an incompressible 

fluid are constructed. Two-term asymptotic solutions are obtained in the 

limit when the Reynolds number tends to infinity. The linear formulation 

of the problem is used and the flow is assumed to be two dimensional. 

i. We consider the two-dimensional laminar flow of a viscous incompressible fluid 

near a flat surface. We shall assume that small two-dimensional unsteady perturbations 

are superimposed on the main steady flow. We also assume that the characteristic trans- 

verse scale 6 of the main flow is much less than the longitudinal scale L, and that the 

small unsteady perturbations have characteristic wavelength ~ << L. 

Then over a distance of order I the main flow can be regarded as plane-parallel 

with a relative error of order I/L. Under this assumption, the Navier--Stokes equations, 

linearized with respect to the small perturbations, can be written in the dimensionless 
form 

- -  + V - -  +u 
Ot Ox 

Ou Ov t c~p 
_ _  +u_ V - -  
0 t c~,r ~+2 0 y 

+ +)x  2 ] 

++. { ++v +~+v~ au Ov 

ax + ] .  ,~x +y 
--0 

Here, V(y) is the longitudinal velocity of the main flow divided by : ,~=hmV; t++, u 

are the small corrections to the longitudinal and transverse velocity divided by V 6 and 

V6~; p is the perturbation of the pressure divided by pV~ (p is the density); t]he 

longitudinal and transverse coordinates x and y are divided by ~ and 6, respectively; 

= d/A; Re = ~V6/v ; ~ is the kinematic viscosity. 

We shall assume that the main flow corresponds to flow in a boundary layer, and 
therefore Re 6/L = O(I). From this we conclude 

(~ Re)-'=O(~,/L) <<I 

Thus, to the same relative accuracy with which the main flow can be regarded as 

plane-parallel, the right-hand sides of (i.i) in the case ~ ~< 0(i) can be ignored in 

the main part of the flow, and the viscosity need be taken into account only in certain 
sufficiently thin layers Ay < 0(i). 

Equations (i. I) can be readily reduced to the well-known Orr--Sommerfeld equation 

if the perturbations are assumed to be harmonic. We note however that in the layers 

Ay in which the viscosity of the gas is important the right-hand sides of Eqs. (i.i) 

admit certain simplifications; in these layers, with relative error ~2s we omit the 

(1.1) 
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term a282u/Sx2 in the first equation and on the right-hand of the second. In addition, 
we introduce the phase velocity c of propagation of the perturbations and make the sub- 

stitutions 

~=x-ct, W=V-c, ~=q(V)ext)(~), v=W(y)~(U)ex~,(i~), p=iR(~),,x~,(i~) 

T h e n  f r o m  ( l . 1 )  we o b t a i n  

W~,.I.B=_ie:~(W~) ", a~l:V~r+R~=(3 
H e r e ,  a 3 = ( a  R e )  - 1 ,  a n d  t h e  p r i m e s  d e n o t e  t h e  d e r i v a t i v e s  w i t h  r e s p e c t  t o  y .  

A s s u m i n g  t h a t  p ,  u ,  v + 0 a s  y § ~ a n d  u = v = 0 f o r  y = 0 ,  f o r  t h e  s y s t e m  ( 1 . 2 )  

we o b t a i n  t h e  b o u n d a r y  c o n d i t i o n s  

t ,  R ~ 0 ,  y ~ ;  ~ = t ' = O ,  y = 0  

2 .  S i n c e  t h e  i n f l u e n c e  o f  v i s c o s i t y  c a n  b e  i g n o r e d  i n  t h e  g r e a t e r  p a r t  o f  t h e  

b o u n d a r y  l a y e r ,  i t  f o l l o w s  f r o m  R a y l e i g h ' s  t h e o r e m  t h a t  f o r  V ( y )  p r o f i l e s  w i t h o u t  p o i n t s  

o f  i n f l e c t i o n  t h e  c r i t i c a l  l a y e r ,  o n  w h i c h  W = 0 ,  m u s t  b e  s i t u a t e d  a t  a n  a s y m p t o t i c a l l y  
s m a l l  d i s t a n c e  y .  f r o m  t h e  s u r f a c e  o f  t h e  b o d y .  A t  t h e  s a m e  t i m e ,  e s t i m a t e s  o f  t h e  
o r d e r s  o f  m a g n i t u d e  b y  m e a n s  o f  ( 1 . 2 )  g i v e  ~ = O ( y . )  = o ( 1 ) ,  a n d  t h e  e x i s t e n c e  o f  t w o  
a s y m p t o t i c  f l o w  s c h e m e s  c a n  b e  p r o p o s e d :  a )  a s c h e m e  w i t h  t h r e e  c h a r a c t e r i s t i c  f l o w  

r e g i o n s  a n d  b )  a s c h e m e  w i t h  f i v e  r e g i o n s .  I n  w h a t  f o l l o w s ,  we s h a l l  r e f e r  t o  t h e  
c o r r e s p o n d i n g  r e g i o n s  i n  w h i c h  t h e  i n f l u e n c e  o f  v i s c o s i t y  i s  i m p o r t a n t  o r  u n i m p o r t a n t  
as "viscous" or "inviscid." We consider the structure of the asymptotic schemes a) 

and b), denoting the corresponding flow regions by numbers. 

( 1 . 2 )  

Scheme a) 

I. An inviscid region with dimension Ay I = 0(i/~) and W ~ 1 -- c = const. 

2. The main inviscid part of the boundary layer, Ay 2 = 0(I), W = V -- c. 

3. The viscous region next to the surface of the body, 5Y3 = 0(E) = O(u), W = 0(c). 

Scheme b) 

1 and 2. Regions analogous to regions 1 and 2 in Scheme a). 

3. The viscous region near the critical layer, which is detached from the surface 

of the body, Ay 3 = O(a), W = 0(~), ~ = o(~). 

4. The inviscid region between the body and region 3, Ay 4 = 0(~), W = 0(~). 

5. The viscous wall layer Ay 5 = o(~), W = 0(~). 

The solution of (1.2) in region 1 after corresponding normalization has the form 

�9 = e x p  ( - - a y )  ; R = a ( l - - c )  ~ 

We s e e k  t h e  s o l u t i o n  i n  r e g i o n  2 i n  t h e  f o r m  o f  a s y m p t o t i c  s e r i e s  i n  t h e  s m a l l  

parameter ~ :  

The boundary conditions as y + ~ for this solution follow from the expansion of 

the relations (2.1) in powers of ~. 

form 

( 2 . 1 )  

( 2 . 2 )  

We assume that in region 2 as y + 0 we can expand V in an asymptotic series of the 

V=a~y + a,~yZ + a~y ' = 0  ( r ) , y = O  (~)  ( 2 -  3) 

Here, a3=0, if V corresponds to flow in a boundary layer [i]. 

Then for y, and c we can write 

y * = ~ Y i + .  �9 �9 c = a l y l ~ + .  �9 �9 ( 2 . 4 )  

U s i n g  ( 2 . 2 ) ,  we o b t a i n  f r o m  ( 1 . 2 )  

y v 

6 7 0  



The integrals in (2,5) converge as y * ~ if the displacement thickness and the 

momentum loss thickness are finite. However, the integral in the relation for '.r 1 

diverges as y + y,. 

Therefore, separating this singularity explicitly, we obtain 

! , 2a2 (B'--Tm2a~" Ra*-4aag~aC'  
x * = i + ~  '---- a §  - ~ .. (2.6) al2v I a~ ~ cz in a t  a l Z ~  

�9 * = 1 + - - ~ - - 1  + a  B +  + ~ l n ~ z - - - - ~ . . .  f o r  a~=0 ( 2 . 7 )  
a i a I] a t '~ 

(V--.* + ~ - t ~ d y ; 2 a z  D=~ (V'-t)dg (2.8) R*=a+zF'it~.*+..." R2*=D-2a~g~, B= 
' \ a.l~g 2 a.,~g(l+y) ] 

fl 9 

Here, n = (y -- y.)/~, and Yl is determined from (2.4). 

It follows from (2.6) and (2.7) that for y = 0(~) the solution can be represented 

in the form 

�9 * = ~ , * §  In ~x~.*+~'c~*§ z In ~ , , * ' + ~ z ~ * - b &  In ~r6*+~3~7*+ct  ~ In ~zT~*§ 
( 2 . 9 )  

R * ~ a + a z f l a * ' + a 3 1 t ~ * + & R , 2 §  . ., g , = a y ~ §  ~ ln ay,,+a~g,~§ . 

�9 R~, * Using the expansions (2.3) and (2.9) and bearing in mind that Ra, R 4 can be 

regarded as constants in region 2 for y = 0(~), we obtain from (1.2) 

�9 ,.*=S,, ( ~ ) ;  ~ * = S ~  (~1)+2a~.a,-~R~*-6g,a~a, -' In ~ ( 2 . 1 0 )  

In the case a 2 = 0, the following three terms in the expansion of ~* have the form 

~J--=const ;  "~*=S~(~q)+i2y~Za~aC~In r}; ~ s * = c o n s t  ( 2 .  !l) 

Here, Si(~) are polynomials in integral powers of ~ beginning with the degree --i 
and higher. 

3. We find the solution in region 3 for ease a). 

We introduce the expansions 

e : ' = a  '~ (e, +eza In a+e~a+.. . ) ,  d'c/dq=~+aC'~l ~+(9z.u In c,.+ [q:~--a~-'-~l-2(Rz*-@aa,-"!/,) ] ~z+ . . .  ( 3 . 1 )  

For e:=0 we shall assume ~2 = ~92 = 0 as follows from the conditions (2.6) in the 
outer region 2. 

In region 3, the two-term expansion of W has the form 

W=a~la~ +a~qaa( ~l+ 2gJ + . . .  

Substituting this relation together with the expansion of R* in (1.2), we find 

�9 / / / m E  q t ; 2 - ; f  ~ _  , )  ! �9 ~ ' t  t" q~a,q~,=- - ie , tqqg,  �9 , )% J, q a,q~,,~-~e~(Ylq~, . oq~ ) - - te , (hq)~  - - 3 ~  ) ( 3 . 2 )  

Here, k = 2 for a~=~0 and k = 3 for aC--0 After a change of variables, (3.2) is 
reduced to 

r ~ o , = _ ~ ( r ~ , " + 3 ~  ,), ~ . o - - ~ ( r o , ,  T . , r  ) 
(3.3) 

r = a , % , ' "  ~1; %=a~/~ 8., a~ ( i = 1 , 2 , 3 ) ;  ~ - '  Et~ = E ~ g i  

The boundary conditions corresponding to matching to the solution in region 2 follow 
from (3.1) and (2.6): 

g~0, g~-~0, r~ 

The conditions on the surface of the body follow from (1.3): 

drldq=O, q = ~ , = - g . / ~  

U s i n g  t h e  e x p r e s s i o n  ( 2 . 8 )  f o r  y . ,  we o b t a i n  

( I n  t h e  c a s e  a z ~ O ,  r 2 = 0 . )  

( 3 . 4 )  

(3.5) 
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Then from the boundary condition (3.5), going over to the variable r and ~, and 

expanding the solution ~(rw) in a series at the point r = rl, we obtain 

,[~l~rl-2; (~2~--1"2(~,'+2r: -~) f o r  az#=.O, 6~1"1-2; 03~--1"3((~/-["21"1-~-~-1z~2"t'~ -2) f o r  a 2 ~ O  ( 3 . 6 )  

Note that the value of z in region 2 is real, from which there follows the con- 

dition 

( a , + ~  In ~ + a ~ a + . . .  ) d r = 0  Im 

The l o w e r  l i m i t  o f  i n t e g r a t i o n  can  ( w i t h  t h e  a c c u r a c y  n e e d e d  f o r  a t h r e e - t e r m  
e x p a n s i o n  o f  z )  be  r e p l a c e d  by r 1, s i n c e  Im c l ( r  1) = 0, w h i c h  l e a d s  t o  t h e  r e l a t i o n  

ca ca 

Imya,dr=O, I m ~  okdr=0 ( 3 . 7 )  

r t  r l  

F o r  t h e  s o l u t i o n  o f  t h e  f i r s t  o f  E q s .  ( 3 . 3 ) ,  t h e  s u b s i d i a r y  c o n d i t i o n  ( 3 . 7 )  i s  
s a t i s f i e d  by an a p p r o p r i a t e  c h o i c e  o f  r l ,  w h i c h  d e t e r m i n e s  t h e  v a l u e  o f  t h i s  p a r a m e t e r .  

The s o l u t i o n  o f  t h e  s e c o n d  e q u a t i o n  o f  t h e  s y s t e m  ( 3 . 3 )  i s  r e l a t e d  t o  t h e  s o l u t i o n  
of the first by 

o~=Lb~--ehO o/r/3 ( 3 . 8 )  

H e r e ,  C i s  an a r b i t r a r y  r e a l  c o n s t a n t ,  w h i c h  f o l l o w s  f r o m  t h e  c o n d i t i o n s  ( 3 . 7 ) .  

At t h e  same t i m e ,  t h e  r e l a t i o n s  ( 3 . 4 )  a r e  s a t i s f i e d .  
o 

To d e t e r m i n e  C and ~k '  we u s e  t h e  b o u n d a r y  c o n d i t i o n s  ( 3 . 6 ) .  The s o l u t i o n  f o r  
~1 shows t h a t  Im ~ ~ 0 a t  r = r 1. T h e r e f o r e ,  e q u a t i n g  t h e  r e a l  and i m a g i n a r y  p a r t s  
o f  ~k f r o m  ( 3 . 6 )  and ( 3 . 8 ) ,  we o b t a i n  

rh=e~~ C = - 2 e ~ ~  f o r  a~#0,  ~ .= - -2s~ /3+R2  ~or  a~=0 ( 3 . 9 )  
O 

We f i n d  t h e  v a l u e s  o f  ~1 and ~k f r o m  t h e  c o n d i t i o n s  o f  m a t c h i n g  t o  t h e  s o l u t i o n  
( 2 . 6 )  i n  r e g i o n  2 .  F o r  t h e  f i r s t  t e r m  os t h e  e x p a n s i o n  ( 2 . 6 ) ,  u s i n g  ( 3 . 1 ) ,  we h a v e  

ao 

~ t  

H e n c e ,  g o i n g  o v e r  t o  z and r ,  

5 

e~ =a, Iv, N~- oflr--r~ -~ ( 3 . 1 0 )  

r l  

F o r  t h e  s e c o n d  t e r m  o f  t h e  e x p a n s i o n s  ( 3 . 1 )  and ( 2 . 6 ) ,  
ca 

G o i n g  o v e r  t o  z and r and b e a r i n g  i n  mind  t h a t  i n  a c c o r d a n c e  w i t h  ( 3 . 8 )  and ( 3 . 9 )  

we h a v e  o~.=-s~~ we o b t a i n  

~ aflr= -e2~ s2~ _6a2a~-3 ( 3 . 1 1 )  

r !  

o 

Treating similarly the case a 2 = O, when ~2 = r2 = O, we obtain for E 3 

e~~ (R~*-B)  

In  a c c o r d a n c e  w i t h  n u m e r i c a l  c a l c u l a t i o n s ,  N = 0 . 9 9 9 3  and r 1 = - - 2 . 2 9 7 2 .  
O 

r e c a l l i n g  t h a t  ~3 = (a R e ) - l ,  and s u b s t i t u t i n g  ~1 and ~k i n  ( 3 . 1 ) ,  we o b t a i n  

[~e -l=0`9979a~-~a ' [t--6a~aC~a In ~ + 0  (~) ], a2#0 

h ave 

( 3 . 12 )  

F i n a l l y ,  

(3.13) 

I~e-l=O.9979a,-~a4[t+3(R2*-B)a+O(~z~ l n a ) ] ,  a2=0 

The v a l u e s  o f  R~ and B can  be c a l c u l a t e d  f r o m  t h e  r e l a t i o n s  ( 2 . 8 ) ,  and f o r  R 2 we 

R .=D+2r~Nai-i ( 3 . 1 4 )  
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4. We find a connection between r and ~ for the flow scheme b) with critical 

layer detached from the surface of the body. 

In this case, to satisfy the condition (1.3) on the surface of the body we need to 

know the solution in re~ion 4, in which the viscosity of the gas can be ignored with 

an error of order (~/~)~. 

The relations (2.6), (2.7), (2.10), and (2.11) satisfy the equations of motion 

without allowance for viscosity, but the constants which occur in these expressions 

may change on the transition through the critical layer to negative values. If we 

assume that the case of neutral oscillations is a limiting case for damped (Im e = 

Im W < 0) or growing (Im c > 0) oscillations, then on the transition through the 

critical layer in [rll must change by ~i or --~i, respectively~ In accordance with [2], 

in the passage to the limit it is necessary to use the growing oscillations, i.e., 

in region 4 the relations (3.4), (3.5), (3.11), and (3.12) do not contain in ~ but the 

expression in In] -- ~i, if a,>O. 

Bearing in mind that ~w = Y*/~ on the surface of the body (y = 0), we obtain from 

the expansion (3.10) 

~i~:~§ (4.1) 

In (4.1), the ~i are real numbers. Therefore, we can satisfy the condition ~w : 0 

in each approximation by choosing appropriately the values of Oi until imaginary 

quantities appear in the expansions for ~. 

For example, 

~,=-a,-~, ~2=2a~a~ -~ (4.2) 

The fulfillment of this condition for complex values of the expansion coefficient~ 

and the satisfaction of the condition T' = 0 for ~ = ~w require solutions of the system 

(1.2) in the wall boundary layer. By means of the relations (2.6), (2.10), and (2.11), 

the condition T w = 0 can be satisfied for a~(l to the term of order ~ and for a2=0 
to the term of order ~3. 

Bearing this fact in mind, we introduce in the wall boundary layer new variables 

equal in order of magnitude to unity: 

~=~/a; n= (~-q~)ia;  • 5 fo r  o~O,  ~[~=xl~; no=(~--q,,)la~; ~0=e3fa ~ f o r  a~=O ( 4 . 3 )  

Then in the boundary layer 

H ' = a , ( ~ , + q 2 g ] n g ) g + O ( g  ~) f o r  ~2~0, }}7=a~(~l+~,~)g+O(,g:~lng) f o r  a2=O 

Thus, if we restrict ourselves to two terms of the expansion, the value of W in 

the wall boundary layer can be regarded as constant. 

Since the value of R is also constant to the necessary accuracy for two expansion 

terms, for the flow in the boundary layer we obtain 

W ~ , ~ % ' + R ~ = - i ~ W ~ J  '' ( 4 . 4 )  

Here ,  t he  p r i m e s  d e n o t e  the  d e r i v a t i v e s  w i t h  r e s p e c t  t o  n and no: 

S i m i l a r l y ,  

~%,--a~(~]~+~a); ~ : ~ , , + ~ a ,  ~ : t + B 2 * a ;  x ~ : •  for a~=O 

The solution of (4.4) satisfying the conditions Yb = Yb = 0 for n = 0 (n o :: 0) 
and y~' + 0 as n + ~ has the form 

W ~ = - n +  (1+i) {exp [Qn ( i - l )  ] - l }  (2Q)-', Q= W~ '~ (2• -'~ (4 .5)  

It follows from (4.5) that in the limit n § 

Im ~-m/(2W~ ~) 

Restricting ourselves to two-term expansions, we obtain 

2 a ~  ~- t +  • --5 ~ f o r  aa#O 
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To d e t e r m i n e  • • • ~3, we u se  t h e  c o n d i t i o n s  o f  m a t c h i n g  t o  t h e  e x t e r i o r  
s o l u t i o n  i n  r e g i o n  4,  i . e . ,  t h e  r e l a t i o n s  ( 2 . 6 ) ,  ( 2 . 7 ) ,  ( 2 . 1 0 ) ,  and  ( 2 . 1 1 )  w i t h  i n  n 
r e p l a c e d  by i n  [ql - -  i v .  I n  t h e  c a s e s  a~<0 o r ,  r e s p e c t i v e l y ,  a~<0, u s i n g  ( 4 . 2 )  and  
t h e  t w o - t e r m  e x p a n s i o n s  o f  • and  n0, we f i n a l l y  o b t a i n  

Re-l=8~2a22at-lta611§ f o r  a~r 

Re -~ =288n2a,2a,-'9,a t~ [ i +  ( t l R 2 * - 9 B )  ~ + 0  (a  2 In a) ] f o r  a2=0 

The values of R~ and B can be calculated by means of (2.8) if we bear in mind that 
y ~ = - - ~ a 1 - 2 .  

5. The r e l a t i o n s  ( 3 . 1 3 )  an~ ( 4 . 6 )  d e t e r m i n e  t h e  a s y m p t o t i c  b e h a v i o r  o f  t h e  c u r v e s  
of neutral stability in the limit Re § ~. The solutions (3.13) correspond to the 

"lower" branch of the neutral stability curve, the solutions (4.6) to the "upper" 

branch. Note that the first terms of the asymptotic expansions obtained above (these 

terms were found earlier in [3] from the 0rr--So~nerfe]d equations) are identical for 

the relations (4.6) and differ by less than 1% from (3.13). 

In Fig. I, we give an example of calculation of the asymptotic behavior of the 

neutral curves for the Blasius profile (6~6", a~-~0,5714; a~=0, a~=-0.12014). In this case, 

integration of (3.7) gave B = --3.006. The value of D was determined from the known 

values of the displacement thickness 6* = 6 and the momentum loss thickness 6"*: 

D = -  ( t +~**/8")  

I n  t h i s  c a s e ,  f o r  t h e  l o w e r  and u p p e r  b r a n c h e s  o f  t h e  n e u t r a l  s t a b i l i t y  c u r v e  
we h a v e ,  r e s p e c t i v e l y ,  

u=0 .497  Re -'h ( t+2 ,39  R e - ' / ' + . . . ) ,  ~=0.340  Re -'/'~ ( t + 0 . 9 t  Re - ' / ' ~  

In Fig. i, the curves with long dashes show the two-term solution, and the curves 

with short dashes the one-term solution. The continuous curve is the Tollmien solution. 

I should like to thank O. V. Denisenko for making the numerical calculations. 

( 4 . 6 )  

LITERATURE CITED 

i. H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York (1968). 
2. Chia Chiao Lin, The Theory of Hydrodynamic Stability, C.U.P, (1955). 

3. C. C. Lin, "On the stability of two-dimensional parallel flows. Pt. 3 

in a viscous fluid," Q Appl. Math., 2, 277 (1946), 

Stability 

674 


