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ABSTRACT. The naive structuralist definition of truthlikeness is an idealization in the 
sense that it assumes that all mistaken models of a theory are equally bad. The natural 
concretization is a refined definition based on an underlying notion of structurelikeness. 

In Section 1 the naive definition of truthlikeness of theories is presented, using a new 
conceptual justification, in terms of instantial and explanatory mistakes. 

In Section 2 general constraints are formulated for the notions of structurelikeness and 
truthlikeness of structures. 

In Section 3 a refined definition of truthlikeness of theories is presented, based on the 
notion of structurelikeness, using a sophisticated version of the conceptual justification 
for the naive definition. 

In Section 4 it is shown that 'idealization and concretization' is a special kind of 
potentially refined truth approximation. 

INTRODUCTION 

The idea of truthlikeness or verisimilitude is that one theory can be 
closer or more similar to the truth than another. In 1974 Miller and 
Tichy proved that Popper's original definition was inadequate, for it 
did not leave room for false theories, i.e., theories having empirical 
counterexamples. In Kuipers (1982, 1984) I presented a naive structur- 
alist definition of truthlikeness that left room for empirical counterex- 
amples and that was moreover attractive in other conceptual, logical, 
and methodological respects. However, this naive definition is based 
on the assumption that the mistakes of the other type, which a theory 
can make, i.e., allowing mistaken models, are all equally bad. For this 
reason the naive definition does not seem to have real-life scientific 
examples, for in cases of scientific progress a theory with mistaken 
models is usually replaced by a theory with less mistaken, but neverthe- 
less mistaken, models. A paradigmatic case is the theory resulting from 
a concretization of an idealized theory. 

A sophisticated definition of truthlikeness should hence not only 
account for empirical counterexamples but also for the fact that one 
mistaken model may be more similar to a required model than another. 
For then there is room for improving a theory by introducing new, but 
fewer, mistaken models. Of course, a sophisticated definition should 
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reduce to the naive definition under the relevant assumptions. Finally, 
it should retain the attractive logical and methodological features of 
the naive definition. 

In Section 1 the naive definition of truthlikeness of theories is pre- 
sented, using a new conceptual justification, in terms of instantial and 
explanatory mistakes. It will briefly be shown what plausible formal 
properties it has, how it can explain established naive success differ- 
ences, how it can justify methodological rules, how it works out for 
stratified theories, and which plausible quantitative version it has. 

In Section 2 general constraints are formulated for the notions of 
structurelikeness and truthlikeness of structures. A number of specific 
examples are also given. 

In Section 3 a refined definition of truthlikeness of theories will be 
presented, based on the notion of structurelikeness, using a sophisti- 
cated version of the conceptual justification for the naive definition. It 
will be shown that refined versions of all merits of the naive definition 
follow. 

In Section 4 it is shown that 'idealization and concretization' is a 
special kind of potentially refined truth approximation. This is illus- 
trated by Van der Waals's theory of gases. Moreover, it is indicated 
how idealization and concretization can function as a strategy in validity 
research around 'interesting theorems'. 

1 .  N A I V E  T R U T H L I K E N E S S  OF  T H E O R I E S  

1.1. Preparations 

Let there be given a domain D of natural phenomena (states, situations, 
systems) to be investigated. D is supposed to be circumscribed by some 
informal, intensional description and may be called the primitive set of 
intended applications. Let there also be given a set Mp of conceptual 
possibilities or potential models designed to characterize D. It may be 
assumed that Mp is, technically speaking, a set of structures of a certain 
similarity type. In practice Mp will be the conceptual frame of a research 
program for D. 

The confrontation of D with Mp, i.e., D seen through Mp, is assumed 
to generate a unique, time-independent subset Mp(D) = T of all Mp- 
representations of the members of D, to be called the Mp-set of in- 
tended applications or the (Mp-)set of physical or empiricalpossibilities. 
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This assumption will be called the frame-hypothesis associated with 
(D, Mp). As a consequence, M p -  T contains the relevant empirical 
impossibilities. As a rule, T is unknown, or even the great unknown 
and hence the target of theory-directed research in the domain. 

It is clear that T is Mp-dependent, hence T is conceptually relative. 
It is also clear that T depends on reality through D. However, it does 
not represent 'the actual world', i.e., some actual state, situation, or 
system, but 'the set of empirically possible worlds' (as far as D is 
concerned). For that reason, the present type of realism may be called 
theoretical realism instead of descriptive realism. 

A theory is any combination of a subset X of Mp and the claim that 
T is equal to X, and will be briefly indicated by 'theory X' or just 'X'. 
Members of X are called models of theory X. Theory X is true or false 
when its claim 'T = X' is true or false, respectively. According to this 
definition there is only one true theory, viz., theory T itself. Hence T 
may be called 'the true theory' or 'the theoretical truth' or even 'the 
truth'. 

T can easily be interpreted as 'th~strongest law'. A (general) hypo- 
thesis is defined as the combination of a subset X of Mp and the (weak) 
claim that T is a subset of X (i.e., all empirical possibilities satisfy the 
conditions of X). Hypothesis X is true or false when its claim 'T ___ X' 
is true or false, respectively. Members of X are now also called models 
of hypothesis X. A true hypothesis is also called a law. 

If Y is a subset of X, the claim of hypothesis Y implies the claim of 
hypothesis X. In that case hypothesis Y is also said to imply hypothesis 
X, in agreement with standard model-theoretic usage to say that a 
statement $1 logically implies the statement $2 iff the models of $1 
form a subset of those of $2. If hypothesis Y implies hypothesis X, i.e., 
Y is a subset of X, it will not only be said that hypothesis Y (X) is 
stronger (weaker) than hypothesis X (Y), but also that theory Y (X) 
is stronger (weaker) than theory X (Y), although the full claims of 
these theories are mutually incompatible as soon as Y is a proper subset 
of X. 

If (hypothesis) Y implies the law X, it is said to explain it. Hypothesis 
T is of course the strongest law, for it is not only true as a hypothesis, 
i.e., it is a law, but it implies, hence explains, all other laws. 

A law of nature is traditionally understood to be a true impossibility 
statement, e.g., a perpetuum mobile is impossible. It is important to 
note that a hypothesis X in our sense is in fact a domain-relative version 
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X 

Mp 

Figure 1. 

of such a, potentially true, impossibility claim, viz., phenomena that 
would have to be represented by a member of Mp - X are claimed to 
be empirical impossibilities. In case hypothesis X is true, i.e., when we 
speak of law X, this claim is true. Note further that, when hypothesis 
X, whether true or false, fails to recognize an empirical impossibility x 
as such, i.e., when x belongs to X - T, this means that it fails to entail, 
and hence to explain, the law to the effect that x and similar conceptual 
possibilities are empirical impossibilities. 

It should be stressed that the presented distinction between hypo- 
thesis and theory has nothing to do with theoretical terms. Here both 
a hypothesis and a theory may or may not have theoretical terms. Later 
on I will explicitly consider stratified hypotheses and theories, with an 
observational and a theoretical level. The crucial distinction between a 
hypothesis and a theory in this article is that the claim of hypothesis X 
is just one conjunct of the combined claim of the corresponding theory 
X. 

Theory X can make two kinds of mistakes (see Figure 1). The mem- 
bers of T - X, if any, are instantial mistakes: empirical possibilities that 
are excluded by X; in other words, they are the empirically realizable 
counterexamples of X. Recall that X explains T when T includes X. 
Hence, the members of X - T, if any, may be called the explanatory 
mistakes of X (with respect to T): empirical impossibilities that are not 
excluded by X, that is, wrongly admitted models, also called mistaken 
models. Note that the explanatory mistakes form, by definition, a kind 
of counterexample that cannot be empirically realized. The set of all 
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mistakes of theory X is the union of these two sets T-X and X-T, 
which is technically called the symmetric difference between X and T, 
indicated by X ~ T. 

A theory does not only make mistakes but also makes matches. 
T fq X represents the instantial matches: empirical possibilities that are 
recognized as such by X or, in other words, they are the empirically 
realizable examples of X. Let cX indicate the complement of X with 
respect to Mp, i.e., M p -  X. X explains T, i.e., T includes X, is 
equivalent to cX includes cT. Hence, the members of cT f3 cX are the 
explanatory matches: empirical impossibilities that are rightly excluded 
by X. The explanatory matches are examples that cannot be empirically 
realized. The union of the two sets of matches of theory X is of course 
equal to the complement of the total set of mistakes, viz., c(T A X). 

Note that all mistakes and matches are ultimate, in the sense that 
they need not have been established. Established mistakes and matches 
will later come into the picture. 

The following table gives a survey of the instantial and explanatory 
matches and mistakes of a theory. 

T A B L E  I. 

matches mistakes total (union) 

instanfial T Cl X T - X T 
explanatory cT f3 cX X - T cT 
total (union) c(T A X) T A X Mp 

All concepts introduced thus far, and most of the ones to be intro- 
duced, can be illustrated by the following electric circuit (see Figure 
2). Let Pi for 1 ~< i ~< 4 indicate that switch i is on (~--~) and - Pi that it 
is off ( $ ). Let po(-  po) indicate that the bulb lights (does not light). 

+ll- 

Figure 2. 
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It is assumed that the bulb is not defective and that there is enough 
voltage. An arbitrary conceptual possibility, for instance, can be repre- 
sented by a set of unnegated pi's and the true theory about the circuit 
by the propositional formula Po ~ (((Pl & P2) v p3) & P4)- 

1.2. The Naive Definition 

From now on X, Y, etc., refer to theories or just to the sets X and Y, 
depending on the context. When the hypotheses X and Y are intended 
it will be explicitly mentioned. 

The naive definition of truthlikeness states that theory Y is at least 
as similar (close) to the truth (T) as theory X,  indicated by NTL(X,Y,T),  
if the following two conditions are satisfied: 

(Ni) T - Y is subset of T - X 
(Nii) Y - T is subset of X - T 

The instantial clause (Ni) says that the instantial mistakes of X include 
those of Y, and the explanatory clause (Nil) that explanatory mistakes 
of X include those of Y. Hence, it may be said that (Ni) and (Nii) 
require that Y instantiates and explains T at least as well as X, respec- 
tively. 

Note that (Nii) implies: 

(Nii*) When X - T is empty, Y - T is empty 

that is, the claim that Y explains T as soon as X explains T. Note also 
that (Ni) and (Nii) together are equivalent to the claim that the mistakes 
of Y (Y A T) form a subset of those of X (X A T). 

By NTL + (X, Y, T), I indicate that Y is more similar to T than X 
in the strict sense that the mistakes of Y form a proper subset of those 
of X. Here and later the strong verbal expressions 'closer to' or 'more 
similar to' will however also be used to refer to the corresponding weak 
notion. When the strict notion is meant it will be explicitly stated. 

Some equivalent formulations of NTL are instructive. The numbers 
of the sets refer to Figure 3 (in which Mp is not explicitly indicated). 
Very useful are (assuming priority of 'A'  and 'U' over ' - ' ) :  

(Ni)' X fq T - Y = 2 is empty 
(Nii)' Y -  X t_J T = 6 is empty 

The first tells that Y makes no extra instantial mistakes, and the second 
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X 

Y 

7 6 

T 

Figure 3. 

that Y makes no extra explanatory mistakes. Consider also: 

(Ni)" X N T is subset of Y n T 
(Nii)" cX n cT is subset of cY N cT 

telling that Y includes the instantial as well as the explanatory matches 
of X, respectively. 

It is important to note that improving a theory X in the sense of 
finding a theory Y such that NTL + (X, Y, T) is not an easy task, due 
to the fact that both components are counteracting. This can be nicely 
illustrated by considering, e.g., just weakening of theory X: if Y is 
weaker than X (which was defined as: Y _~ X), then Y instantiates T 
at least as well as X, but X explains T at least as well as Y. Of course, 
strengthening a theory leads to the opposite tension. 

1.3. Some Formal Properties 

Any definition of the binary relation of truthlikeness between theories X 
and Y can be seen as a special case of a ternary relation of theorylikeness 
NTL(X, Y, Z) between theories X, Y, and Z by replacing the fixed 
true theory T by the variable theory Z. Then we get the general 
definition: NTL(X, Y, Z) =of Z - Y C_ Z - X and Y - Z C_ X - Z, 
with plausible equivalent formulations. 

NTL has several interesting properties. We list the main ones. 
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reflexivity: 
antisymmetry : 

symmetry: 

transitivity: 

NTL(X, X, Y) (left) NTL(X, Y, Y) (right) 
NTL(X, Y, Z) and NTL(Y, X, Z) imply 
X = Y (left) 
NTL(X, Y, Z) and NTL(X, Z, Y) imply 
Y = Z (right) 
NTL(X, Y, Z) implies NTL(Z, Y, X) (cen- 
tral) 
(E.g.) if NTL(W, X, Z) and NTL(X, Y, Z), 
then NTL(W, Y, Z) (left) 

Hence, from left reflexivity, left antisymmetry, and left transitivity it 
follows that NTL(X, Y, Z) is for fixed Z, a partial ordering of theories. 
As a consequence, a sequence of theories converging to the truth is 
perfectly possible. 

Some other interesting properties are: 

centeredness: 
centering: 
specularity: 
concentricity: 

context neutrality: 

NTL(X, X, X) 
If NTL(X, Y, X) then X = Y 
If NTL(X, Y, Z) then NTL(cX, cY, cZ) 
If X _ Y C_ Z then NTL(X, Y, Z) and 
NTL(Z, Y, X) 
If X, Y, and Z are subsets of Mp and 
Mp itself is a subset of a larger set of 
conceptual possibilities Mp*, then 
NTL(X, Y, Z) implies NTL*(X, Y, Z) 

1.4. Success Increase of New Theories and Its Explanation 

Up to now I have dealt with the logical problem of defining truthlike- 
hess, assuming that T is at our disposal. In actual scientific practice we 
don't know T; it is the target of our theoretical and experimental 
efforts. Before we turn our attention to methodological rules guiding 
these efforts, it is fruitful to explicate the idea that one theory is more 
successful than another and to show that this can be explained by the 
hypothesis that the first theory is more similar to the truth than the 
second. 

The success of a theory will have to be expressed in terms of the 
data to be accounted for. The data up to a certain moment t can be 
represented as follows. Let R(t) indicate the set of realized possibilities 
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up to t, i.e., the accepted instances, which have to be admitted. Note 
that there may be more than one realized possibility at the same time, 
before or at t, with plausible restrictions for overlapping domains. 

Up to t there will also be some accepted hypotheses, the (explicitly) 
accepted laws, which have to be explained. On the basis of them the 
strongest accepted law to be explained is the hypothesis S(t) associated 
with the intersection of the sets constituting the accepted hypotheses. 
Of course, S(t) is, via the laws constituting it, in some way or other 
based on R(t); minimally we may assume that R(t) is not in conflict 
with S(t), that is, R(t) is a subset of S(t). In the following, however, I 
shall need the much stronger correct-data-hypothesis R ( t ) C  T C S(t), 
guaranteeing that R(t) does not contain explanatory mistakes, and that 
hypothesis S(t) does not make instantial mistakes and hence is true as 
a hypothesis and may hence rightly be called a law. Note that every L 
containing S(t) is a true hypothesis following from S(t), i.e., a law 
which is explicitly or implicitly accepted. 

Now it is possible to explicate the success and problems of a theory 
X at time t. R(t) - X indicates the set of established instantial mistakes 
of X, the instantial problems of  X,  whereas X N R(t) indicates the set 
of established instantial matches of X, the instantial success of  X. When 
X explains S(t) it is a subset of S(t) and cS(t) of cX. Hence, X -  
S(t) represents the established explanatory mistakes, the explanatory 
problems of  X,  and cS( t )n  cX the set of established explanatory 
matches of X, the explanatory success of  X. 

For comparative judgements of the success of theories the following 
two clauses are obvious. Theory Y is instantially at least as successful 
as X iff Y instantiates R(t) at least as well as theory X in the sense that 
the instantial problems of Y form a subset of those of X, that is, Y has 
no extra instantial problems, or, equivalently, the instantial success of 
X is a subset of that of Y. Formally: 

(Ni)s R(t) - Y C_ R(t) - X 
(= X n R(t) - Y = 2.1 = ~b = X N R(t) _C Y N R(t)) 

Theory Y is explanatorily at least as successful" as X iff Y explains 
S(t) at least as well as theory X in the sense resulting from replacement 
of 'instantial' by 'explanatory' in the verbal phrases, and hence formally 
iff: 
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x 

6.1 Y 

Figure 4. 

R 

T 

( N i i ) s  Y - S ( t )  C_ X - S ( t )  
( -  Y - X O S(t) = 6.1 = ~b =- cS(t) n cX C cS(t) N cY) 

The conjunction of the instantial and explanatory clauses form the 
general definition of the statement that one theory is at a certain time 
at least as successful as another,  relative to the data R(t)/S(t) .  This 
situation is depicted in Figure 4 (in which T is indicated by an in- 
terrupted circle to stress that it is unknown): the sets 2.1 and 6.1 are 
empty. 

We arrive at a crucial argument: when one theory is at a certain 
moment  at least as successful as another,  simply called success-domi- 
nance, this fact can be derived from, and hence explained by, the 
following two hypotheses: the TA, (truth-approximation), hypothesis, 
that the first is at least as similar to the truth as the second, and the 
already introduced correct-data-hypothesis. All notions in this argument 
have been explicated, and the proof  of its validity is only a mat ter  
of elementary set-theoretical manipulation, as will be clear from the 
following survey of the argument: 
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T - Y c T - X (Nii)  Y - T _ X - T ( t r u th - app rox ima t ion )  

R( t )  C T T C S(t) (cor rec t -da ta )  

(Ni)s R( t )  - Y _ R( t )  - X (Nii)s Y - S(t) _ X - S(t) ( success -dominance)  

It is also easy to prove in addition that, if both hypotheses are true, 
the first theory will always remain at least as successful as the second, 
i.e., in the face of new supplementary data, resulting in 
R(t) C_ R(t') C T and T C S(t') _ S(t), for t' later than t. From this it 
immediately follows that the TA-hypothesis is a decent, comparative, 
empirical hypothesis which can be further tested and falsified or con- 
firmed. 

As a rule a new theory will not include all instantial success of the 
former and/or not all explanatory success, let alone both forms of 
success. The idea is that the relative merits can now be explained on 
the basis of a detailed analysis of the relative 'position' to the truth, 
but for these cases a general argument is obviously not possible. 

The basic argument makes clear that and how empirical progress is 
possible within a conceptual frame Mp for a domain D. It is important 
to note that the specific TA-hypothesis presupposes the frame-hypoth- 
esis of the research program that (D, Mp) indeed generates the unique, 
time-independent set T of empirical possibilities. The frame-hypothesis 
creates as it were the possibility that there may occur theories closer 
to the truth than others, and that if theories are more successful than 
others it may be (but need not be) for that reason. In other words, 
although each specific example of empirical progress is explained on 
the basis of the corresponding specific TA-hypothesis, the possibility of 
the generic phenomenon of empirical progress is explained on the basis 
of the frame-hypothesis associated with (D, Mp). 

Two successive generalizations bring us to the explanation of the 
success of the natural sciences in general. First, the flame-hypothesis 
is true for all possible conceptual frames Mp with respect to the natural 
domain D. Second, the frame-hypothesis is true for all frames for all 
natural domains. I do not claim that these generalizations don't have 
exceptions. If they are true in the majority of cases, they serve their 
purpose. 

1.5. Methodological Rules 

Let us return to one particular (D, Mp) and the corresponding frame- 
hypothesis. From the foregoing it immediately follows that the rule of 
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success (RS) "If theory Y is more successful than theory X, then choose 
theory Y (for the time being)" is functional for approaching the truth 
in the sense that Y may still be closer to the truth than X, which would 
explain that Y is at least as successful, and that X cannot be closer to 
the truth than Y, for otherwise X could not be less successful. Hence, 
RS can be justified on the basis of the frame-hypothesis as a prescriptive 
rule. In my opinion it can be conceived as the (naive) explication of 
the hallmark of scientific rationality. Of course, as long as one does 
not dispose of explicit knowledge of T it is impossible to have a rule 
of success that can guarantee that the more successful theory is closer 
to the truth. 

The following rules are heuristic rules, of which it is easy to see that 
they stimulate new applications of R S .  To begin with, the rule of  
content (RC) "Aim at success-preserving strengthening or, pace Popper, 
weakening of your theory", where strengthening a theory amounts to 
considering a subset and weakening to the opposite. Further, the rule 
of  testing (RT) "Aim at establishing new counterexamples (instantial 
mistakes) of your theory, and new laws which cannot be explained by 
your theory". Finally, I Would like to mention the rule of dialectics 
(RD) for two theories that escape RS because of divided success, "Aim 
at a success-preserving synthesis of two RS-escaping theories". 

It is important to note that RS is not a rule of inference in the sense 
that it does not conclude that the more successful theory is true (as a 
hypothesis, let alone as a theory). It suggests at most the provisional 
conclusion that the more successful theory is closer to the truth than 
the other. More generally, putting RS in its generalized form "Choose 
the most successful theory among the available theories", it suggests at 
most the provisional conclusion that the most successful theory is the 
closest to the truth, which might be called the rule of TA-inference (as 
opposed to truth-inference). 

It is interesting to compare the rule of TA-inference to the so-called 
'inference to the best explanation' (BE-inference), which prescribes, 
according to one plausible reading, to conclude, provisionally, that the 
most successful theory is true (as a hypothesis), provided it has not yet 
been falsified. Several conceivable objections to and limitations of this 
rule of truth-inference do not apply to the suggested rule of TA-infer- 
ence. The two main ones are the following. First, in contrast to BE- 
inference, TA-inference is not restricted to the case that the most 
successful theory has not been falsified. Second, TA-inference suggests 
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that being-the-closest-to-the-truth is something relative to other (i.e., 
the available) theories, which is unproblematic. However, BE-inference 
suggests that being-true(-as-hypothesis) is something relative to other 
theories, and that is close to a contradiction. 

1.6. Laws and the Explanatory Clauses 

The explanatory truthlikeness and success clauses were mainly moti- 
vated in terms of (established) explanatory mistakes. In this subsection 
we shall see that both clauses are also in perfect agreement with in- 
tuitions about the explanation of (accepted) laws. 

I start by analyzing the explanatory truthlikeness clause 

(Nii) Y - T is subset of X - T 

which coud be interpreted as claiming that Y explains T at least as well 
as X in the sense that it makes no extra explanatory mistakes with 
respect to T. From (Nii) it follows that Y makes for no law extra 
explanatory mistakes, formally: 

(NLii) For all laws L, Y - L is subset of X - L 

However, (NLii) and (Nii) are even equivalent, for (NLii) reduces to 
(Nii) for the special case L = T. Hence, (Nii) may, because of this 
equivalence, be paraphrased by the intuitively appealing claim that Y 
explains all laws at least as well as X .  

From (NLii) immediately follows: 

(NLii*) For all laws L when X - L is empty Y - L is empty 

When X - L is empty this means that X explains L. Hence, (NLii*) 
says that all laws explained by X are explained by Y. Note that (NLii*) 
includes as a special case 

(Nii*) When X - T is empty Y - T is empty 

of which I already noted that it can be read as: Y explains T when X 
does. 

It is not difficult to prove that (NLii*) implies (Nil), and hence that 
it is equivalent to (Nii) and (NLii). (NLii*) in fact claims generally that 
all Z that include T U X (then it is a law explained by X) include T U Y. 
But this is only possible when T U Y is a subset of T U X, and this is 
equivalent to (Nii). 
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In the form (NLii*), (Nii) can be seen as an explication of the idea 
that Y explains T at least as well as X in terms of laws. Calling all laws 
explained by a theory its ultimate law-explanatory success and all laws 
not explained by it its ultimate law-explanatory problems, (NLii*) 
amounts to the claim that Y's ultimate law-explanatory success includes 
that of X, or, equivalently, that X's ultimate law-explanatory problems 
include those of  Y, that is, Y has no extra ultimate law-explanatory 
problems. Note the close analogy with the different interpretations of 
(Nii) in terms of the explanatory matches and (extra) mistakes pre- 
sented at the beginning. 

So much for the explanatory clause of truthlikeness. Now I turn to 
that of success, i.e., (Nii)s, which explicated that Y is explanatorily at 
least as successful as X by claiming that Y makes no extra explanatory 
mistakes with respect to the strongest accepted law S(t). I call law L an 
accepted law when it is implied by S(t). It is easy to check that if we 
substitute in (NLii) 'accepted laws' for 'laws' we get an equivalent 
version (NLii)s of (Nii)~ which can be paraphrased by the appealing 
claim that Y explains all accepted laws at least as well as X. By the same 
substitution in (NLii*) we get a claim (NLii*)~, equivalent to (NLii)~ 
and (Nii)s, telling that Y explains all accepted laws explained by X. 
Also, with reformulations of (NLii*)s in terms of 'accepted', instead 
of 'ultimate', law-explanatory success, problems and extra problems 
follow immediately. 

In sum, the explanatory clauses are in perfect agreement with in- 
tuitions about the explanation of laws by a theory that is closer to the 
truth or more successful than another. 

1.7. Truthlikeness and Success of  Stratified Theories 

Thus far it might seem that my conceptually relative point of departure 
leads to an extreme form of relativistic (theoretical) realism. However, 
this would only be the case if I exclude constraints between different 
conceptual frames for the same domain. In this subsection I will deal 
with the relation between an observational and a theoretical (cum 
observational) level, that is, an observational and a theoretical concep- 
tual frame for our domain, where the distinction between observational 
and theoretical components is of course assumed to be not of the 
classical, absolute form but of a sophisticated, theory-relative kind. 

Let Mp indicate the set of conceptual possibilities with theoretical 
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and observational components (potential models) and Mpp the corre- 
sponding set of conceptual possibilities without theoretical components 
(potential partial models). Let ~ be the projection function from Mp 
onto Mpp such that for x in Mp, "rr(x) is the result of dropping the 
theoretical components in x (technically speaking, leading to a substruc- 
ture of x). For a subset X of Mp, "rrX indicates the set of all projections 
of all members of X. 

Application of the frame-hypothesis to (D, Mp) and (D, Mpp) leads 
to the existence of unique, time-independent subsets T = Mp(D) of Mp 
and To = Mpp(D) of Mpp, representing 'the theoretical (cum obser- 
vational) truth' and 'the observational (or partial) truth', respectively. 
It is not guaranteed that "rrT = To. That 7rT is a subset of To is a semantic 
fact, to be called T-projection: if something is empirically possible, its 
observational part will also be empirically possible. Mp is said to be 
complete with respect to (D, Mpp) if To is also a subset of "rrT, and 
hence wT = To. 

Here (and in the corresponding subsection of Section 3) I will restrict 
the attention to wT. I will assume that the data are formulated as 
subsets of Mpp, but I will assume in addition that they are correct with 
respect to "rrT, i.e., R(t) is a subset of rrT and "rrT of S(t). 

If Mp is complete with respect to (D, Mpp), the results also follow 
trivially for To. If Mp is incomplete, the question is whether "rrT and 
R(t), being subsets of To, and To of S(t), guarantee the replacement. 
Note, as I will assume, that it remains plausible to assume that R(t) is 
a subset of To, but it need not be a subset of wT. From these mutual 
relations it follows, generally speaking, that the results along the explan- 
atory line can be extrapolated unproblematically, but not along the 
instantial line without qualifications. 

The important question is whether truthlikeness on the theoretical 
leVel is projected on the observational level: Does NTL(X, Y, T) imply 
NTL(TrX, "trY, "rrT)? Let us first consider the explanatory clause and 
assume that Y explains T at least as well as X. It is easy to check, using 
the general fact that the emptiness of a set of the form X -  Y U Z 
guarantees the emptiness of "rrX- (wY U "rrZ), that the explanatory 
clause on the observational level follows indeed: ~Y explains wT at 
least as well as -rrX. And, hence, using the previous results on success 
explanation, the explanatory success clause also follows: trY explains 
S(t) at least as well as "rrX. 

Due to the many-one character of projection, the instantial side is 
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not so easy. Under the naive condition, the 'projection-step' is invalid, 
as is easy to check: there may be an extra explanatory mistake of X 
and a common instantial mistake that are projected on an element of 
(arX f'l -rrT) - ~Y. To exclude this just amounts to filling the gap be- 
tween the instantial clauses on the theoretical and the observational 
levels. Hence, there seems no interesting condition that guarantees 
the projection. In Section 3 we shall see that the situation changes 
considerably when we include similarity-considerations between struc- 
tures. 

1.8. Quantitative Truthlikeness 

Let us return to unstratified theories. The naive notion of truthlikeness 
that has been defined is a comparative or qualitative notion in the sense 
that it is purely based on sets of mistakes. It is plausible to define naive 
quantitative truthlikeness in terms of the numbers of mistakes. That is, 
I define 'the (naive) dissimilarity or distance of X from T', indicated by 
NTD(X, T), IT - X l + IX - T I = IT A X]. 

NTD(X, T) is not only a quasi-distance function in the sense that 
NTD(X, T)/> 0, but it is even a proper distance function for it satisfies 
in addition: NTD(X, T) = 0 iff X = T, NTD(X, T) = NTD(T, X)and 
NTD(X, Y) + NTD(Y, T) i> NTD(X, T). Moreover, NTL and NTD 
are compatible in the sense that N T L ( X , Y , T )  guarantees 
NTD(Y, T) ~< NTD(X, T). 

2. S T R U C T U R E L I K E N E S S  A N D  T R U T H L I K E N E S S  O F  S T R U C T U R E S  

2.1 Basic Assumptions 

Up to now I have been dealing with the problem of truthlikeness of 
theories and more generally theorylikeness. But there is also a problem 
of truthlikeness of structures and more generally structurelikeness. In 
the circuit example (Figure 2), for instance, it is clear that there is, 
given the conceptual frame, not only just one true theory characterizing 
the set of empirically possible states of that particular circuit. There is 
also just one true description of the actual state of the circuit as it is 
depicted, Po & Pl & - P2 & P3 & P4, according to the standard proposi- 
tional representation. In general, in addition to the frame-hypothesis 
leading to the assumption that there is just one true theory, I will assume 
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that, given a conceptual frame, every particular situation or state of 
affairs (of a system) in the domain, every actual world so to speak, has 
just one correct representation or one true description. By consequence, 
with each experiment, i.e., with each realization of an empirical possi- 
bility, there is associated a unique true description within the conceptual 
frame. 

Hence, the traditional problem of explicating the idea of truthlikeness 
concerns on closer inspection two intuitive phrases, viz., "one descrip- 
tion is more similar to the true description than another" and "one 
theory is more similar to the true theory than another".  In the previous 
section I dealt with the second problem, neglecting the fact that it is 
plausible to take into account a possible underlying notion of likeness 
of descriptions. This will be done in the next section. In the present 
section I will just deal with the idea of truthlikeness of descriptions 
or, equivalently from the structuralist point of view, truthlikeness of 
structures and more generally structurelikeness. 

Let x, y, z indicate structures in Mp, and s(x, y, z) indicate that y is 
at least as similar (close) to z as x. The true structure of the context 
will be indicated by t. I will not aim at a general definition of struc- 
turelikeness, for a precise definition will have to depend on the specific 
nature of the conceptual possibilities. 

When s(x, y, z), y is said to be between, or an intermediate of, x and 
z. Structurelikeness is not generally assumed to be symmetric: s(x, y, z) 
does not generally imply s(z, y, x). As a consequence, being in between 
or an intermediate may be a directed notion: if y is between x and z 
in the sense of s(x, y, z), this does not yet imply that y is also between 
z and x in that sense of structurelikeness. 

Structures x and z are said to be connected or related, r(x, z), iff 
there is y such that s(x, y, z). It follows also that r is not by definition 
symmetric, i.e., r(x, z) does not automatically imply r(z, x). But r(x, z) 
is already guaranteed by s(x, x, z) or s(x, z, z). Hence, the basic idea 
behind r(x, z) is not the existence of a proper intermediate, but only 
that x and z have at least so much in common that it makes sense to 
talk about (proper and improper) intermediates: in other words, they 
may also be said to be comparable. For instance, all pairs of proposi- 
tional structures (see below) will be comparable if Mp contains only 
structures constituted by one set of elementary propositions, as in the 
case of the circuit example. But as soon as structures based on subsets 
of this set are also taken into consideration, not all pairs are comparable 
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anymore, p & q and - p & - q have an intermediate, e.g., p & - q, 
but p & q and p don't .  The case of concretization below (Section 4) 
provides another example of this situation, e.g., not every Van der 
Waals gas model is a concretization of every ideal gas model (they may 
deal with different sets of states and/or different numbers of moles). 
Hence, they don't  need an intermediate. In general, a minimal con- 
dition for comparability seems to be that the two structures have the 
same base- or domain-sets. 

It would have been possible to introduce r(x, z) as a primitive term. 
But I have not done so because it always seems possible to read r(x, z) 
directly from the relevant specific definition of s(x, y, z). In the next 
section we shall see that naive truthlikeness as defined in the previous 
section is in fact based on trivial structurelikeness, indicated by 
t(x, y, z), defined by x = y = z. (The symbol 't ' is used in this text as a 
time variable, and to indicate trivial structurelikeness and 'the descrip- 
tive truth',  but confusion need not arise). Note that in the case of trivial 
structurelikeness two structures are only related when they are equal. 
Hence, naive truthlikeness is based on the idea that two different 
structures are never comparable. This point was already essentially 
noted in Kuipers (1987a) and also in Oddie (1986, Ch. 3). 

2.2. Properties 

Let us assume some plausible properties of the notion of structurelike- 
ness. s is centered iff s(x, x, x), and centering iff s(x, y, x) implies x = y. 
s is said to be conditionally left~right reflexive iff s(x, y, z) implies all 
kinds of left and right reflexivity, i.e., s(x, x, y), s(x, x, z), s(y, y, z), 
and s(x, y, y), s(x, z, z), s(y, z, z), respectively. Note that r(x, z) now 
implies s(x, x, z) and s(x, z, z). Together these properties are called the 
minimal s-conditions. Note that being centered implies that r is reflex- 
ive, but the converse does not hold. 

s is called symmetric when s(x, y, z) implies s(z, y, x) and antisym- 
metric when s(x, y, z) and s(z, y, x) imply x = y = z, in which case cen- 
tering trivially follows. If s is symmetric, then r is symmetric as well; 
and if s is antisymmetric, then r is antisymmetric. Note that the converse 
implications do not hold. 

There are many ways in which s can be transitive, e.g., left transitivity: 
s(w, x, z) and s(x, y, z) imply s(w, y, z). However, none of these ways 
implies that r is transitive, as a laborious survey makes clear, nor does 
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the transitivity of r imply any of these ways. Moreover, and this is even 
more important to note, r can be transitive without assuming that the 
middle term is the intermediate: if r(x, y) and r(y, z), then r(x, z) may 
generally be the case, without implying that r(x, z) is due to s(x, y, z). 

As far as r is concerned, it is useful to state in sum that r may 
well be an equivalence relation or a partial ordering, without strong 
implications for s. In the case of an equivalence relation, comparability 
generates equivalence classes of comparable structures. In the case of 
a partial ordering, directed sequences of comparable structures arise. 

In Section 4 we shall see that concretization provides a good example 
of antisymmetric structurelikeness, generating a partial ordering of 
comparable structures. In the present section I will restrict the attention 
to some symmetric examples of structurelikeness, generating in all cases 
comparability as an equivalence relation, sometimes in the trivial sense 
that all structures are comparable. 

2.3. Examples of Symmetric Structurelikeness 

A typical symmetric example is the case of propositional structures. 
Given a fixed set of elementary propositions a structure is identified 
with a propositional constituent, i.e., an arbitrary conjunction of all 
elementary propositions, each of them negated or unnegated. It is easy 
to see that such a constituent can be represented, for example, by the 
set of its unnegated elementary propositions. The plausible specification 
of structurelikeness is then as follows: s(x, y, z) iff the symmetric differ- 
ence between y and z is a subset of that between x and z. Note that 
this corresponds formally to the naive definition of theorylikeness on 
the level of structures. Moreover it is easy to check that all propositional 
structures (generated by a fixed number of elementary propositions) 
are comparable and that s satisfies not only the minimal s-conditions 
of being centered, centering, and left/fight reflexivity, but also symme- 
try: if s(x, y, z) then s(z, y, x). 

As in the case of theorylikeness, there is also a plausible quantitative 
variant, which was already proposed in Tich~ (1974): the distance be- 
tween two propositional constituents may be defined as the size of the 
indicated symmetric difference set. 

It is just a technical exercise to generalize the qualitative definition 
to propositional constituents based on different sets of elementary prop- 
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ositions. Comparability of structures then coincides with being based 
on the same set of elementary propositions. 

It is now also plausible to formulate symmetric structurelikeness for 
first-order structures. Let Mp consist of structures ( . . .  D i . . . ;  

• . .  R j . . . )  of a fixed similarity type, with Di's as domain-sets and the 
Rj's as relations defined on one or more of them. Structurelikeness 
s(x, y, z) is now defined by the requirement that the corresponding 
domains are the same (Di(x)= Di(y)= Di(z) for all i) and that the 
corresponding relations are as follows: the symmetric difference be- 
tween Rj(y) and Rj(z) is a subset of that between Rj(x) and Rj(z) for 
all j. It is easy to check that s satisfies the minimal s-conditions, that it 
is symmetric, and that the corresponding notion of comparability be- 
tween two structures amounts to having the same domain-sets, i.e., the 
first requirement• 

Note that three different conceptual structures x, y, and z, related 
by s(x, y, z), can only be realized at different moments, due to the fact 
that s(x, y, z) requires that they have the same domain. 

For a definition of quantitative structurelikeness between first-order 
structures, see Niiniluoto (1987, Ch. 10.3). Also see Oddie (1986, Ch. 
3), who examines examples of symmetric structurelikeness between 
propositional and first-order structures• 

I conclude this section with some symmetric examples of elementary 
real number structures specifying one or more ordered real numbers. 
Real numbers of 'the same dimension' will be indicated by numbered 
x's, etc. 

For one dimension it is plausible to define structurelikeness by 
'xl ~< x2 ~< x3 or x3 ~< x2 ~< xl ' ,  indicated by sl(xl, x2, x3). For two di- 
mensions one possible definition reads @(xl, x2, x3) and sl(yl, y2, y3)', 
indicated by s2((xl, yl), (x2, y2), (x3, y3)). In both cases the minimal s- 
conditions and symmetry are satisfied, and all structures are compar- 
able. 

The latter property, and only that one, is not shared by another 
possible definition of structurelikeness for two dimensions, viz., 
'SI(xl, X2, X3) and yl = y2 = y3'. In that case, only 'horizontal pairs' are 
comparable. Restricted comparability of real number structures may or 
may not make sense, depending on the nature of the properties the 
real number are supposed to represent. 

Note that I would have obtained antisymmetric, directed variants of 
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real number structurelikeness if I had started for one dimension with 
'xl  ~< x2 ~< x3' as opposed to 'xl  ~< x2 ~< x3 or x3 ~< x2 ~< xl ' .  

3. R E F I N E D  T R U T H L I K E N E S S  O F  T H E O R I E S  

3.1. Basic Definition 

It is clear that the naive definition of truthlikeness of theories does not 
exploit the idea that one structure may be more similar to a second 
than a third, i.e., the idea of an underlying notion of structurelikeness. 
Let us assume that there is such an underlying ternary relation of 
structurelikeness s and that it satisfies the minimal s-conditions intro- 
duced in Section 2: being centered, centering (together: s(x, y, x) iff 
x = y), and conditional left and right reflexivity (s(x, y, z) implies, e.g., 
s(x, x, y) and s(y, z, z)). 

I will present a relined definition of truthlikeness of theories that 
turns out to have many plausible and desirable properties if we neglect 
queer theories and restrict our attention to so-called convex theories. 
A set X is called convex (with respect to s) if it is dosed for intermedi- 
ates, i.e., if for all x and z in X and all y if s(x, y, z), then y is in X. 

Note that there are already elementary examples of non-convex theo- 
ries. Assuming propositional structurelikeness as defined in the previous 
section, it is, for instance, easy to see that the propositional theories 
indicated by 'p --~ q' and 'p ~ q' are non-convex, for the non-model 'p 
& - q' is between the models 'p & q' and ' -  p & - q'. However, it is 
doubtful whether theories that are non-convex, with respect to the 
relevant underlying notion of structurelikeness, play an important role 
in science proper. If, for instance, T is not convex, this has the conse- 
quence that there is an empirical impossibility (in the relevant sense) 
between two empirical possibilities, and this is unlikely as far as nature 
is continuous. 

But the restriction to convex theories is certainly not unproblematic. 
One of the referees is probably right by suggesting that the true theory 
about the atomic weights of the isotopes of uranium, if reconstructed 
along the adopted structuralist lines, is not convex. The other referee 
notes that the property of convexity has already received considerable 
attention in the truthlikeness debate (see in particular Oddie (1987) for 
this and further references). 
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However  this may be, many of the results to be presented are simply 
invalid or need technical qualifications if the relevant local convexity 
assumption is not satisfied; but  I will not specify such qualifications. 
Instead of just dealing throughout  with convex theories or specifying 
the situation for non-convex cases, I have chosen the middle course of 
locally indicating when convexity is a necessary condition for the re- 
ported result. The first option can be obtained from the present text 
by just skipping all local convexity assumptions and assuming convex 
theories throughout.  

I will introduce the refined definition of "Y is at least as similar to 
T as X"  again by an instantial and an explanatory clause. 

The refined instantial clause again expresses the intuitive idea that Y 
instantiates T at least as well as X, but  now not just in the sense of full 
instantial matches, but also in the sense of approximate matches: 

(Ri) For  all x in X and z in T if r(x, z), then there is y in Y such 
that s(x, y, z) 

It is easy to check that (Ri) implies the corresponding naive instantial 
clause (Ni) because s satisfies centering. Hence,  it is a strengthening of 
the naive clause. A reformulation of (Ri) is instructive. Due to con- 
ditional reflexivity, (Ri) is equivalent to: 

For  all x in X - Y and z in T - Y if r(x, z) then there is y 
in Y such that s(x, y, z) 

that is, for every extra model of X comparable to an instantial mistake 
of Y, Y has a model  which is at least as similar to that mistake. 

The refined explanatory clause will not be a strengthening but a 
weakening of the corresponding naive one, which required that Y -  
X U T was empty. In the context of structurelikeness it is plausible to 
leave room for members of Y - X U T, i.e.,  extra explanatory mistakes 
of Y, provided they are between X -  T and T, that is, all y in 
Y - X tO T have to be between a member  of X - T and one of T. This 
clause guarantees as it were that Y is moving up from X to T, without 
detour. This results in the following clause: 

(Rii) For  all y in Y - X tO T there are x in X - T and z in T such 
that s(x, y, z) 

It is evident that the naive explanatory clause implies the refined one. 
(Rii) expresses the idea that every extra explanatory mistake of Y is at 
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least as similar to some empirical possibility as some explanatory mis- 
take of X. This may also be paraphrased as the claim that every extra 
explanatory mistake of Y guarantees the existence of some explanatory 
mistake of X that is at least as serious in the weak sense that the former 
is at least as similar to some empirical mistake as the latter. Hence,  
(Rii) expresses in this weak refined sense that Y explains T at least as 
well as X. 

It would be possible to strengthen (Rii) by adding "and there is no 
z' in T such that s(y, x, z ' ) "  which leads to a strong refined sense of 
the idea that Y explains T at least as well as X. However ,  this did not 
lead to further conceptual elucidation, nor to elegant results. Given the 
fact that I also like to keep the explication as weak as possible, the 
present version of the refined explanatory clause is the most attractive 
one. 

(Rii) is the general formulation, also appropriate for non-convex 
theories, in the sense of also leading to centering for such theories (see 
below). When T is convex, (Rii) can be simplified to: 

For  all y in Y - X U T there are x in X and z in T such that 
s(x, y, z) 

for the convexity of T assures that the guaranteed x in X is in X - T. 
Hence,  in this case, (Rii) amounts to the claim that (every member  of)  
Y -  X U T is between (a member  of)  X and (a member  of)  T. The 
inclusion of non-convex cases precludes this otherwise highly plausible 
conceptual justification of (Rii). 

The resulting definition of refined truthlikeness, i.e., Y is at least as 
similar (close) to T as X ,  indicated by RTL(X,  Y, T), imposes both the 
clauses (Ri) and (Rii), and may be paraphrased as: Y instantiates and 
explains T at least as well as X. 

It is easy to state and prove the desirable reducibility of the refined 
to the naive definition. If s is just trivial structurelikeness t - which was 
defined by t(x, y, z) iff x = y  = z - refined truthlikeness reduces to 
naive truthlikeness. That  is, indicating RTL(X,  Y, T) based on s = t by 
RTLt(X, Y, T), it is easy to prove the following reduction theorem: 
NTL(X,  Y, T) iff RTLt(X, Y, T). That  (Ri) reduces to (Ni) for s = t 
follows immediately from the fact that it implies this, as we have seen 
already, and that the condition is vacuous for different members of X 
and T, for rt(x, z) implies x = z, i.e., different structures are never 
comparable on the basis of trivial structurelikeness. On the other  hand, 
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(Rii) reduces trivially to (Nii) for s = t, for in that case there cannot 
be a member of Y outside X U T between two different members of 
X U T. Note in passing that all sets are trivially convex with respect to 
t .  

As already hinted upon for the explanatory clause, the definition of 
refined truthlikeness might be sharpened by strengthening one or both 
clauses, but I do not see convincing reasons to do so. Moreover, it is 
important to note that RTL(X, Y, T) is a general definition in the sense 
that it is not based on a particular specification of structurelikeness. 
Any specification that is appropriate for the particular type of structures 
of the context leads to the relevant specific form of RTL for that 
context. It might be such that such a specification also makes some 
sharpening of the clauses plausible. 

3.2. Formal Properties 

For the formal properties to be considered I jump to the general defi- 
nition of refined theorylikeness that is obtained from the formal version 
of the refined definition of truthlikeness by replacing the true theory T 
by the arbitrary theory Z. In Figure 3, T is also supposed to be replaced 
by Z. It will turn out that RTL satisfies almost all properties that have 
been listed as properties of NTL, with some qualifications, in particular 
for symmetry. 

Illuminating is the sufficient condition property (SC-property): if sets 
x n z - Y = 2  and Y - X U Z = 6  and Z - X U Y = 5  and/or 
X - Y U Z = 7 are empty, then RTL(X, Y, Z). From this property 
immediately follow the following properties. Concentricity: if X is a 
subset of Y and Y of Z or if Z is a subset of Y and Y of X, then 
RTL(X, Y, Z), with the immediate consequence that RTL is centered, 
i.e., RTL(X, X, X). Moreover, concentricity implies (unconditional) 
left and right reflexivity: RTL(X, X, Y) and RTL(X, Y, Y), respectively. 
Hence, all theories are comparable, in the sense that for all X and Z 
there is Y such that RTL(X, Y, Z). It is also easy to prove that RTL 
satisfies centering, i.e., if RTL(X, Y, X) then X = Y. As a conse- 
quence, RTL satisfies, like NTL, the three properties that were called 
the minimal s-conditions for the underlying notion of structurelikeness. 
That these likeness notions share these minimal formal properties is 
plausible and desirable: theorylikeness may well function as struc- 
turelikeness for likeness of higher-order theories: sets of theories of the 
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present exposition. Note in passing that centering would only follow 
for convex X, if I had not required in (Rii) that x is an explanatory 
mistake of X, but simply that it is a model of X. 

Another interesting property RTL shares with NTL is context neu- 
trality. Let X, Y, and Z be subsets of Mp. If Mp itself is a subset of 
an extended set of conceptual possibilities Mp* and if s* is an extension 
of s (with r* and RTL* based on s*), then RTL(X, Y, Z) iff RTL* 
(X, Y, Z). The p roof  uses the fact that conditional reflexivity of s 
already guarantees for all x and z in Mp that r(x, z) iff r*(x, z). Hence, 
theorylikeness is not disturbed by enlargement or diminution of the set 
of conceptual possibilities, as long as the theories themselves are not 
changed. 

Let us turn to (anti-)symmetry: first the central versions. Whereas 
naive theorylikeness was trivially symmetric, it now depends on the 
specific nature of the underlying notion of structurelikeness whether 
the ternary relation of theorylikeness is symmetric in the sense that 
RTL(X, Y, Z) implies RTL(Z, Y, X), or not. If it is not symmetric it 
may be antisymmetric: if RTL(X, Y, Z) and RTL(Z, Y, X) then X = 
Y = Z, in which case centering (RTL(X, Y, X) implies X = Y) immedi- 
ately follows. 

It is easy to check that RTL(X, Y, Z) is symmetric when it is based 
on symmetric structurelikeness, provided both X and Z are convex. In 
other words, the refined definition guarantees symmetry transport from 
the level of structures to the level of convex theories. However, anti- 
symmetry transport from the level of structures to that of theories is 
not guaranteed by the refined definition. In Section 4 we shall see that 
theorylikeness based on (antisymmetric) concretization of structures 
provides an antisymmetric example. 

Turning to non-central symmetry notions, left antisymmetry is, in 
view of the possibility of sequences of theories straightforwardly con- 
verging to the truth, the most interesting notion. Under certain con- 
ditions it is not difficult to prove that left antisymmetry is transported 
from structurelikeness to theorylikeness: to be precise, if structurelike- 
ness is left antisymmetric and if it is (de)composable, defined by 
s(x, y, z) iff r(x, y) and r(y, z), and if X and Y are convex, then 
RTL(X, Y, Z) and RTL(Y, X, Z) imply X = Y. That s is decomposable 
in the sense that s(x, y, z) implies r(x, y) and r(y, z) follows immediately 
from conditional reflexivity and the definition of r. That s is composable 
in the sense that r(x, y) and r(y, z) together imply s(x, y, z) is a substan- 
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tial condition. But, as we shall see in Section 4, it is trivially satisfied 
by the ternary relation of concretization. 

NTL satisfied all kinds of transitivity, of which, again in view of truth 
convergent sequences, left transitivity is the most important one. It is 
not difficult to prove that left transitivity of structurelikeness is trans- 
ported to refined theorylikeness, that is, it guarantees: RTL(W, X, Z) 
and RTL(X, Y, Z) imply RTL(W, Y, Z). Other, but similar, transitivity 
results follow easily. Combining the results about left reflexivity, left 
antisymmetry, and left transitivity we get that RTL(X, Y, Z) is a partial 
ordering of convex theories for fixed Z if s(x, y, z) is (de)composable 
and a partial ordering for fixed z. Hence, under these conditions a 
sequence of convex theories converging to the truth is perfectly pos- 
sible. 

There is one property of NTL that is not at all shared by RTL, viz., 
specularity: RTL(X, Y, Z) does not generally imply RTL(cX, cY, cZ). 
This is directly related to the fact that NTL deals with instantial and 
explanatory mistakes in essentially the same way, whereas RTL intro- 
duces a basic asymmetry between these kinds of mistakes. The first 
proposal for a definition of refined truthlikeness (Kuipers, 1987a) stuck 
to the symmetric treatment of the two kinds of mistakes. It amounted 
to (Ri), and as second clause (Ri) applied to the complements of X, 
Y, and T/Z. A number of objections raised by van Benthem (1987) to 
NTL and that refined proposal were essentially due to the symmetric 
treatment of instantial and explanatory mistakes, which prevented, for 
instance, the allowance of extra explanatory mistakes for the better 
theory. 

3.3. The Child's Play Objection 

Let us consider a famous objection to the naive definition due to 
Graham Oddie (1981). He formulated this objection in a discussion 
about David Miller's original version of the naive definition in which 
the true theory is identified with the one-element set {t} containing the 
unique structure t representing the actual world. Oddie noted that it 
would be child's play to replace a theory which is, in my terminology, 
false as a hypothesis, in the sense of a theory not containing t, by one 
that is closer to the truth, viz., by just strengthening the theory. In my 
'empirical possibility version' of the truth and the naive definition, this 
objection can still be made when a theory does not contain any empirical 
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possibility: if X A T = + and Y is a strengthening, i.e., a subset, of X, 
then NTL(X, Y, T). However, as is easy to see, according to RTL this 
child's play is excluded, in particular by (Ri). By strengthening a theory, 
mistaken models may well be dropped that are necessary for an inter- 
mediate between a mistaken model and an instantial mistake of the 
original theory. This would not be a problem if such, in this respect 
problematic, strengthenings could be distinguished from non-problem- 
atic strengthenings; but this is of course impossible without knowing T. 

3.4. Being More Successful, Its Explanation, and the Rule of  Success 

An important question is whether there can also be given a plausible 
refined definition of 'more successful' such that the corresponding rule 
of success is functional for approaching the truth in the refined sense. 
The answer to this question is positive; to show this it is crucial to point 
out that the adapted TA(Truth-Approximation)-hypothesis and the cor- 
rect-data-hypothesis can explain that one theory is more successful than 
another. 

Recall that at time t, R(t) indicates the instances to be admitted and 
S(t) the strongest law to be explained, and the correct-data-hypothesis 
guarantees that R(t) is a subset of T and T of S(t). 

I will first give the refined definition of "theory Y is, relative to 
R(t)/S(t), at least as successful as theory X" and then paraphrase the 
clauses (for the numbering of sets, see Figure 4): 

(Ri)~ For all x in X and z in R(t) if r(x, z), then there is y in Y 
such that s(x, y, z) 

(Rii)~ For all y in Y - X U S(t) = 6.1 there are x in X - S(t) and 
z n S(t) such that s(x, y, z) 

Note first the strong analogy between this definition and the refined 
definition of truthlikeness. T has been replaced by R(t) or S(t) in a 
systematic way. The first clause says that Y represents R(t) at least as 
well as X. Hence, Y may be said to be instantiatly at least as successful 
as X. The second clause states that for every established extra explana- 
tory mistake of Y there is an established explanatory mistake of X that 
is at least as serious with respect to some model of S(t). 

It is easy to check that the refined instantial success clause is stronger 
than the naive one (Ni)s, hence established extra instantial mistakes 
remain forbidden for Y, formally: X A R(t) - Y = 2.1 = ~b. What (Ri)s 
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substantially adds to (Ni)s will be specified in the next subsection. On 
the other hand, (Rii)s is substantially weaker than the corresponding 
naive clause (Nii)~. Established explanatory mistakes of Y are now not 
forbidden, but they have to lie between an explanatory mistake of X 
with respect to S(t) and a model of S(t). Finally, it is easy to check 
that the two refined success clauses reduce to the corresponding naive 
ones when s is assumed to be trivial. 

Assuming correct data, i.e., R(t) is a subset of T and T a subset of 
S(t), and assuming that S(t) is convex, the two refined success clauses 
follow trivially from the corresponding RTL-clauses. Accordingly, ana- 
logous to the naive case, being more successful in the refined sense can 
be explained on the basis of the refined truth approximation hypothesis, 
assuming correct data and convex S(t). Note that R(t), fortunately, 
does not need to be convex for this result. 

Again it is important to realize that the TA-hypothesis can be further 
tested by realizing new empirical possibilities and/or establishing new 
laws. That is, it is a decent, empirical hypothesis. 

In the same way as in the naive case, the explanation of the possibility 
of specific progress presupposes the frame-hypothesis that (D, Mp) in- 
deed generates the frame-relative, but otherwise unique, time-indepen- 
dent set T of empirical possibilities. It is easy to reformulate the two 
successive generalizations of the frame hypothesis, which were required 
for the naive explanation of the success of the natural sciences in 
general, leading to a refined version of that general explanation. 

From the foregoing it follows that the refined rule of success, prescrib- 
ing to choose the more successful theory in the refined sense, is again 
functional for approaching the truth in the sense that the chosen theory 
may still be closer to the truth (which would explain its being at least 
as successful) and that the rejected theory cannot be closer to the truth 
(for otherwise it would not be less successful). It is also easy to check 
that the adapted versions of the heuristic rules discussed in the naive 
case, the rules of content/testing/dialectics, are in their turn functional 
for the rule of success in the sense that they stimulate new applications 
of the latter. 

3.5. Further Conceptual and Technical Analysis of the Clauses 

It is instructive to analyze the defining clauses in some more detail. 
Numbers will refer to Figures 3 and 4. The instantial clause (Ri) claims 
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something about X/T-pairs (x, z), hence the sets 1, 2, 3, 4, 5, and 7 are 
involved. The following reformulation of (Ri), presupposing conditional 
reflexivity, suggests a decomposition into a conjunction of three compo- 
nents: 

(Ri ')  For all x in X and z in T if r(x, z), and if neither x nor z is in Y, 
then there is y in Y such that s(x, y, z) 

First, as already noted, (Ri) implies, due to centering of s, the naive 
instanfial condition formally telling that 2 = X n T - Y is empty and 
conceptually that Y does not introduce new instantial mistakes, that is, 
mistakes not already made by X. Hence,  (x, z)-pairs from 2 are ex- 
cluded. The second component  implied by (Ri) concerns X/T-pairs of 
which at least one belongs to Y, and hence to sets 1,3, or 4. In this 
case conditional reflexivity already guarantees that there is a member  
of Y in between, which is built into (Ri').  The third component  implied 
by (Ri) concerns x in X - Y U T = 7 and z in T - X U Y = 5 of which 
it guarantees that if they are comparable, then they have a member  of 
Y in between. In terms of mistakes this comes down to the requirement 
that when an extra explanatory mistake of X is comparable with a 
common instantial mistake of X and Y, then Y has a member  in 
between. The conjunction of the three components is trivially equiva- 
lent to (Ri ') ,  and hence, assuming conditional reflexivity, the three 
components together imply (Ri). 

The instantial success clause (Ri)s can similarly be rewritten as: 

(Ri')s For  all x in X and z in R(t) if r(x, z) and if neither x nor  z 
is in Y, then there is y in Y such that s(x, y, z) 

and decomposed. What (Ri)s substantially adds to (Ni)s is analogous 
to the distinguished third component  of (Ri): if an extra model x of X 
which may still be mistaken, i.e., x in X - Y U R(t) = 7 U (2-2.1) = 
7 U (2.2), is comparable with an established common instantial mistake 
z, i.e.,  z in R(t) - X U Y = 5.1, Y should have a model in between. 

Let  us turn our attention to the refined explanatory truthlikeness clause: 

(Rii) For  all y in Y - X U T there are x in X - T and z in t such 
that s(x, y, z) 

in particular in relation to the explanation of laws. It claims something 
about members of Y - X U T = 6, that is, extra explanatory mistakes. 
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They are not excluded, as in the naive case, but they have to be 
harmless in the sense that they have to be between X - T and T, or, 
equivalently, (Rii) guarantees the existence of an explanatory mistake 
of X that is at least as serious. In this sense (Rii) was said to explicate 
the idea that Y explains T at least as well as X. 

Recall that a set L including T is called a law (for it is true-as- 
hypothesis), and that it is explained by theory X if it also includes X. 
(Rii) immediately implies: 

(RLii) For  all convex laws L and for all y in Y - X tA L there are 
x in X - L and z in L such that s(x, y, z) 

Analogous to (Rii) this may be paraphrased as: ¥ explains all convex 
laws at least as well as X. 

When T is convex, (RLii) trivially implies (Rii), because T itself is 
a law, hence, if T is convex, (RLii) and (Rii) are equivalent. 

From (RLii), and hence from (Rii), immediately follows 

(RLii*) For  all convex laws L if X - L is empty, then Y - L is empty 

That  is, Y explains all convex laws explained by X. 
(RLii*) again indicates a way to formulate the idea that Y explains 

T at least as well as X in terms of laws: as far as convex laws are 
concerned, Y's ultimate law-explanatory success includes that of X, or, 
equivalently, X' s ultimate law-explanatory problems include those of Y, 
that is, Y has no extra ultimate law-explanatory problems. 

In contrast to the naive case, non-convexity phenomena,  even if we 
assume that T is convex, prevent  one from proving that (RLii*) implies 
(Rii), in which case it would be equivalent to (Rii) and (RLii). 

Note  that (RLii*) implies, for the special case L = T, that Y - T is 
empty when X - T is, provided that T is convex. However ,  from (Rii) 
the unconditional special case directly follows: 

(Rii*) If X - T is empty then Y - T is empty 

That  is, Y explains T as soon as X explains T. 
Analogous to the naive case, it is possible to restrict all formal and 

informal explanatory claims to accepted laws, i.e., laws implied by S(t). 
Among others, Y explains all accepted convex laws at least as well as 
X, and hence it explains all accepted convex laws explained by X. Also 
with reformulations of the latter in terms of 'accepted' ,  instead of 
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'ultimate', law-explanatory success, problems and extra problems al- 
ways follow immediately, as far as convex laws are concerned. 

Recall, finally, that the refined clause reduces to the naive clause 
when trivial structurelikeness is substituted for s. As I already noted, 
non-convex sets cannot exist under trivial structurelikeness. (Rii), 
(RLii), and (RLii*) then become equivalent to their naive versions, 
which were proven to be mutually equivalent. In that case the convexity 
condition can also be skipped in all informal claims. Similar results 
follow about accepted laws in case of trivial structurelikeness. 

In sum, the explanatory clauses are again in perfect agreement with 
intuitions about the explanation of laws, which are not too peculiar, by 
a theory that is closer to the truth or more successful than another. 

I conclude this subsection with some technical observations that may 
be useful for certain applications. 

If s is unconditionally reflexive, and hence all pairs of structures are 
comparable, (Ri) reduces to the following: 

For all x in X and z in T there is y in Y such that s(x, y, z) 

Further, assuming X and T non-empty and T convex, (Rii) is equivalent 
t o :  

For all y in Y there are x in X and z in T such that s(x, y, z) 

As a consequence, if we define the reflexive closure of s by: 

rcs(x, y, z) iff y = x or y = z or s(x, y, z) 

(Ri) and (Rii) may be reformulated for convex T as follows: 

For all x in X and z in T if r(x, z), then there is y in Y 
such that rcs(x, y, z) 
For all y in Y there are x in X and z in T 
such that rcs(x, y, z) 

respectively, where r(x, z) remains the original comparability relation. 

3.6. Stratified Theories 

Let us now investigate how the refined definition works out for theories 
that are stratified in terms of a distinction between theoretical and 
(relatively) non-theoretical or observational components. The main 
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question is again whether truthlikeness on the theoretical level (includ- 
ing theoretical and observational components) is preserved on the ob- 
servational level. 

Recall that ~ indicated the projection function from Mp, the set of 
conceptual possibilities including theoretical components, onto Mpp, 
the set of structures without theoretical components. Recall also that, 
although T-projection, i.e., ~T is a subset of To = Mpp(D) is plausible, 
Mp need not be complete with respect to (D, Mpp) i.e., To = ~-T need 
not be the case. To avoid complications in this respect I restricted the 
attention to 7rT and correct data with respect to ~T, i.e., R(t)C_ 
"rrT C_ S(t). Now it is also plausible to assume that s satisfies s-projection: 
s(x, y, z) implies s0(Ir(x), ~r(y), w(z)). Note, contrary to what one might 
think at first sight, that the projection "rrX of a convex set X need not 
be convex, nor the other way around. 

Let  us start again with the explanatory clause. Let Y explain T at 
least as well as X, i.e., (Rii). Then it follows immediately that wY 
explains -¢rT at least as well as ~rX, provided that "rrT is convex. And 
again, now using the refined results on success explanation, the explana- 
tory clause also follows: ~rY explains S(t) at least as well as ,rrX, pro- 
vided S(t) is convex. Note that for the last result "rrT need not be 
c o n v e x .  

Let us now consider the instantial clause and recall that projection 
failed in the naive case and that no interesting sufficient (extra) con- 
dition existed. In the refined case, straightforward projection is also 
invalid, but there are now interesting sufficient conditions, i.e., con- 
ditions which together with s-projection guarantee the projection of the 
instantial clause. I will consider three of them, in order of decreasing 
strength. 

It will be useful to write, down explicitly the assumption that Y 
instantiates T at least as well as X: 

(Ri) For all x in X and z in T if r(x, z), then there is y in Y such 
that s(x, y, z) 

and what I am eager to prove, i.e., ~Y instantiates ~'T at least as well 
as "rrX: 

(Ri)o For all Xo in X and zo in ~T if ro(xo, Zo), then there is yo in 
~Y such that So(Xo, Yo, Zo) 

Note first that, due to the nature of ~, (Ri)o is equivalent to 
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(Ri)o' For all x in X and z in T if r0('rr(x), "rr(z)), then there is y in 
Y such that s0(ir(x), w(y), w(z)) 

It is easy to check that (Ri)o' follows directly from the assumption 
that all theoretical(-cum-observational) structures are comparable: 

(A1) For all x and z in Mp r(x, z) 

Note that (A1), which trivially implies that all observational structures 
are also comparable, is a rather strong condition. But there may well 
be cases where it is satisfied: for instance, the case of propositional 
structures based on fixed finite sets of observational and theoretical 
elementary propositions. 

A weaker sufficient condition assumes that observational compar- 
ability guarantees theoretical comparability: 

(A2) For all x and z in Mp if r0(w(x), ~(z)), then r(x, z) 

Although (A2) is weaker than (A1), it is also a strong condition. 
Because comparability presupposes at least that the domain-sets are 
the same, (A2) excludes observationally comparable structures with 
different theoretical domain-sets. 

A still weaker sufficient condition leaves this possibility open. But, 
whereas (A1) and (A2) were general conditions, the weakest sufficient 
condition is specific in the sense that it imposes a restriction on the 
theories in question. As is easy to check, (Ri)o' is also guaranteed if X 
and T are mutually exhaustive with respect to ro: 

(A3) For all x in X and z in T if ro('rr(x), -rr(z)), then there are x' 
in X and z' in T such that -rr(x') = ~(x) and -rr(z') = ~(z) and 
r(x', z'). 

It is interesting to consider the nature of this condition in some detail. 
Let  ME(X/Z)  indicate that X and Z are mutually exhaustive with 
respect to ro in the sense defined by (A3). As we have seen in Section 
2, it may well be that r is either an equivalence relation or a partial 
ordering. It is not difficult to prove that ME is in this case also an 
equivalence relation or a partial ordering on subsets of Mp, respec- 
tively. In the equivalence case the theories considered may all be mutu- 
ally exhaustive, in which case all or none of them belong to the equiva- 
lence class associated with T. In the case of a partial ordering, the 
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theories considered may form an ordered sequence which may or may 
not end with T, but many of such paths will end in T. 

In the naive case there were no interesting sufficient conditions for 
projection of the instantial clause. From (A1), (A2), and (A3) it is easy 
to see why. Naive truthlikeness was based on trivial structurelikeness, 
which implied that two different structures are always incomparable. 
As a consequence, (A1) is excluded as soon as Mp contains more than 
one element, and (A2) and (A3) both reduce to the condition that "rr 
is a one-one function, which is of course an improper extreme case of 
stratification. (See note added in proof.) 

If the instantial clause is projected, it follows also directly that TrY 
instantiates R(t), which was assumed to be a subset of 7rT, at least as 
well as X. Hence, if Y instantiates T at least as well as ,rX and if (A1) 
or (A2) or (A3) hold, then wY is instantially at least as successful as 
~X. 

In sum, in contrast to the naive case, projection of refined truthlike- 
ness, with the relevant success consequence, is guaranteed under some 
interesting conditions. 

3.7. Refined Quantitative Truthlikeness 

The refined definition is, like the naive one, qualitative, now in the 
specific sense that it is based on a comparison of sets of structures in 
terms of a ternary relation of structurelikeness and not in terms of a 
quantitative distance function between structures. Although I am scep- 
tical about the use-value of quantitative truthlikeness, I will formulate 
a plausible quantitative version of refined truthlikeness. 

Let d be a quasi-distance function on Mp, i.e., d(x, y) i> 0, such that 
d(x, y) = 0 iff x = y, d(x, y) = d(y, x). Let sd be based on d in the sense 
that sd(x, y, z) iff d(x, y) <~ d(x, z) and d(y, z) ~ d(x, z). 

The most plausible definition for the quantitative distance between X 
and T seems to be the following (where I confine myself to countable 
theories, extrapolation to non-denumerable theories is possible): 
RTD(X, T) = E z E T  drain(Z, X) + ~x~x dmin( x, W). Here the minimum 
distance between, e.g., z and X is defined as the minimum of d(z, x) 
for all x in X comparable with z. I assume that all pairs of theories are 
such that for every member of the one there is at least one comparable 
member of the other. 
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As in the qualitative case, RTD reduces to the corresponding naive 
quantitative notion under the appropriate conditions. The trivial dis- 
tance function corresponding to trivial structurelikeness (which was 
defined by t(x, y, z) iff x = y = z) can be defined as follows: dt(x, y) is 
0 or 1 depending on whether x is equal to y or not. It is easy to 
check that RTDt(X, T), i.e., RTD(X, T) based on dr, then reduces to 
NTD(X, T) = IT • Xl, i.e., the naive quantitative notion. 

An interesting question is whether or under what further conditions 
qualitative truthlikeness is compatible with quantitative truthlikeness in 
the sense that RTL(X, Y, T), based on sd, implies 
RTD(Y, T)~< RTD(X, T). In contrast with the corresponding naive 
case, this is not generally the case. However, it is guaranteed when 
(Rii) is strengthened to: 

(Rii-Q) There is a one-one function from Y - X U T to X - Y U T 
such that for all y in Y -  X U T there is z in T such that 
s(f(y), y, z) 

This strong version of (Rii) is trivially satisfied in the case of naive 
truthlikeness. However, it need not be satisfied in other cases, e.g., in 
the context of concretization (see Section 4). This kind of example 
makes me sceptical about the use-value of any quantitative approach, 
at least as far as quantitative approaches in the line of the presented 
qualitative structuralist approach are concerned. 

4. A P P L I C A T I O N :  I D E A L I Z A T I O N  A N D  C O N C R E T I Z A T I O N  

In this section I will study a special kind of theorylikeness, viz., theo- 
rylikeness based on idealization and concretization. From the general 
exposition it then trivially follows that concretization of theories can 
be a truth approximation strategy. This will be illustrated by the transi- 
tion of the theory of ideal gases to that of Van der Waals. Then I 
will outline how concretization is also an important strategy in the 
investigation of the domain of validity of an interesting theorem and 
in particular whether it is true for the actual or even the empirically 
possible worlds. 
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4.1. Idealization and Concretization 

Concretization or factualization, as it has been presented by the Polish 
philosophers Wladislaw Krajewski (1977) and Leszek Nowak (1980), is 
basically a relation between real-valued functions. Hence, let us assume 
that the conceptual structures to be considered contain one or more 
real-valued functions, with or without one or more real constants. 
Structure y is called a concretization of x and x an idealization of y, 
indicated by con(x, y), if y transforms, directly or by a limit procedure, 
into x when one or more constants or functions occurring in y uniformly 
assume the value 0. It is easy to see that it is a necessary condition for 
con(x, y) that x and y have the same domain-sets. Moreover, it is 
easy to check that con is reflexive, antisymmetric, and transitive. In a 
subsection to follow, the example is presented of a Van der Waals gas 
model as a concretization of an ideal gas model. 

Concretization is primarily a binary relation, but for my purposes I 
need the plausible ternary version leading to a concretization triple: 
ct(x, y, z) iff con(x, y) and con(y, z). I will assume ct as the underlying 
notion of structurelikeness. The relation of relatedness based on ct is 
easily seen to be equivalent to con. Note that we have here a clear 
example in which relatedness is not symmetric, but directed. Note also 
that ct is trivially decomposable. Truth-/theory-likeness based on this 
ternary relation will be indicated by RTLct(X, Y, Z) and 
RTLa(X,  Y, T), respectively. It is easy to check that ct satisfies the 
minimum conditions of being centered, centering, and conditional left 
and right reflexivity. Moreover, it is antisymmetric (central, left, and 
right) and it satisfies all conceivable kinds of transitivity, e.g., left: if 
ct(w, x, z) and ct(x, y, z), then ct(w, y, z). 

My next task is to define the binary relation of concretization between 
theories. Again I will do this as weakly as possible: Y is a concretization 
of X and X an idealization of Y, indicated by CON(X, Y), iff all 
members of X have a concretizafion in Y and all members of Y have 
an idealization in X. At  first sight one might think that the second 
clause should be strengthened to: and all members of Y have a unique 
idealization in X. However, this would exclude, e.g., 'inclusive' concre- 
tization triples {X, Y, Z) with X as a subset of Y and Y of Z and 
CON(X, Y) and CON(Y, Z). 

It is trivial that CON is reflexive and transitive. However, it need 
not be antisymmetric, contrary to what one might expect. But sufficient 



T R U T H  A P P R O X I M A T I O N  335 

for antisymmetry of CON(X, Y) is that X and Y are convex (i.e., dosed 
for intermediates). Now it comes down to: if con(x, y) and con(y, z), 
i.e., ct(x, y, z), and x and z in X, then y in X. 

The ternary relation of concretization of theories I define again as 
weakly as possible: CT(X, Y, Z) iff CON(X, Y) and CON(Y, Z). It is 
easy to check that CT has the properties of being centered, centering 
for convex sets, conditional left and right reflexivity, and antisymmetry 
(central, left, right) for convex sets and all conceivable forms of trans- 
itivity. As a consequence, CT(X, Y, Z) is for fixed Z a partial ordering 
as far as convex theories are concerned. 

The main question is whether or under what conditions CT(X, Y, Z) 
implies RTLct(X, Y, Z). It turns out that some conditions have to be 
added to guarantee this implication, but there are some alternative 
possibilities. I am, of course, primarily interested in conditions on X 
and/or Y or their combination, for in the crucial case we do not dispose 
of Z, i.e., T. One sufficient combination of conditions is the following: 
Y should be convex as well as mediating, the latter condition being 
defined as: if z is a concretization of x and if x has a concretization in 
Y and z an idealization in Y, then Y also provides an intermediate for 
x and z; or, more formally, if con(x, z) and if there are y and y' in Y 
such that con(x,y) and con(y ' ,z) ,  then there is y" in Y such that 
con(x, y") and con(y", z) (i.e., ct(x, y", z)). 

Note that both conditions only concern Y. Although being mediating 
is a more specific property than convexity, it is not a very restrictive 
condition in the present context. Note also that it follows that any X 
can be an idealized starting point for successive concretization. How- 
ever, the starting point X will usually even be closed for idealizations, 
in the sense that if x in X and con(x', x) then x' in X. It is easy to 
check that this trivially implies that X is convex and mediating. 

Let us formally state the main claim: it is (easily) possible to prove 
the following Concretization as Theorylikeness Theorem (C ~ TL-Theo- 
rem): if C T ( X , Y , Z )  and if Y is convex and mediating, then 
RTLct(X, Y, Z). In words: the intermediate theory of a concretization 
triple is closer to the third than the first, assuming that it is convex and 
mediating. 

We may define stronger versions of concretization triples such as CT* 
(X, Y, Z) = CT(X, Y, Z) and Y convex and mediating or even CT** 
(X, Y, Z) = CT*(X, Y, Z) and X and Z also convex. According to the 
theorem both are special kinds of theorylikeness. Moreover, it was 
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already mentioned that CT(X, Y, Z) is antisymmetric (in the central 
sense) as soon as the three sets are convex; hence CT** is an antisym- 
metric special type of theorylikeness. 

4.2. Truth Approximation 

A direct consequence of the C--* TL-Theorem is that, if theory Y is a 
concretization of theory X, if Y is convex and mediating, and if the 
true set of empirical possibilities T is a concretization of Y, then Y is 
closer to the truth than X. This may be called the Truth Approximation 
by Concretization (TAC-)Corollary - a major goal of this section, viz., 
to show that and in what sense concretization may be a form of truth 
approximation. All conditions for truth approximation can be checked, 
except of course the crucial heuristic hypothesis that T is a concretiza- 
tion of Y. 

To get 'good reasons' to assume that this crucial hypothesis is also 
true it is important that the concretization has some type of (necessarily 
insufficient) justification, of a theoretical or empirical nature, suggesting 
that the account of the new factor is in the proper direction. In this 
respect it is plausible to speak of theoretical and/or empirical 
concretization. The famous case of Van der Waals to be presented 
evidently is a case of theoretical concretization, followed by empirical 
support. 

4.3. Application to Gas Models 

The transition from the theory of ideal gases to Van der Waals's theory 
of gases has frequently been presented as a paradigmatic case of concre- 
tization. The challenge of any sophisticated theory of truthlikeness 
hence is to show that this transition can be a case of truth approxi- 
mation. 

For this purpose I start with formulating the relevant models in 
elementary structuralist terms. (S, n, P, V, T) is a potential gas model 
(PGM) iff S represents a set of thermal states of n moles of a gas and P, 
V, and T are real-valued functions defined on S representing pressure, 
volume, and (empirical absolute) temperature, respectively. 

Specific gas models are PGM's satisfying an additional condition. 
The ideal gas models (IGM) satisfy in addition P(s)V(s) = nRT(s) for 
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all s in S, or simply PV = nRT, where R is the so-called ideal gas 
constant. For gas models with mutual attraction (GMa) there is a non- 
negative real (number) constant a, within a certain fixed interval, such 
that (P + (n2a/V2)) V = nRT. For gas models with non-zero volume of 
molecules (GMb) there is a non-negative real constant b, within a 
certain fixed Interval, such that P(V - nb) = nRT. Finally, in the case 
of Van der Waals gas models (WGM) there are non-negative real 
constants a and b, within the previously mentioned two intervals, such 
that (P + (n2a/V2)) (V - nb)=  nRT. 

Note first that it is a neccesary condition for con(x, y) (x and y in 
PGM) that Sx = Sy. Note also that IGM, GMa, GMb, and WGM have 
been defined such that they are all convex and mediating. 

It is easy to check that IGM, GMa, and WGM as well as IGM, 
GMb, and WGM constitute a concretization triple: an element of WGM 
transforms into an element of GMa and GMb by substituting the value 
0 for b and a, respectively. The resulting elements of GMa and GMb 
transform into elements of IGM by substituting 0 for a and b, respec- 
tively. 

Due to the C ~ TL-Theorem it follows that GMa and GMb are both 
closer to WGM than IGM. As a consequence, if WGM were to repre- 
sent the true set of empirically possible gases, GMa and GMb would 
be closer to the truth than IGM. Finally, and most importantly, the 
TAC-Corollary guarantees that WGM is closer to the truth than IGM, 
assuming the heuristic hypothesis that the true set of empirically pos- 
sible gases is, in its turn, a concretization of WGM. 

Let us finally confront the strengthening of (Rii) to (Rii-Q) which 
seemed a plausible way to get an acceptable notion of quantitative 
truthlikeness with the gas model example. It is easy to check that, for 
instance, the concretization triple of (sets of) gas models 
(IGM, GMa, WGM) does not satisfy (Rii-Q), simply due to the fact 
that the set GMa is (much) larger than IGM. As a consequence, it may 
well be the case that all plausible distance functions in this case, if any, 
are such that RTD(GMa, WGM) is larger than RTD(IGM, WGM), 
notwithstanding the fact that GMa is closer to WGM than IGM, not 
only according to my qualitative definition of refined truthlikeness, but 
also according to a generally accepted informal judgement. 

See, however, Niiniluoto (1986) for a completely different quantita- 
tive approach to concretization in general and the Van der Waals case 
in particular. 
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4.4. Validity Research 

Scientific research is not always directed to describing the actual world 
or characterizing the set of empirically possible worlds. It may also 
primarily aim at proving interesting theorems for certain conceptual 
possibilities, as Hamminga (1983) showed for neo-classical economics. 

Let a certain Mp be chosen, let T indicate the (unknown) subset of 
empirical possibilities, and let R indicate the (unknown) subset (of T) 
of realized empirical possibilities, possibly containing just one element, 
the actual possibility. 

Let IT indicate an 'interesting theorem', that is some insightful claim, 
of which it is interesting to know whether it is true for the empirical 
possibilities, or at least the realized possibilities. Let V(IT), or simply 
V, indicate the set of conceptual possibilities for which IT can be 
proved. V is called the domain of (provable) validity of IT, and it is 
assumed not to be already explicitly characterized. 

A frequent type of scientific progress is the following. Suppose that 
it was earlier proved that IT holds for X, i.e., that X is subset of V. 
The new result is that Y, which includes X, also is, like X, included in 
V. Due to concentricity of the naive and refined theorylikeness notions 
it follows in this case that N/RTL(X, Y, V). The ultimate purpose of 
this type of research was to find out whether T or at least R are subsets 
of V. Of course, the larger V has been proven to be, as in the described 
case, the greater the chance, informally speaking, that R or even T are 
subsets of V. However, just enlarging the proven domain of validity 
does not necessarily go in the direction of R and T. For this purpose 
concretization is the standard strategy. 

Let it first be shown that X is a subset of V, and later that a concre- 
tization Y of X (CON(X, Y), X need not be a subset of Y) is also a 
subset of V. It then trivially follows that RTL(X, X U Y, V). If, more- 
over, Y is convex and mediating, it follows from the heuristic hypothesis 
that Y is a concretization of T (CON(Y, T)), using the C ~ TL- Theo- 
rem, that RTL(X, Y, T). Hence, we have proved IT for a set Y which 
is more similar to T than X, which increases the chance that IT holds 
for T, ipso facto for R. 

A complex form of validity research concerns the case that IT is not 
fixed, but that realistic factors are successively accounted for. Formally 
this is also a form of concretization. IT2 is called a concretization of 
IT1 if V(IT2) = V2 is a concretization of V(IT1) = V1. 
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Now suppose that IT1 is proven for X. The relevant heuristic strategy 
is to look for a concretization Y of X and a concretization IT2 of IT1 
such that IT2 can be proved for Y. The heuristic hypotheses are that 
T is a concretization of Y and that there is a concretization IT* of IT2 
such that IT* holds for T and hence for R. This makes sense because 
if Y and IT2 are convex and mediating, it not only follows that Y is 
closer to T than X but also that V2 is closer to V* than V1. Hence, in 
this case we are not only on the way to T but also to IT*. 

The concretization of the theory and corresponding theorem of Modi- 
gliani and Miller concerning the capital structure of firms by Kraus 
and Litzenberger turns out to be a perfect example of this kind of 
approximation of a provable interesting truth (Cools, Hamminga, and 
Kuipers, forthcoming). 

C O N C L U D I N G  R E M A R K S  

In this article I have presented conceptually plausible definitions of 
naive and refined truthlikeness of theories, the latter based on an 
underlying notion of structurelikeness. Taking into account the assumed 
fixed character of the conceptual frame (the set of conceptual possibili- 
ties), it allows minimally the conclusion that conceptually relative but 
otherwise objective truth approximation is possible in a sophisticated 
sense, for example, by concretization. Moreover, it justifies the corre- 
sponding, intersubjectively applicable, methodological rule to choose, 
whenever possible, the more successful of two theories. 

In sum, my threefold explication of the idea of truthlikeness is coher- 
ent and conceptually attractive and fruitful. It is tempting to mention 
one other fruit, the plausible explication of the everyday expression 
"the truth lies in between": in terms of structurelikeness, when the true 
description t is concerned: s(x, t, z) & s(z, t, x); and in terms of naive 
or refined theorylikeness when the true theory T is concerned: 
NTL(X, T, Z) & NTL(Z, T, X) and RTL(X, T, Z) & RTL(Z, T, X), 
respectively. 

Moreover, as we have seen, my explication allowed the explanation 
of the global success of (natural) science by assuming that conceptual 
frames for natural domains contain, as a rule, a unique, time-indepen- 
dent subset of empirical possibilities. For this so-called frame-hypo- 
thesis is sufficient to explain local progress in success on the basis 
of (frame-relative) truth approximation. In Kuipers (1989) I already 
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presented the global argument as far as naive truthlikeness is involved. 
However, it is not only important to have shown here that this argument 
can be easily extrapolated to refined truthlikeness, but also that es- 
pecially the notion of refined theorylikeness can relativize all kinds of 
incommensurability claims between theories formulated within different 
conceptual frames. As a crucial example in this respect, I have demon- 
strated that refined truthlikeness of stratified theories is under general 
conditions projected on observational theories. Hence, refined truth- 
likeness clearly paves the way for fundamental, or at least pragmatic, 
commensurability of related theories. 

NOTES 

* I would like to acknowledge that van Benthem (1987) played in several respects a 
crucial role in the research for a new refined definition. Moreover, I like to thank David 
Miller, Ilkka Niiniluoto, and two referees for their comments on an earlier version. One 
of the referees notes that the Miller version of the naive approach (in model-theoretic 
terms, and identifying the truth with the truth about the actual world) has been criticised 
on several occasions for its failure to accommodate likeness between structures by Oddie 
(notably Oddie, 1986). The idea that likeness between structures should be a guiding 
idea behind truthlikeness is said to be a constant theme of Oddie's work. All this may 
well be true, but I should add however that Oddie's publications did not play any role 
in my research. The local references to Oddie are based on the suggestions by the referee. 
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A D D E D  I N  P R O O F  

This is not quite correct for (A3).  That reduces to: 

For all x in X and z in T if ~(x) = */(z), then there is y in 
X n  T such that n(x) = n(y) -- n(z).  

This seems to be an interesting, sufficient condition, not merely filling 
the gap, i .e. ,  a condition suggested to be impossible at the end of 
Section 1.7. 


