THE REPRESENTATION OF HARMONIC MAPPINGS
BY MONOGENIC FUNCTIONS

I. P. Mel'nichenko UDC 512.9:517,51

§1. Posing of the Problem

By harmonic mappings we mean continuously differentiable mappings (x;, Xy, X3} ~u = (g, —uy/2,
—ug / 2) defined by the system of equations

du, 1 (6u2 6u3) du, du,
B, " 2\ax, T oy, ) ok, T,
1)
ou, 1 Ou, ou, 1 Ou,
o Tre ~ %t
where the values of uj and Xj i, i =1, 2, 3) belong to the real field R [1]. It is known that u; = uj (X1, Xy, X3)

satisfy the three-dimensional Laplace equation. It is customary to call the vector (uy, —u,/2, —uyz/2) har-
monic,

The system of equations (1) can be written in another way:

divue =0, rotu =0.

In the two-dimensional case these equations are the Cauchy —Riemann conditions for an analytic func-
tion of a complex variable. In this connection, the question arises: does there exist an algebra the differ~
entiable functions on which have components satisfying (1)? Such a question involves a certain indefinite~
ness since the concept of differentiable function on an algebra can be introduced in various ways. From
these various possibilities it is advisable to choose that in which the concepts of the theory of analytic

“functions generalizes s0 ag to preserve the basic properties of such operations as differentiation and inte-
gration. Finally, from the arithmetic point of view, an algebra of minimal rank is more convenient. In the
case considered, the least rank of the algebra desired is equal to three.

 Such a problem already appeared in Hamilton's work. It is true that in considering this problem as
well as many others, Hamilton restricted himself to the algebra of quaternions and the question of con~
structing another algebra was not posed [2].

At the present time Bergman [3] has sufficiently developed the theory of harmonic vectors based on
the algebra of complex numbers. However, the methods of integral operators of Bergman for the three-~
dimeusional Laplace equation have a narrow sphere of application.

§2. Analytic and Monogenic Hypercomplex Functions

Let A be a linear normed associative algebra with principal unit of rank n over the field F (in this
paper the case of the real R and the complex C fields will be considered).

Let the law of multiplication of basis elements have the form

2?,&6;“ vReF(@,j=12,...,0)
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where 7;k are the structural constants of the algebra. Along with the algebra A one considers the images

o and & of its right and left regular representations. Bases {Fl} and {fll} in o and a are defined by the
isomorphisms

e+ [yl = Eiandlyly] = Es,
where [y}k] for each fixed i is a matrix of size n x n.

‘We now introduce into consideration functions f(¢) on the algebra A whose values also lie in A. Each
such function can be represented in the form

FQ = Juwen t=Vxe, 1ER, ucF. @)
k=] k=]

The hypercomplex function f(z) will be called analytic or a (hypercomplex) potential in the domain D < A,
if its Frechet derivative for each fixed ¢ € D lies in @ or o. We distinguish between left and right poten-
tials. If the derivative lies in o, the potential will be called right (if in o — left).

In our (finite-dimensional) case the Frechet derivative is the Jacobian matrix [Buy, /8xy]. Conditions
under which the Jacobian matrix lies in o or o, are given, respectively, by:

a . n
5] =X 3
& -
ou, o 2 1
[W}=ZW‘E" 3"

i=)

Here ¢ = ¢i(¢) is a function of the point ¢ at which the Frechet derivative is computed.

Equations (3) and (3") will be called the Cauchy —Riemann conditions, and their right sides Cauchy —
Riemann matrices (respectively, for right and left potentials) [4].

We shall also introduce the concept of monogenic function on the algebra A, For convenience in
defining the derivative we shall require that A be commutative.

By a monogenic hypercomplex function on a domain D &< A will be meant a function f(¢) defined on D
with values in A, for which at each point ¢ € D there exists a function f'(¢) with values in A, independent of
h, and such that

hf Q) = lim (] (¢ + ) — F@e™  vhed, @)

where € > 0.
The function f' () will be called the derivative of the function f(¢) with respect to the variable ¢.

This definition of monogenic hypercomplex function differs from the conventional one in that the deri-
vative is not defined directly by means of the limit

F@) = limf (¢ + eh) — F(©)] (he) ",
(he)>»0

but by an indirect method, using the derivative of Gato (4). Here it is not necessary to exclude from con-
sideration values of the increment of the independent variable which are noninvertible elements. Hence the
definition based on (4) is more general than the usual one: when the function is monogenic in the usual
sense, it is monogenic in the sense of (4) [the values of f'(¢) coincide here], and besides (4) makes sense
when h is a noninvertible element.

In the special case when h coincides with one of the basis vectors, (4) assumes the form

. d
[ ©e= 2L )
where 9f /9x; is the usual partial derivative, taken of f(¢(xy, ..., xp)) as of a function of several real

variables.
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From now on it will be assumed that e is a principal unit of A (here there is no loss of generality).
Using (5), it is easy to compute the derivative f'(¢). Taking ej = e; in (5), we have

rn . OF

f@) = ;- {6)
Now one can prove the following lemma which will be useful in what follows.
LEMMA. A monogenic function on the algebra A is a right potential.

Let f(¢) be a monogenic function. Then, according to (6), there exists a derivative equal to 5f /9x;.
We shall find the image of the derivative in the right regular representation. This will be the matrix

of - Oui ix s
[535_1]= z—ax—I il G.k=1,2,...,n),
i=1

in which the first column coincides with the first column of the Jacobian matrix, since under the right
regular representation 7]}1 = 6ij, where 5ij is the Kronecker symbol. Thus, in the case considered, [0f /6x4]

is the Cauchy —Riemann matrix, obtained by decomposition of the Jacobi matrix with respect to the system
of functions @i = dui /6x;. This proves the lemma.

§3. The Problem of Construction of Harmonic Algebras

A potential is sought whose Cauchy —Riemann conditions are the equations (1). For this it is neces~
sary to find a commutative, i.e., such that

Yik_—_v;k (i,j,k=l,..-,n). (7)

and associative, i.e., for which one has the relations
n A n 3
X visvit = Jvivks (kosimaj=1,...,n), ®)
=] =il

algebra of the third rank (if this is possible to do in general), such that the potential (2) has as Cauchy ~
Riemann conditions (1).

First we shall consider a broader problem ~ we shall find what conditions an algebra must satisfy
in order to have at least one hypercomplex function, defined in the following way:

. 1) at some point ¢ € D there exists a nonzero second derivative f" (¢) in the sense of {4);
2) at the same point ¢ the components of £(¢) satisfy the three-dimensional Laplace equation.

Under the conditions indicated we have

I _fpe (=129
6x,~
and hence )
Af=F (@) (€ +é+eh) =0. )

From (9) it follows that the components of the twice differentiable hypercomplex function f(¢) satisfy
the Laplace equation if

¢%+.e§+e§=o. - (10)

Here one disregards the trivial case f“(g)_'= 0, which is realized on any algebra A by a linear function
f(¢) =ag + b, where a and b are constant elements of the algebra considered.

In the matrix algebra o, which is the left regular representation of the algebra sought, (10) has the
form : .

100 P fo 10 P J[oo 1 P
010 +1 Vv ve [+ v 733, =0.
001 v v v 4 L v YR vh (11)

Here as E4 a principal unit is taken and (7) is taken into consideration.
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The matrix equation (11) represents a system of algebraic equations for the nine unknown structural
constants. Using the condition of associativity the number of unknowns can be reduced to six. We have,
from (10) and (8)

3

5 3 3
X i = glv;-k z‘vii =0 (kj=1,2,3).

s==| i==]

3
Whence, for j = 1 taking account of (11}, we get: 2 y:i =0 ({i=1, 2, 3)and then (11) assumes the form

s==1

100 O 1 0O [ O 0 1P
0L O] +| vh v vis |+ v v v | =0 12)
001 Yo Ve Vo —h =1 — 1y — vk

Thus, for the structural constants y}k one obtains a subdefinite system of equations [in the system

(12)] of five equations and six unknowns. It should be noted that in posing the problem one is pursuing the
goal of constructing algebras, the differentiable functions on which have definite harmonic components,
namely those which satisfy (1). This gives the possibility of obtaining supplementary conditions to (12) for
the structural constants,

§4. Harmonic Algebras

Suppose given a normed commutative and associative algebra A with principal units over the field F
with basis {ej} . If the set o = {eis} T, consisting of m = n elements satisfies the equation

5, .2 _
eil+ei2+...+e,-m~—‘ s

then let us agree to denote the algebra A by the symbol H%ln(F, g) and call it harmonic. When the set ¢ is
fixed and there is no possibility of ambiguity, one will use the reduced notation HP (). The algebra of
complex numbers then should be denoted by: H%(R).

We shall study the question of the existence of the algebra H}(R). Such an algebra would be the sim~
plest algebra for solving the problem posed in §1.

We shall find the trace of the left side of (12). We get:

3
NiSplvisl” = (22" + (35 + v2) -+ 1 = 0. (13)

i=]
Equation (13) has no solutions with values in R. Whence follows the following theorem.

THEOREM 1. There does not exist an algebra uj in (1). We shall seek structural constants of an
algebra H3(C). If (1) is considered as the Cauchy —Riemann conditions for a right potential, then from (1)
and (3) we get:

3 3
i 1 i i i i
2[ Vi —5 (P22 + ‘\’33)] ¢:=0, Z (y2s—¥32) 9: =0,

i=1 i=l
3 3

1 < (.. 1
Zl ('Yél -+ -2—1’12> ¢ =0, Zl(‘Vm + 5 Vi3 )(Pi =0. (14)
Equation (14) should be satisfied for any harmonic mapping which is a right potential. Obviously the linear
mapping
3
u;= Ea;x,-, GER (i=1,2,3)
j=l1

satisfies (1), i.e., is harmonic. It is easy to show that for any fixed at, a}, 4}, the remaining coefficients in
the last formula can be determined in such a way as to realize (3). That is, there exist analytic linear
mappings with arbitrarily given al, a}, a}. Whence it is easy to conclude that ¢i in (14) can assume arbi-
trary values, which is equivalent to all the coefficients of ¢; being equal to zero. Referring (14) here to a
commutative algebra with principal unit e, we will have:
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1
)

) 9 . 9 2
» Vo2 -+ V3 =0, vo = V2,
22 3 (15)

Vi =vn =0, v+ =0, v5s =12
Since according to the lemma a monogenic function is a right potentiai, (15) should be considered
along with (12), whence we get
1
Vo= — Vi Vs =Y () + () =—7.

Thus, the subdefinite system (12) along with (15) reduces to three equations w our unknowns. In
the last equation, setting v3; = (1/2)sinw and 13, = (i /2)cos w, where w € C, we get for a basis of the image

o of the algebra A,

0 —-;- 0 00 L1
100 2
i . i ‘ i
E =010}, E,=]1 — g sine scoso p E;=lo %cosm %sinm (16)
001 i ]
0 Lcoso =sine 1 g i
2 2 '§'Slﬂ w -"-‘—2-(:05(1)
Thus, the algebra H%(C) exists. Multiplying the matrices of (16) we get a Kelly table for H3(C)
g € 4
€ e, €, &
e & _ig £ cos i 17
2le, — 5 — 5 (sinwe,—cosae) G (coswe, + sinae,) amn
&le -i—(cosme -+ sinwey) Y 4 L(sinme — cOs ©e,)
315 9 2 9 9 2 3

Equation (17) is the Kelly table o¢f a one-parameter family of algebras, The parameter w, which
takes values in the complex field, will be written as an index in the notation of the algebra in the following
way: Hfln (F),- For example, the algebra given in [5] would be denoted in the present system by H‘?;(C)7r /1

§ 5. Analytic Functions on the Algebras H?;;»(C)w

- We shall find conditions under which hypercomplex functions on such structures

3 3
@ = EU €, L= zx;e,., %,€R, U (%, %, %) €C

=l i=l

are right potentials on H3(C),,.
From (3) and (16) we have

|
7%

1
5@, -—

% —3

[

3 .
- i R 1 .
3%, ].” % @ =g (Sine@—c0s0g) 5 (cosog, + sinog)

i,
9+ 5 (sin @, — cos ap,)

i .
s g (COs 0P, +sino )

This matrix equation is equivalent to the system of equations

au, 1 U, aU, | U,
ox, 2 ox,’ Ox, = 2 ox,°

au, au,_ i 2 . au,

.52;.—_:3)‘—8- 7(@5 r +_smm——ax] ),

ou, aU, if . oU, U,

At smm-éz ——cosw-m k (18)
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2 3
— COS @ —m—

73—{ ox

Tx, % T2 ‘

U, aU, i(, U 6U)
sino s

which will also be called Cauchy —Riemann conditions for a right potential on the harmonic algebras
H%(C)w. These conditions are written as in the theory of functions of a complex variable in the form of a
system of linear partial differential equations.

‘Adding the last two equations in (18), we get

oU, 1(9U, U,
o 2\, T, |

1 3

From this equation and from the first three equations of (18) it follows that the imaginary and real parts of
the vectors

1 1 . 1 . 1 .
U= (UL -5 Uzl—§U3) = (ul -+ i, — —9—(u2 +4- tvz),-——Q— (u, + wa))

are harmonic vectors. Thus, (18) connects two conjugate harmonic vectors in a sense analogous to that

imbedded in the concept of "conjugate" for two harmonic scalar functions connected by the usual Cauchy —
Riemann conditions.

For functions of a hypercomplex variable on the algebras H3 5(C),, one has the following theorem.

THEOREM 2. The function () = 2 Ukek, ¢ = Z xyey defined in some domain D < H3(C),, is mono~-
k=l
~genic in this domain if and only if it has differentiable components Uj Xy, X3, X3), Uy, X3, X3), UsXy, X5, X3)
at each point of this domain (as functions of three real variables) and if the Cauchy —Riemann conditions
(18) are satisfied. '

This theorem is completely analogous to the theorem on differentiability of functions of a complex
variable.

According to the lemma, a monogenic function is a right potential. It was shown at the beginning of

§5, that if £(¢) is a right potential, then (18) holds. Whence follows the necessity of the conditions of the
theorem.

We shall prove the sufficiency of the conditions of the theorem. Suppose these conditions are satis-
fied. Then for finite increments we will have:

ou ou au

=2 it § L

AU, —a—x——Ax‘-i- o, Ax, + o Axy + L,
au, au, dU,

AU, =TA Rt R Axy + Ly,
U 1Y)

3 3 US
AUy = g% Myt b By 52 Ax+L3,

“ox,

where Ly, L,, Ly are quantities which are infinitesimal compared with the increment of the argument
(X1, X3, X3). The finite increment Af(¢), using (18) will be:

10U, 1,
% Bx, "+7E,“"3)

{6U2 ou, f oU, 6U3)]A
+e g Ax+»—l-—~2 manx—l——cosm—ax—l x, +

oU
Af () = AUy, + AUg, + AU g, +e( ' Ax, +

< U, aU) } {6U3A ( oU,
+ = ) oS © —— ax 4 sinw ) Ax,i e, X, + = cosm—ax—

1
. au, ou, i ( oU, v, )] Ax }
4+ sinw 6_xl) Ax, - ax L4~ lsino == 3%, — COS —a—xl- 3

ou,

au, au,
-+ L(AD) = (e,Ax, -+ e,Ax, +e3Ax3)< e L e y ax +eg—=—— 3%, >+ L(AD),

X,
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where L{Af) is a hypercomplex quantity of higher order of smallness than Ag [thh respect to the norms
in H}(C)y).

Fixing h, setting A¢ = eh with real ¢ and dividing the last equation by e, passage to the limit as ¢ —~ 0
shows the monogenicity of f{¢). ,

It is easy to prove that the sum and product of a finite number of monogenic functions on the algebras
I—I%(C)c,J are monogenic functions. Whence it follows that the class of monogenic functions on H%(C)w contains
at least all polynomials.

The author thanks Yu. M. Berezanskii and P. M. Tamrazov for valuable remarks.
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