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Abstract. Predicting the execution times of straight-line code sequences is a fundamental problem in the design 
and evaluation of hard real-time systems. The reliability of system-level timings and schedulability analysis rests 
on the accuracy of execution time predictions for the basic schedulable units of work. Obtaining such predictions 
for contemporary microprocessors is difficult. This paper presents a new technique called micro-analysis for 
predicting point-to-point execution times on code segments. It uses machine-description rules~ similar to those 
that have proven useful for code generation and peephole optimization, to translate compiled object code into a 
sequence of very low-level (micro) instructions. The stream of micro-instructions is then analyzed for timing, via a 
three-level pattern matching scheme. At this low level, the effect of advanced features such as instruction caching 
and overlap can be taken into account. This technique is compiler and language-independent, and retargetable. 
This paper also describes a prototype system in which the micro-analysis technique is integrated with an existing C 
compiler. This system predicts the bounded execution time of statement ranges or simple (non-nested) C functions 
at compile time. 

1. I n t r o d u c t i o n  

A computer  program that interacts with and reponds to real world processes in a t imely 
fashion, and must complete execution prior to it 's scheduled deadline, is called a "hard" 
real-t ime program. It is not sufficient for the implemented algorithm to be correct. The real- 
t ime program must provide the correct response (computation) on time. A late computation 

is usually no better, possibly even worse, than one that is on time but imprecise. The timing 
behavior o f  each real-t ime program component  (task) must be predictable if  one is to build 
rel iable deterministic real-time systems. 

Much of  the research in hard real-time scheduling theory assumes that the execution time 
of  each task is constant, and available a priori (e.g., Liu and Layland (1973), Mok (1985)). 
Stoyenko's  work (1987) on the schedulability analyzer for Real-Time Euclid addressed 

the problem of worst case timing analysis of  a task, by assuming the execution time of  
each instruction is constant. However, the hardware builders (Motorola 1985) concede that 
the exact execution time of  a given instruction may vary, depending upon the surrounding 
instructions and the current state of  the machine. 

Recently some researchers (Niehaus 1991, Park 1993, Park and Shaw 1991, Mok 1989) 
have challenged this basic assumption made by much of  the hard real-time scheduling 
theory as being unrealistic and have begun to develop tools to assist in determining more 
precise bounds on the execution time of  programs. Mok and his students (Mok 1989) 
have implemented a t iming tool that analyzes a stream of  assembly language instructions 
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generated from the compilation of C programs. They used a graph method to find the worst 
case path and computed the execution time by simulating the hardware. Park and Shaw 
(1989) implemented a timing tool for a subset of C, based on the notion of timing schema 
presented in Shaw (1987). A method very similar to that of Shaw is presented by Puschner 
and Koza (1989). These approaches are similar in that they all assume that the execution 
time of each machine instruction is constant and that the behavior of the underlying hardware 
is both deterministic and known. Shaw acknowledges that although his approach seems 
to work well when applied to simple deterministic hardware (e.g., Motorola 68010), more 
research is needed to determine timing predictability on more complex machines (e.g., 
Motorola 68020, Motorola 68030, Intel 80386, etc.). 

The rest of this paper is organized as follows. First, we briefly examine several traditional 
methods of measuring and/or predicting execution time. Second, we present a new technique 
for predicting best and worst case bounds for point-to-point execution times, based on a 
pattern matching scheme that uses a machine description and a set of timing rules similar 
to those that have proven useful for code generation and peephole optimization. This new 
technique, which we call micro-analysis, is capable of taking into account the architectural 
characteristics of the target processor and their effect on instruction execution time. We 
also present results of experiments that compare the performance of micro-analysis and 
traditional timing methods. Finally, we describe a prototype system which integrates the 
micro-analysis technique with a C compiler, This prototype version predicts execution 
times for statement ranges or entire functions (non-nested). 

2. Traditional Timing Methods 

Several methods for predicting the execution time of time-critical code segments have 
evolved over the years. In this section a discussion of some more commonly used methods 
for predicting and/or measuring execution time of code segments is presented along with 
an examination of their strengths and weaknesses. 

2.1. Table Lookup Method 

The table lookup method analyzes the target code segment at the assembly language in- 
struction level. The execution time of each individual instruction is computed by adding the 
time to prepare the operands to the time to perform the operation. The sum of the execution 
times of the instructions is considered the total execution time of the target code segment. 
This method will be referred to later as the table lookup method. Timing information 
relative to each instruction and addressing mode is usually determined by the processor's 
manufacturer and is printed in the user's manual or programmer's reference manual. 

This approach has several disadvantages. First, some compilers do not generate assembly 
code (e.g., the Verdix Ada compiler version 5.5). This problem can be overcome by 
disassembling the object code, although it does add an extra step to the analysis process. 
Second, it may be difficult to match the assembly code which requires timing analysis with 
the corresponding high-level language code. A possible solution to this problem is to insert 
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markers (i.e. identifiable labels) around the target source code segment, that will remain in 
place and be compiled through to the object code level. The main difficulty here is to insure 
that the markers are not repositioned or eliminated during optimization. Third, the accuracy 
of the timing predictions made using this approach is dependent on the accuracy of the timing 
information provided by the vendor. Fourth, the table lookup method performs poorly 
when applied to processors that implement a high degree of concurrency (e.g., instruction 
prefetching, pipelining, etc). For example, Intel suggests increasing performance estimates 
that are computed using cycle counts provided in their user's manual by 5% in order to 
account for occasional degradation in performance due to refilling the pipeline after a 
successful branch (Intel 1988). Also, operand sizes and addressing modes can influence 
program performance, but both are generally overlooked in discussions on execution time. 

2.2. Instruction Counting 

Instruction counting, like table lookup, analyzes the target code segment at the machine 
language level. The instruction counting method predicts execution time by multiplying the 
number of machine instructions in the target code segment by a pair of numeric constants 
which represent the average best and worst case instruction execution times for the target 
processor. The best and worst case numeric constants are determined by measuring the exe- 
cution time of a large representative sample of machine instructions on the target processor. 
In addition to sharing many of the same deficiencies of the table lookup method, instruction 
counting does not take into account the actual timings of the individual instructions that are 
executed. 

2.3. Software Monitors 

The use of software monitors is one of the simplest timing techniques. This approach uses 
instructions (e.g. calls to read the system clock) which are added to the target process 
to gather timing data. This technique can be used to make scheduling decisions to meet 
timing constraints during the execution of the process. Although this technique is simple 
to implement, it has several disadvantages. First the actual machine is required to obtain 
the timing measurement. This requirement precludes measurement of execution times 
for software on proposed processors. In addition, the overhead involved with reading the 
system clock will affect the accuracy of the time measurement. Finally, software monitors 
can only provide rough timing measurements, depending upon the precision of the system 
clock (McKerrow 1988). 

2.4. Dual Loop Benchmark 

The dual loop benchmark paradigm is a commonly used method of measuring code execu- 
tion time using a standard system clock (Altman and Wiederman 1987). The resolution of 
the system clock may vary from one implementation to another. However, the dual loop 
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-- context specification to define external packages 

with TEXT'IO; use TEXT'IO; 

package DUR'IO is new TEXT'IO.FIXED'IO(DURATION) 

with DUR'IO; use DUR'IO; 

with CALENDAR; use CALENDAR; 

-- procedure containing dual loop 

procedure DL'EXAMPLE is 

LOOP'COUNT : constant INTEGER := VALUE; 

AVG'EXECUTION'TIME: DURATION; 

TI, T2, T3, T4: TIME; 

begin 

T2 := CLOCK; -- get start time 

for I in I..LOOP'COUNT loop -- benchmark loop 

TEST'CODE'SEGMENT; -- (note it contains the 

-- test code to be measured) 

end loop; 

T1 := CLOCK; -- get end time 

T4 :: CLOCK; 

for I in I..LOOP'COUNT loop 

null; 

end loop; 

T3 := CLOCK; 

-- get start time 

-- control loop 

-- (note there no code 

-- within the loop) 

-- get end time 

-- compute the average execution 

AVG'EXECUTION'TIME :: ((TI - T2) 

end DL'EXAMPLE; 

time 

- (T3 - T4))/LOOP'COUNT); 

Figure 1. Dual loop timing example. 

benchmark approach deals with imprecise clocks by extending the duration of the test to 
a length that the clock can measure. This is accomplished by inserting the test code in a 
loop that is sandwiched between calls to the system clock. The execution time of the test 
code is determined by executing the loop many times, (e.g., 100K times) and computing 
the average time for the benchmark loop. The overhead introduced by the loop construct 
distorts the measurement and must be subtracted away. This is done by measuring the 
execution time of a second loop that is identical to the benchmark loop without the test code 
(a null body). Figure 1 shows an example of the dual loop benchmark approach being used 
to measure the execution time of an Ada program I. 
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In fact, this dual loop paradigm can be found in three commonly used Ada benchmark 
suites, namely the Ada Compiler Evaluation Capability (ACEC) test suite (Hook, Riccardi, 
and Vilot 1986), the Performance Issues Working Group (PIWG) test suite developed by a 
working group of the Association for Computing Machinery's Special Interest Group for 
Ada (SIGADA) (Roy 1990), and the University of Michigan test suite (Clapp et al. 1986), 

A major weakness of the dual loop benchmark method is that it assumes that textually 
equivalent code constructs require the same amount of time to execute. In particular, the 
time required to execute the loop constructs of the control loop and the benchmark loop may 
not be same. Dual loop benchmarking requires adding new code to the code segment to be 
timed (i.e. the loop, increment, test, and bound). Removing this code after the measurements 
are taken can change instruction alignment and execution time. The misalignment of word 
and long-word operands can cause multiple bus cycles to be performed for the operand 
transfer. Altman and Weiderman (1987) showed that identical loops exhibited substantial 
variations in execution time (as much as 12 percent) on specific test systems. For example, 
if the control loop fits into cache but the benchmark loop does not, then the control loop 
will execute faster than the benchmark loop. This variation in the execution time of the 
control loop and benchmark loop will cause the time calculation to be erroneous. 

Another problem with the dual loop approach is that the application copy of the timed 
routine and the test copy may yield different executions times, due to differences in cache and 
alignment (instructions and data). Timing a code segment in isolation requires a specially 
constructed test harness in which to make the measurement. The constructed dual loop test 
with its supporting code will be different from the actual application environment. Also 
data dependences and optimization issues apply here as well. For instance, an optimizing 
compiler may remove instructions from the control loop, making it necessary to write 
additional code to suppress the effects of optimization. It is unlikely that the same context 
would exist in the actual application. 

2.~ Simulation 

Using software to simulate the target processor is another common approach to determin- 
ing the timing behavior of a code segment (Arnold 1987). For instance, the General Code 
Analyzer component which is part of the SARTOR (Software Automation for Real-Time 
OpeRations) environment implements a general hardware simulator (Mok t985), Simu- 
lators are complex, require much effort to construct, and are also very slow. Simulators 
are only capable of measuring the execution time of a single test case, other test cases 
may produce different execution times. The accuracy of the measurement depends on two 
important factors: how well the simulator models the execution algorithm of the target 
processor and the accuracy of the timing data used by the simulator. 

The implementation of an accurate simulator requires very detailed and precise infor- 
mation about the internal functions of the target processor; information that is usually 
proprietary. This is still a common method of predicting processor performance. Soft- 
ware developers who need accurate timing can purchase simulators from the processor 
manufacturer if necessary. 
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2.6. Direct Measurement 

A logic analyzer, also called an oscilloscope, may be used to measure the execution time 
of a code segment. A logic analyzer is a hardware device that uses electrical probes to 
monitor processor activity. A logic analyzer is particularly useful when looking at time 
relationships of data on a bus (e.g., a microprocessor address, data, or control bus). Most 
logic analyzers are two analyzers in one. The first part is the timing analyzer and the second 
is a state analyzer. The state analyzer captures all state information between trigger points, 
while the timing analyzer computes the elapsed time between states and trigger points. 
Hardware timing tools are usually more accurate than the other timing methods discussed 
here, however they also tend to be expensive in several respects. 

There are several disadvantages to using hardware instruments to measure software tim- 
ing. First, the timing instrument itself is expensive to purchase. Second, it requires a 
skilled individual to perform the measurements. One must have a working knowledge of 
the instrument as well as the software to be timed. Third, this method requires that the 
target processor be available, because the timing data is measured directly on the processor. 
It is not uncommon to develop software systems to run on hardware that has not yet been 
built, in order to shorten the total system development cycle. Fourth, like simulation this 
method produces a single execution time measurement for the code segment in question; 
that measurement is accurate only for the data and processor state present when the mea- 
surement is taken. Variables that influence timing, like data size, cache contents, operand 
and instruction alignment, wait states, interrupts and virtual memory will cause the exe- 
cution time of a code segment to vary from one execution to another when it is executed 
within the context of a complete application. Some of these variables (e.g., cache contents) 
will become stable, once the code segment starts up and runs for a while, and so are not 
a major problem for the direct measurement approach. To acquire accurate timings using 
a logic analyzer the timing technician must take several measurements under various pro- 
cessing conditions. Still, there is a possibility of missing the test case that would cause the 
code segment to execute longer than the maximum measurement or less than the minimum 
measurement observed. 

3. The Micro-analysis Technique 

The micro-analysis approach was influenced by results produced in the area of compiler 
design, most notably work by Davidson and Fraser (1984a) involving retargetable peephole 
optimizers. It is based on the concept of using a machine description, in the form of a 
set of translation rules, to translate compiler object code into a sequence of very low level 
instructions. The stream of micro-instructions is then analyzed for timing via a multi-level 
pattern matching scheme. At this level, the effects of advanced features such as caching 
and instruction overlap can be taken into account. Micro-analysis is a three step process. 
The three steps are: 

1. Compile the program and disassemble the object module. The tool suite includes a 
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ftch : instruction fetch 

=%p : move program counter to 

Memory Address Register (MAR) 

=%s : move source address to MAR 

:%d : move destination address to MAR 

+p : increment program counter 

:sM : memory read to update source register 

=dM : memory read to update destination register 

=Ms : memory write operation 

+sd : add source to destination 

*sd : multiply source by destination 

NZVCX: set condition codes 

Figure 2. A subset of the machine description language. 

retargetable disassembler generator (Oh 1989) that was used to build disassemblers for 
the Motorola MC68020 and Intel 80386. 

. Transform machine instructions into a sequence of primitive operations which express 
the functionality of each machine instruction in fine-grain detail. The transformations 
are performed by a parser that uses the machine description of the target processor to 
produce a sequence of primitive operations. This process is called micro-translation. 

. Scan the stream of primitive operations, identifying patterns and applying rules which 
either specify a replacement pattern or an execution time. The execution times are 
specified as integers which represent the number of clock cycles required for a pattern 
of primitive operations to execute. When the analysis is complete, the execution time 
of the target code segment is displayed as a bounded integer time interval (i.e. [best 
case, worst case]). 

The parser (i.e. micro-translator) is constructed using a parser generator developed by 
Baker (1982). This parser generator was modified so that it would produce a parser capable 
of emitting primitive operations as it parsed the assembly language instructions of a code 
segment. The disassembler generator, parser generator and execution time analyzer were 
used to construct a timing tool for the MVME133A-20 single-board computer (Motorola 
MC68020 processor) and a Mitsuba personal computer (Intel 80386 processor). The tool 
has been used to predict the execution time of programs written in Ada, C, and assembly 
language. 
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3.1. Machine Description Language 

The machine description language (MDL) is set of syntactic patterns. Each pattern denotes 
a specific micro-level operation. Combination of these patterns denote specific processing 
events that occur during the execution of associated machine instructions. Figure 2 lists 
a subset of the patterns which make up the micro-language. The letters s and d denote 
internal source and destination registers not accessible by the user. Our model assumes that 
all computations take place in these registers. 

4. The Timing Tool 

The timing tool predicts a best case and worst case execution time of code segments (i.e. 
point-to-point execution time). The tool is composed of three independent retargetable 
components that correspond to the three steps in the micro-analysis process: 

• Disassembler: a program that disassembles object code and produces assembly level 
instructions. 

• Parser: a program that transforms machine instructions into a sequence of primitive 
operations which express the functionality of each instruction in fine grain detail. The 
parser is driven by a machine description specified in the form of an attributed grammar. 

• Timer: a rule-driven pattern matching program that evaluates sequences of primitive 
operations to determine execution time. 

The tool also includes an interactive user interface which prompts the user to input 
information that is generally undecidable, such as the minimum and maximum number 
of loop iterations, and the beginning and ending point of the code segment to be analyzed. 
The timer component is designed to take into account the specific architectural features of 
the target processor through its parameterized interface. For instance, the current version 
of the tool predicts timing for code segments executed on the 68020 and 80386 processors. 
They both handle the processor features that influence instruction timing, such as memory 
speed, cache memory size (68020 version), memory refresh, pipelining, etc. Figure 3 shows 
the organization of the tool. 

4.1. Timing Rules 

The timing analysis is guided by a set of pattern-driven timing rules. A timing rule consists of 
a left-hand side (LHS) and a right-hand side (RHS). The LHS is always a pattern consisting of 
one or more primitive operations. The RHS is either a macro-level pattern or a time interval. 
Macro-level patterns blend the execution time of two or more adjacent or near adjacent 
primitives (operations). These macro-level patterns perform a type of "time folding" on 
operations whose execution may overlap. 

The example processor that will be used to illustrate the micro-analysis technique is the 
Motorola MC68020. Figure 4 shows the pipeline structure of the MC68020 (Motorola 
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Timing Tool 

Input: object module 

Disassembler 

I 
I assembler code 

Parser ? 

I primitive code 

Timer 

Machine 
Description 

Timing 

Rules 

Output: execution time 

Figure 3. Overview of tool components. 

1985). The processor contains a three stage pipeline that allows up to three operations to 
be performed simultaneously. 

For example, the Motorola MC68020 processor always reads a long word (32 bits), thus 
providing an opportunity for overlap during the instruction fetch cycle. Several of the 
instructions in the MC68020 instruction set require only one word (16 bits) of memory, 
making it possible to fetch two adjacent single word instructions at the same time. The 
second instruction is effectively loaded in zero clock cycles. The possibility of fetching 
multiple instructions concurrently is handled by the timing rules for fetching instructions. 

Five of the more than 125 timing analysis rules for the MC68020 are listed below. Note 
that PGR denotes a half word read operation and FPR denotes a tong word read operation. 

|. ftch-+ PGR 

2. =%p :sM -+ PGR 

3. :%p =dM-+ PGR 
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Sequencer 

Control 

Unit 

Instruction Fetch and Decode 

! ....... 

Illsl rttctiosa 

Flow from 

Cache and 

Memoqe 

Figure 4. Motorola MC68020 pipeline structure. 

4. PGR PGR-->FPR 

5. FPR ---> [bc, wc] 

Rule 4 instructs the timer to replace two consecutive occurrences of the pattern PGR with 
the pattern FPR, which denotes a long word read operation. This replacement indicates that 
two words from the instruction stream were loaded during one fetch cycle, so the second 
word is loaded for free. Rule 1 replaces each occurrence of f t c h  with PGR in the stream 
of macro-level patterns. Rules 2 and 3 support the loading of extension words during an 
instruction fetch cycle. The number of extension words fetched may increase the number 
of bus cycles required to load the entire instruction and therefore must be considered in the 
analysis. Rule 5 is one of several rules that replace patterns with bounded execution times. 
The purpose of this rule is to replace the pattern FPR with the predicted bounded execution 
required to complete the fetch operation. These bounded execution times accumulate 
during the Micro-analysis process to compute a bounded execution time for the target code 
segment. 

5. A Simple Timing Analysis Example 

A simple Ada procedure is used to illustrate the use of our tool. This simple Ada procedure 
in Figure 5 was compiled using the VERDIX 5.7 cross compiler. Figure 6 shows the 
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--A simple Ada procedure 

i procedure EXAMPLE is 

2 X, Y: integer:= 5; 

begin 

3 for i in i..i00 

4 X := X + Y; 

5 Y := i + X; 

6 end loop; 

7 end EXAMPLE; 

loop 

-- X and Y are integers 

-- initialized to 5 

-- i iterates from I to 100 

-- loop body thats 

-- disassembled in Figure 6 

Figure 5. Line numbered Ada procedure. 

30: move.l a6@(-08), dO # move value at [a6 - 8] to dO 

34: add.l a6@(-0c), dO # add value at [a6 - 12] to dO 

38: trapv # check for overflow 

3a: move.l d0, a6@(-08) # store dO at [a6 - 8] 

3e: move.l a6@(-010), a6@(-0c) # move value at [a6 - 16] to 

# [a6 - 12] 

44: add.l dO, a6@(-0c) # add value in dO to [a6 - 12] 

48: trapv # check for overflow 

Figure 6. Disassembled code for loop body in Figure 5. 

disassembled object code for this procedure. The source level code is annotated with line 
numbers that are used by the user to specify which code segments to time. The assembly 
code corresponding to the source level statements specified by the user are passed on 
to the parser, which transforms each assembly language instruction into a sequence of 
primitive operations (Figure 7) that express the functionality of the corresponding machine 
instruction(s) in fine grain detail. 

The timer component uses a set of timing rules which incorporate the architectural features 
and execution paradigm of the target processor. The RHS may be another (higher level) 
pattern, or a time. For example, the MC68020 always reads a long word (32 bits), thus 
providing an opportunity for overlap during the instruction prefetch cycle, The rule to 
handle prefetching is as follows: PGR & PGR -+ FPR. This rule will replace a pattern of 
fetch primitives with the higher level pattern FPR which denotes a program read operation. 
After applying the rules to the stream of primitives in a systematic manner until it converges, 
the timer predicts a bounded execution time for the code segment. 

To illustrate this technique we will compute the execution time of the two instructions 
located at addresses 30 and 34 shown in Figure instruction number 4 in the annotated source 
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30: ftch =%p =sM =+sa<6> =%s =sM +p =<d0>s NZVC 

34: ftch =%p =SM =+sa<6> =%s =sM +p =dd<0> +sd NZVCX =<d0>s 

38: ftch trappv 

3a: ftch =sd<0> =%p =dM +da<6> =%d =Ms NZVC 

3e: ftch =%p =sM =+sa<6> =%s =sM +p =%p =dM +da<6> =%d =Ms NZVC 

44: ftch =sd<0> =%p =dM +da<6> =dM +sd NZVCX =%d =Ms 

48: ftch trappv 

Figure 7. Fine-grain primitives for lines 4-5 in Figure 5. 

listing in Figure instructions were aligned in a linear format. Figure 8 illustrates how the 
micro-analysis technique predicts a bounded execution time for these two instructions. 

The pattern matcher identifies a sequence of micro-patterns and replaces it with another 
pattern, a token which denotes the operation initiated by the sequence of micro-patterns. 
These higher-level replacement patterns also form a linear sequence which undergo further 
analysis by other timing rules which detect instances of execution overlap. For example, 
the first pattern found in this example is a program read operation and it is replaced by the 
token PGR. The instruction generating this program read operation has one extension word 
as indicated by the =sM micro-pattern. Recall that the MC68020 always reads a long word 
(32-bits) and PGR denotes a long word instruction fetch. Next an address translation pattern 
is found, and it is replaced by the ADT token. The next pattern is found by the pattern 
matchers lookahead feature. Note that the pattern matcher must skip forward to locate 
the next program read operation. This is necessary because the target processor supports 
instruction prefetching. Notice also that the third pattern was generated by the instruction 
at address 34. 

The timing rules are applied to the higher-level patterns, to identify instances of overlap 
and to compute the execution time of the code segment. For instance, the first high-level 
pattern in Figure since the pipeline is considered empty at startup time. The second and third 
macro-patterns could execute in parallel since the address translation and the bus operation 
needed to prefetch the next instruction can be performed currently. Column B specifies 
the replacement pattern for a given sequence of low-level primitive patterns. Column C 
indicates the patterns that execute in parallel, for example the pattern in row 4 column B, 
which denotes a data read operation (pAR) executes in parallel with patterns 5, 6 and 7, 
which denote a register assignment REG, set condition code scc,  and address translation 
ADT respectively. Patterns 8 and 9 are identified as a program read operation, but more 
significantly this program read occurs before the data read, this is because the instruction 
look ahead (prefetch) operation has higher priority than data read and data write operations. 
Note also that the prefetch instructions are not part of the target code segment being timed, 
however the time consumed by this program read must be computed into the time required 
to execute the two instructions being timed. Columns D and E show the bounded execution 
time computext at each step in the analysis and column F shows the predicted overlap for 
operations that execute in parallel. 
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A B C D E F 

Micro Macro Overlapped Min Max Over- 

Patterns Pattern Patterns Cycles Cycles lap 

I) ftch :%p =sM +p PGR 1 2 5 0 

2) =+sa<6> :%s ADT 2,3 4 i0 2 

3) ftch =%p =sM +p PGR 

4) =sM DAR 4-7 9 16 3 

5) =<d0>s REG 

6) NZVC SCC 

7) +sa<6> =%s ADT 

8) ftch PGR 8,9 ii 21 5 

9) ftch 

i0) =sM DAR i0,Ii 16 26 1 

ii) =dd<0> REG 

12) +sd ADD 12 18 27 0 

13) =<d0>s REG 13 19 28 0 

14) NZVC SCC 14 20 29 0 

Figure 8. An example of micro-analysis. 

Figure 9 graphically depicts the worst case execution of the two instructions described in 
Figure 8. The instruction overlap was determined by conducting timing experiments aided 
by the logic analyzer and using instruction execution information provided by the hardware 
reference manual (Motorola 1985). 

In this illustration of the micro-analysis technique, the timing rules performed the analysis 
under the assumption that cache is enabled and that all data operands are on even word 
boundaries. The rules can be altered to reflect the characteristics of the target processor, 
through a pararneterized interface. 

Table 1 compares the execution times computed for source statements 4 thru 5 in Figure 5. 
For this example our tool predicted a best case time of 39 clock cycles and a worst case 
time of 62 clock cycles. This time bound is very close to that measured under the same 
assumptions on our logic analyzer. In particular, the logic analyzer predicted a best case 
time of 37 clock cycles and a worst case of 59 clock cycles. There is a 5% difference in 
the measurements predicted by these two techniques. However, it should be noted that the 
logic analyzer provides a measurement for a one particular execution of the code segment. 
This is a fundamental disadvantage of the logic analyzer approach, since there is no why 
of knowing whether or not the measured time is the true worst case execution time of the 
code segment. 
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Figure 9. Graph ica l  i l lus t ra t ion o f  wor s t  case  execu t ion  t ime.  

The table lookup and instruction counting methods overestimate the actual execution 
time computed by the logic analyzer by over 31 and 19 percent respectively. Both of these 
approaches also considerably underestimate the best case timing, due to the overly optimistic 
calculations of overlap and the inability to consider context when measuring overlap. The 
micro-analysis technique overestimates the worst case time by 3 clock cycles or 5 percent 
and overestimates the best case execution time by 2 clock cycles or 5 percent. For purposes of 
scheduling real-time tasks, a large overestimated task execution time reduces the potential 
for greater processor utilization. On the otherhand underestimating task execution time 
decreases system reliability. 

6. E x p e d m e n ~ l  Evaluation 

Evaluation of the micro-analysis method was accomplished by comparing its performance 
on five programs to that of four traditional timing methods. Since micro-analysis predicts 
the execution time of code segments, rather than whole programs, each program in our test 
suite represents many tests at the code segment level. For example, the sort program in 
our test suite contained more than 10 code segments and over 56 execution paths. Each 
program had to be subdivided into code segments (basic blocks) and each code segment 
measured separately, Some special flow-analysis programs were written to automate the 
process of finding all the code segments that make up an execution path and preparing them 
for timing. The best and worst case execution time for the program were determined by 
comparing the timing results of each execution path. The execution time of each program 



PREDICTING EXECUTION TIME OF CODE SEGMENTS 173 

Execution C' 'cles 

Timing Technique Best case Worst case 

Logic Analyzer 37 59 

Instruction Counting 21 70 

Table Lookup 29 77 

Micro-analysis 39 62 

Table 1. Timing results of Ada the example. 

was computed by table lookup, instruction counting, dual loop, logic analyzer and micro- 
analysis. The test programs used in the dual loop measurements were manually inspected 
after compilation to verify that the code segments being measured were not optimized away 
or moved outside the test loop by the compiler. The results are displayed using bar and line 
charts in Figures 10-12. 

Our test suite consisted of five programs varying in size, instructions used and structure. 
All of the programs were tested on the primary development processor, the MC68020. 
One program uses the MC68881 coprocessor for floating-point operations. One of these 
programs was also run on the Intel 80386 machine to demonstrate the retargetability of 
micro-analysis. Programs tested on the MC68020 were compiled by the Verdix Ada cross 
compiler and the one tested on the 80386 processor was compiled by the Janus Ada compiler. 

The programs compiled for the MC68020 processor were executed on a 32-bit monoboard 
computer (MVME133A-20) and the program designed for the 80386 was executed on a 
Mitsuba computer. Logic analyzer measurements for these programs were made with 
a Hewlett Packard 1650A logic analyzer. The clock resolution of the HP 1650A is 10 
nanoseconds. Dual loop measurements were performed on the same computer and the 
timing results printed to a console connected through an I/O port on the MVMEI33A-20 
monoboard computer. Predictions made using the table lookup, instruction counting, and 
micro-analysis methods were performed with software tools written in the course of this 
research and timing data found in user manuals. 

6.1. Results of Timing Experiments 

The D_Tree program tests an operation that might be performed frequently during the 
insertion of a task identification number into a priority queue data structure based on a 
decision tree. A static integer array is used to implement the decision tree. In this example 
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Figure 10. Performance comparison for D.Tree program. 

we only measure the execution time of the insert procedure. The body of the insert procedure 
consists of a single bounded loop with one entry point and multiple exit points. The D_Tree 
program has the shortest execution time of our test programs. The bar chart in Figure 10 
compares each method's best and worst case performance on the D_Tree program. It is 
important to note that the logic analyzer and dual loop measurements are the observed best 
and worst case execution times across all data sets used in the experiments. Micro-analysis 
is designed to predict the absolute best case and worst case execution time over all possible 
data sets. 

Micro-analysis predicts a best case time that is 35% below the time measured by the 
logic analyzer and a worst case prediction that is 12% above the logic analyzer's worst case 
measurement. Table lookup predicts a best case time that is 77% below the logic analyzer's 
best case time, and its worst case time is 23% greater than the logic analyzer's worst case 
time. Instruction counting performs poorly in the worst case, but does much better in its best 
case prediction. For instance, its worst case is 95% over the logic analyzer's measurements 
and its best case prediction is only 28% below that measured by the logic analyzer. Dual 
loop performance is within 6% of the logic analyzer performance for both measurements. 
In the final analysis, dual loop provides the tightest upper bound for this example, however 
micro-analysis predicted a very realistic upper bound, and possibly a more comfortable 
bound for scheduling real-time programs. 

The bar charts in Figures 11 and 12 compare the best and worst case times of each timing 
method on four different programs. The Vector Add program simply adds corresponding 
elements of two 1000 element integer arrays; unlike the other programs it was also tested 
on the 80386 processor to demonstrate the retargetability of the approach. Figure computes 
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Figure 13. Performance comparison for Vector Add program. 
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Figure 14. Best case graph comparison. 
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Figure 15. Worst case graph comparison. 

the product of two 10 by 10 integer arrays. The implementation includes a triple level 
nested loop. Quick Sort is a recursive program that sorts a 100 element integer array. FFT 
is a discrete Fast Fourier Transform program that uses a large number of floating point 
operations, and it contains several nested loops. All floating point operations are performed 
by the MC68881 coprocessor. 

The graphs in Figure 14 and Figure 15 are the line graph versions of the bar graphs in 
Figures 11 and 12. These graphs provide a better view of how well each method performs as 
program execution time increases. If the logic analyzer is considered to be the most accurate 
of the timing methods, then the data suggests that the dual loop method performed quite 
well on all tests. In fact, for all tests the measurements computed by dual loop are within 
6% of those computed by the logic analyzer. It is worth noting the poor performance of the 
table lookup approach when applied to the Matrix Multiply program. This result illustrates 
the inability of the table lookup approach to accurately account for the effects of execution 
overlap in its predictions. The Matrix Multiply program consists of 3 nested loops that 
remain in cache until the program terminates after the initial iteration. This characteristic 
allows the processor to achieve maximum execution overlap, resulting in an actual best case 
execution time that is significantly less than that predicted by the table lookup approach, or 
by the instruction counting approach. We were not so surprised by the results of instruction 
counting since each instruction is assigned the same (constant) execution time regardless 
of its type, length, addressing mode, or execution context. The graph showing the best 
case analysis indicates that micro-analysis predicts a time that is consistently less than that 
measured by the logic analyzer. The performance of these two methods begins to converge 
as the execution time increases. This is the result of small errors compounding over time, 
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causing the predictions to drift higher. The worst case analysis shows that micro-analysis 
predicts execution times that are slightly greater than those measured by the logic analyzer, 
but well below instruction counting and table lookup. These results indicate that micro- 
analysis out-performs table lookup and instruction counting by a small margin for short 
programs, but this margin increases as the execution time of the programs increases. 

7. Predicting timing at Compile time 

The retargetable timing analysis tool described in section 4 has been adapted to interface with 
ease (Environment for Architecture Study and Experimentation) (Davidson and Whalley 
1991). The ease environment is designed to measure code produced by the back end of a 
C compiler known as vpo (Very Portable Optimizer) (Benitez and Davidson 1988). In this 
section we will describe revisions made to ease to support the timing analysis tool. The 
tool is capable of providing best and worst case execution time bounds for a user specified 
range of contiguous C statements or it can predict the bounded execution time for complete 
non-nested C functions. To invoke the tool the user need only specify the appropriate option 
along with the command to compile a C program. This integration of the timing toot with 
a compiler makes the tool easier to use and retarget, improves its et~ciency since parsing 
of the assembly instructions is not required, and results in more accurate predictions. 

7.1. The Compiler Interface 

Modifications to the ease environment to support the timing tool were minor. When com- 
piling a C source file with the option to collect static or dynamic frequency measurements, a 
file is produced that contains inlbrmation about the characteristics of the instructions gener- 
ated by the compiler, ease was modified to emit additional information to this information 
file about instructions, basic blocks, loops, and the control flow. The timing tool reads the 
information from the intbrmation file to predict execution times associated with the source 
code. 

Data about each compiled function in the information file is structured in the following 
manner. First, the name of the function is emitted. Next, a record is generated for each loop 
within the function. The information represented for each loop includes the loop nesting 
level, the number of iterations if it is known, the set of basic blocks that comprise the loop, 
and the exit blocks (the set of blocks within the loop that have a successor that is not in the 
loop). Information about each basic block is produced after the loop information. First, a 
record containing information about the entire block is emitted. The block record contains 
the block number, the range of source lines associated with the block, a list of basic block 
predecessors, and a list of basic block successors. Source lines are associated with basic 
blocks instead of individual instructions due to the optimizations performed by the vpo 
back end. Thus, a request for the bounded execution times of a range of C statements 
in the prototype must include entire basic blocks. Following the basic block record is a 
description of each instruction within the basic block. Each instruction record consists 
of the instruction type, data type processed by the instruction operation, and indication of 
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16: 

17: 

18: 

19: 

20: 

21: 

22: 

void summ(datal, data2, 

int datal[], data2[], 

{ 

data3) 

data3[]; 

int i; 

for (i = O; i < i0; i++) 

data3[i] = datal[i] + data2[i]; 

Figure 16. A simple C function. 

function name: summ 

loop: <nesting level i> <num iters 10> <blocks 2 3> 
<exit blocks 3> 

block: <block i> <lines 20-20> <succs 2> 
<link> <areg long (a6)> <immed anyint ()> link a6,#-4 

<mov long> <indirectlmem long (a7)> <areg long (a5)> movl a5,a7@ 
<clr long> <dreg long (dl)> <immed anyint ()> clrl dl 

<mov long> <areg long (aO)> <displmem long (a6)> movl a6@(datal.},aO 
<mov long> <areg long (al)> <displmem long (a6}> movl a6@(data2.),al 
<mov long> <areg long (a5)> <displmem long (a6)> movl a6@(data3.),a5 
block: <block 2> <lines 21-21> <preds 3 i> <succs 3> 

<mov long> <dreg long (dO)> <autoinclmem long (aO)> L41: movl aO@+,dO 

<add long> <dreg long (dO)> <autoinclmem long (al)> addl al@+,dO 

<dreg long (dO)> 

<mov long> <autoinc long (aS)> <dreg long (dO)> movl dO,a5@+ 
block: <block 3> <lines 20-20> <preds 2> <succs 4 2> 
<addq long> <dreg long (dl)> <immed anyint ()> addql #1,dl 

<dreg long {dl)> 
<cmp long ccset> <dreg long (dl)> <i~/aed anyint ()> cmpl #lO,dl 
<jlt long> <label long ()> jlt L41 
block: <block 4> <lines 22-22> <preds 3> 

<mov long> <areg long (aS)> <displmem long (a6)> movl a6@(-4),a5 
<unlk> <areg long (a6)> unlk a6 
<ret> rts 

Figure 1Z Loop, basic block, and instruction information. 

whether the condition codes are set and used by a subsequent instruction. In addition, the 
instruction record contains information about the data type, addressing mode, and register 
usage for each operand within the instruction. 

A sample information file for the C function displayed in Figure The corresponding 
assembly instructions produced by the compiler are also listed to the right of each instruction 
record. The executable code in the C function spans source lines 20-22. 

To interface the timing tool with the information file required only minor modifications to 
the timing tool implementation. First, the disassembler component was removed completely 
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Execution C' ,cles 

Timing Technique Best case Worst case 

Logic Analyzer t 03 t 20 103254 

Instruction Counting 210133 231143 

Table Lookup 46074 124129 

Micro-analysis 67078 106795 

Table 2. Micro-analysis using EASE vs, traditional methods. 

and the parser component was reduced to a simple translator since the characteristics of 
each instruction is contained in the information file. The timing component was modified 
to compute the bounded execution time of basic blocks rather than individual instructions. 
Thus, even if a basic block is used in more than one path, its bounded execution time is 
only calculated once. The basic block execution times, loop iteration data, and flow-control 
information are used to calculate a bounded execution time for all execution paths. 

Recently we have developed another tool which accepts assembly code from another 
compiler, translates the assembly to VPO's intermediate form, and passes the intermediate 
code into VPO to generate an information file. With this enhancement we can easily retarget 
the timing tool to any high-level language as tong as the compiler generates assembly code 
or there is a disassembler available. This modification also eliminates the parsing step that 
was necessary in the initial version of the tool described in Section 4. We have used this new 
tool on assembly listings for Ada programs compiled by the Verdix Ada Cross Compiler 
Version 6.0.5 (Vadscross to MC68000 family). Table 2 compares timings predicted with 
the micro-analysis technique using information provided by e a s e  to those measured by the 
dual loop and instruction counting approaches for a simple Ada procedure that performs 
the same task as the C function in Figure 16. The worst case time predicted by the micro- 
analysis technique bounds the worst case time measured by the logic analyzer tighter than 
the times predicted by instruction counting and table lookup. 

Preliminary results indicate that this approach holds some promise. It is easy to use, re- 
targetable, and reasonably accurate. Since e a s e  can be used to emulate features of proposed 
architectures, it could also be used to predict the performance of software on a proposed 
machine. 



PREDICTING EXECUTION TIME OF CODE SEGMENTS 181 

8. Future Work 

An important extension to this research is to address the execution time prediction of much 
larger code segments. There are a number of challenges to this problem. First, larger 
code segments will typically contain function calls. A tool must be able to determine 
the instructions that could be executed when these functions are invoked. This analysis 
requires the construction of a call graph. Another problem is dealing with the cache 
memory. If function calls are allowed in the code segments to be timed, then there is a 
much greater likelihood that cache conflicts will occur since there would be a greater number 
of instructions that can be reached and the functions accessed may not be contiguous in 
memory. The simple assumption used in the current tool that at most one miss wilt occur 
for each reference will no longer be sufficient. The authors have current work in progress 
that uses an iterative flow analysis technique to determine which instruction references wilt 
always be cache hits or always cache misses. A more challenging problem is predicting 
hits and misses in the data cache since the addresses associated with data references are not 
always known statically. Other issues that need to be addressed associated with Reduced 
Instruction Set Computers (RISC) include correctly predicting the stalls due to pipeline 
hazards and handling floating-point operations that take multiple cycles. 

9. Conclusion 

This paper describes a retargetable tool for predicting a bounded best case and worst case 
execution time of code segments. In addition to being retargetable, micro-analysis has 
the added advantage of being language and compiler independent. The timing tool is 
currently predicting execution time of code segments targeted for the Motorola MC68020 
and Intel 80386 processors. The timing tool has been integrated with a version of the vpo 
C compiler and the ease environment. A prototype has been built and preliminary tests are 
very promising. The integrated version of the timing tool is easier to use, retargetable and 
preliminary results indicate that it is just as accurate as the original version. Furthermore, 
since ease is capable of emulating the features of proposed architectures, the integrated 
version of the timing tool can be used to predict the performance of software on a proposed 
machine. 
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Notes 

1. The Ada program shown here requires that the user initialize the constant LOOP-COUNT and replace the 
comment TEST-CODE-SEGMENT with the actual sequence of instructions to be timed. 
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