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Abstract. The various OBE approximations to the recent Bonn potential are 
studied in deuteron photodisintegration below re-threshold. Consistent static 
meson-exchange currents, isobar currents, and the relativistic spin-orbit current 
are included. Concerning the OBEPT also the leading retardation corrections 
in the currents are taken into account. Comparison with experimental data is 
carried out in detail. 

I Introduction 

The role of deuteron photodisintegration as a testing ground for new theoretical 
concepts of the strong interaction has a long history in nuclear physics [1]. Recently, 
Machleidt et al. [2] presented a comprehensive field theoretical model of the N - N  
interaction below To-threshold including all diagrams up to an exchange energy of 
order of the cut-off masses. In addition to their very successful "full model", which 
contains no fictitious exchange terms and as phenomenological input only masses, 
coupling constants, and form factors, they also gave various approximations to the 
"full model" in terms of simple one-boson exchanges. Since these OBE potentials 
are acceptable, in retaining the most important features of the "full model" on the 
one hand and being quite easily applicable in momentum-space calculations on 
the other hand, it seems legitimate to investigate them in further detail by studying 
them in deuteron photodisintegration. This will be the simplest test case for these 
OBEPs, which goes beyond their pure hadronic features, the extension in terms 
of interaction currents being included implicitly in these potentials via minimal 
coupling of the electromagnetic field. 

In Sect. 2 we will first outline the formalism for the solution of the Lippmann- 
Schwinger equations in (Is)j-basis for the different OBEPs considered, namely the 
relativistic OBEPQ, the time-dependent OBEPT, and the nonrelativistic OBEPR. 
Then we collect the corresponding electromagnetic currents which we will consider 
for photodisintegration of the deuteron. Concerning the meson-exchange currents 
we construct the dominant parts consistently with the given potentials. The effects 
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of additional MEC, not included in our set of explicit currents, will be estimated by 
the use of the Siegert operators in different gauges. In the case of the retarded 
OBEPT we construct the corresponding leading retardation corrections to the 
MEC in an expansion of the retarded propagators with respect to the ratio (nucleon 
kinetic energy)/(pion mass) following the formalism of ref. [3]. For a realistic 
comparison with experimental data we include in addition the relativistic spin-orbit 
current [4] and isobar currents. For the latter it is sufficient to take them in the 
impulse approximation. Finally, also lowest-order relativistic corrections to the 
one-body currents will be considered. 

In Sect. 3 we compare the OBEP predictions for deuteron photodisintegration 
below re-threshold with experimental data for the unpolarized cross section and 
a few polarization observables already measured, i.e. the photon asymmetry and 
the neutron polarization. Furthermore, additional polarization observables are 
calculated with respect to their possible role of differentiating between different 
theoretical models. A summary is given in Sect. 4. 

2 Theoretical Models 

In the following we will consider the three OBE approximations to the Bonn "full 
model": 

(i) The OBEPQ is essentially constructed from the "full model" by neglecting any 
contributions but pure OBE terms. Furthermore, the energy dependence of the 
OBE propagators is neglected by using the Blankenbecler-Sugar reduction [5] 
of the Bethe-Salpeter equation [6]. 

(ii) The OBEPT can be obtained from the OBEPQ by (a) restoring the energy 
dependence in the propagators, (b) leaving out the factors of minimal relativity, 
and (c) neglecting a certain off-shell term in the vector-meson part. 

(iii) The OBEPR is obtained from the OBEPQ by a non-relativistic reduction of the 
nucleon-meson vertices up to order p2/m2. It is formally equivalent to the former 
BS-III-potential [7], if minimal relativity is included therein. 

By keeping the parameters of the crucial mesons (re, p, co) almost the same as in 
the "full model", Machleidt et al. demonstrated that these OBEPs are acceptable 
approximations to the "full model". This concerns the phase shifts for not too high 
energies as well as the low-energy parameters. Especially the feature of combining a 
low D-state probability of the deuteron wave function with a realistic quadrupole 
moment is perserved for these OBEPs, as far as it is possible for the energy- 
independent ones. 

Despite the fact that the OBEPR is specifically constructed for r-space calcula- 
tions, it is more convenient for our purpose of treating all three OBEPs on the same 
level, i.e. to work in p-space also in the case of the OBEPR. For any of the OBEPs 
considered, the N-N wave equations to be solved are of Lippmann-Schwinger type, 
where for the OBEPT the potential is energy-dependent. Technical aspects of the 
solution of the LS-equations for the deuteron and the scattering states in (Is)j-basis, 
which we have used, are summarized in ref. [8]. The necessary partial-wave ampli- 
tudes for the OBEPs are given in the Appendix. Since we calculate the current matrix 
elements for deuteron photodisintegration in r-space, a numerical Fourier transfor- 
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mation of wave functions from p- to r-space is necessary. Details can also be found 
in ref. [81. 

We will start the discussion of currents with the pionic exchange current. One 
might argue that in order to be completely consistent with the corresponding pionic 
part of the potential, for example Eq. (A.2) for the OBEPQ, one should apply the 
standard method of minimal coupling. The rather extensive technical problems of 
such an attempt could be overcome in a pure p-space calculation, i.e., if one does 
not need to represent the electromagnetic currents in configuration space as we do. 
But apart from these technical problems there are good justifications for avoiding 
these complications: First, any contributions in Eq. (A.2) going beyond the static 
limit are genuine relativistic effects of order of at least p4/m4. Even if such corrections 
to the potential turn out to be non-negligible as they manifestly show up in the 
deuteron wave function for example, their significance would be unclear in the 
two-body break-up process as long as one has not included all corresponding 
relativistic corrections up to the same order. Secondly, since the potential of Eq. 
(A.2) appears only formally in the N-N LS-equation but has been retained in the 
BbS-reduction of the BS-equation, the method of minimal coupling would not be 
appropriate for the higher-order terms. With respect to the first point we like to 
emphasize that we do not aim at a complete relativistic description. For example, 
we calculate both the deuteron and the final N-N scattering state in their center-of- 
mass frames, assuming the center-of-mass motion being independent of the relative 
motion, which is justified only non-relativistically. The actual reason, however, why 
we proceed as below is the fact that we will be able to demonstrate the possibility 
to neglect higher-order corrections in the current by use of the Siegert operator in 
different gauges, at least for the energy region we are interested in. 

Taking henceforth only the lowest order of an expansion of Eq. (A.2) in powers 
of p2/m2 and using the relation (A.1) one obtains the well-known static pion- 
exchange potential 

1 
4re 4m 2T1 "Y2 [~'1 "71, [~'2 "P'2, jreg([rl)]] (2.1) 

(7 = 71 -72),  from which the corresponding static pion-exchange current follows 
by minimal coupling, 

2 ^ . g ~  1 ,4 
f~(2*) = - le4-~ 4m2~t'Cl x 2"2) 0 

{~'1 ~(~ -/'1) [~2" P-'~2, JU(I ~" - r 2  I)1 

- - r2)[ 1 J : e ' ( I z  - r 2 1 ) ]  

i . . . . .  } 
+ ~-~ [gl "P'I, [g2"P2, (J(l~" -71i; m~)VzJ(12" -721; m~)reg]] �9 (2.2) 

What we now mean by consistency of the currents essentially concerns the 
consistent incorporation of hadronic form factors as provided by the OBEPs into 
the currents. The static meson propagator appearing in Eq. (2.1) can be written for 
an arbitrary meson o~ (with mass m~ and cut-off A,) as 
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(2.3) 

with co~ = (~z + ...~m2~ 1/2, , and the form factor 

(2.4) F'(Q2) = \A~ + ~ 2 ]  �9 

Calling Ie = 2ne the regularization order of the corresponding potential part, the 
p-meson in the O B E P Q  carries a quadrupole regularization (I~ = 4), whereas all 
other mesons included in the OBEPQ,  and all mesons in OBEPT and OBEPR have 
dipole form factors (I~ = 2). For  the contact or pair-current part of the static rc-MEC 
of Eq. (2.2) we therefore use 

JgCg(lTI) = J(r; m~) - J(r; A=) - (1 - -  t,~/~2%lAl]-, '~e~-A~r, (2,5) 

with b~ = mJAe,  and the unregularized static propagator  (I~ = 0) is given by 

J(r; m e ) = - -  (2.6) 
r 

Eq. (2.5) is a special case of the more general fact that, given an operator F(m~) as 
for example a static OBEP, a static MEC or a static propagator  coefficient like in 

F (me, A,, Ie) is given Eq. (A.15) the corresponding properly regularized operator ~g z 2 
by 

rcg 2 2 x~-I ~ A 2]k dk F(A~2), (2.7) 

if a form factor of the type of Eq. (2.4) is assumed. Eq. (2.7) has to be used for the 
true exchange part of the static g-MEC of Eq. (2.2), and it follows from Eq. (2.7) how 
the functions ( I )~  (defined in ref [9]) appearing in a multipole decomposition have 
to be changed for consistency. 

The next current we take explicitly into account is the static p-MEC, As for the 
pion case we only take the lowest order in p2/rnZ of Eq. (A.4), but in addition we 
restrict ourselves to the leading terms in an expansion of gp/s the ratio of vector- to 
tensor-coupling constant, which is chosen to be (6.1) -1 << 1 for any of the three 
OBEPs. From Eq. (A.1) one obtains for this dominant  part of the static p-exchange 
potential 

Vo (go + fp) ~ 1 _ . ~ = 4u 4-~-~1 .~'2[(~1 X Pl); [~2 • P2, (2.8) 

from which minimal coupling gives the corresponding dominant  static p-exchange 
current 

_~ - ie(g p + fp)2 1 
jp(x) = - 4zc 4m 2 (T1 x ~'2)o 

�9 - 5 ( 2 " - 7 1 ) ~ ' 1  x [~'2 x P2, g , ~ ' ( l ~ " - 7 : J ) ]  

4- 6 ( ~  - - f z ) - f f z  x [~t x 71, J;~g(Ix" - - ~  J)] 

i ~ ,, . . . .  ] 
+ • x - h i ;  -721; rn,,))'~ j,. (2.9) 
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Note that, besides retardation corrections in the meson propagators for the 
OBEPT, which are discussed below, the re- and p-MEC of Eqs. (2.2) and (2.9) are 
the same, except for meson parameters and form factors, for OBEPQ, -T and -R, 
since the differences in the meson-nucleon vertices and in the factors of minimal 
relativity are of higher order (see the Appendix). 

To demonstrate the necessity for including the p-MEC of Eq. (2.9) in a calcu- 
lation with explicit currents only, i.e. without Siegert operators, we show in Fig. 1 
the differential cross sections for deuteron photodisintegration in the c.m.-system 
at 100 MeV photon laboratory energy for the different OBEPs with and without 
this p-MEC. (The nomenclature for current contributions used in Fig. 1 and further 
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Fig. 1. Differential cross section at qlab= 
100 MeV for the different OBE models with 
and without the p-MEC included in the set 
of explicit currents. (The nomenclature of 
current contributions is given in Table 1) 
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Table 1. Nomenclature  for the current contributions used in 
Figs. 1 a -c ,  2, 5, 6 

c 
s 
E 
SO 
IC 
R 

e 

Convection current (Eq. (4.16) of ref. [3]) 
Spin current (Eq. (4.17) of ref. [3]) 
Static MEC (Eq. (2.2) for n- and Eq. (2.9) for p-part) 
Relativistic spin-orbit current (Eq. (2) of ref. [16]) 
One-body isobar current (Eqs. (58)-(63) of ref. 1-22]) 
Relativistic one-body current (Eq. (4.18) of ref. [-3]) 
Retardation corrections to ~r- and p-MEC 

on is summarized in Table 1.) The influence is quite dramatic,  especially for small 
and large angles, but  very similar for the different potentials. In the O B E P Q  case 
the consistent quadrupole-regularized p -MEC is compared  to a dipole version. The 
substantial difference again underlines the importance of consistency of the M E C  
with the given potential. Of course, the non-relativistic one-body current, i.e. con- 
vection and spin current, are always included. 

To estimate the contr ibutions of exchange currents beyond the dominan t  re- and 
p -MEC we now use the Siegert operators  in different gauges. Fol lowing ref. [10], 
the transverse electric mult ipole operator  

7~jL](q; T) = d3x X~LI(~-, q)"]'(Z), (2.10) 

with 

" Z "  V I L ]  _ _  

L 
(2.11) 

(z = qx, x = l Y[, :~ = Z/x), may be split in two parts 
^ ^ ^ 

TJ~](q; 7)  = ~jL](q; 7 )  + ~[L](q; f ) ,  (2.12) 

according to the decomposi t ion 

~ ]  = V *  tL] + (A'}~ ] - Vq)tL]). (2.13/ 

For  a sufficiently localized current density and not  too high pho ton  energies, 7~, ILl 
will give the major  contr ibut ion for any choice of 

i l (  L + l  zL ) 
qb[r~(Z' q) - x /L (L  + 1) q (2L + 1)!! + (pL(Z) ytLI(2), (2.141 

where q~L is an arbitrary function except that  it should satisfy the limit 

q~L(z) --* (9(zL+2)- (2.15) 
z---~0 

Because of this condit ion TILl VO tLl is two orders in z higher than Vq~tL], and Z-Xe I - -  
[LI correspondingly the contr ibutions of TJ will dominate  over ~tL] at low m o m e n t u m  

transfer. Different choices of (PL can be connected via gauge transformations,  and 
we will consider the following cases, 
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n, = 0: ~oL(z) = 0 ,  

n ~ = l :  q~L(z)= l + z-~z jL(z) ( 2 L + l ) ! !  ' 

L + I  ns = 2: ~oL(z ) = (L + 1)jL(Z) -- Z L, 
(2L + 1)!! 

L + I  
n, = 3: q~L(Z) = (2L + 1)!! zL(gL(Z) -- 1). (2.16) 

The number n, will be used for labelling the corresponding Siegert operators, n, = 1 
and n, = 2 denote the frequently used Partovi [11] and standard gauges and the 
recent Friar-Fallieros [-12] gauge is denoted by ns = 3. The least sophisticated and 
simplest choice is what we will call the zL-gauge (n, = 0). 

Application of the Siegert theorem (ST) means to evaluate 2? i l l  via the charge 
density (i.e. the one-body charge density according to Siegert's hypothesis [10]) 
using current conservation 

7~JLl(q; j+) = i d3x [/4, p(~')]o[LI(2 ", q), (2.17) 

while for ~u.] the explicitly constructed currents are used. If the current in ~lLl is 
restricted to its one-body part, we will call this the normal part [10] of 7~j L1. The 
normal part of the magnetic multipoles include the one-body current only. If the 
two-body part of the current in ~[LI is not completely consistent to the potential, 
gauge invariance is not fulfilled and the gauge dependence of the results will indicate 
the inconsistency. 

As an example we consider the differential cross section at ql,b = 100 MeV for 
the OBEPR in Fig. 2. The long-dashed curve is identical to the solid curve of 
Fig. 1 c. The solid curve of Fig. 2 corresponds to a calculation with ST in zL-gauge. 
Also the normal parts according to (2.16) are shown. Thus, additional MEC beyond 
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Fig. 2. Differential cross section a t  qlab= 

100 MeV for the OBEPR. The calculation is 
done with (solid) or without (long-dashed) 
use of ST, For the first case also the nor- 
mal parts in the different gauges of (2.16) are 
shown 
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n and p, which are implicitly included in the Siegert operator 7~, ILl, contribute up to 
10~o in this case. The different normal parts form a narrow band with a width of 
about 5~o, which reflects the gauge dependence and which, of course, is unacceptable 
for an accurate description of the cross section. 

In comparison to the full curve of Fig. 2 one might be tempted to favour the 
zL-gauge in contrast to the conclusions of ref. [12]. However, we do not consider 
such a conclusion as reasonable. First of all, it depends on the energy, which gauge 
gives the optimal approximation, if no MEC beyond the Siegert operators are 
considered. Secondly, what really counts are the results with additional explicit 
MEC. If these are consistent, all the different gauges give the same answer. Thus 
differences will occur only, if the MEC is not consistent with the potential. The gauge 
dependence introduced by this inconsistency in the small part ~[L] of Tj(] can be 
checked by changing the gauge. 

In Fig. 3 we show the deviation from unity of the ratios of calculations with 
Siegert operators for n s = 0 to n s = 0, . . . ,  3. It is satisfying to see that the gauge 
dependence is less than 0.3~ in the worst case even though the MEC is not 
completely consistent. This gives strong support to the neglect of other explicit 
currents beyond n- and p-MEC i n  Tb [L]. In this connection it is an interesting 
question to what extent the same argument holds for the p-MEC of Eq. (2.9), i.e., 
whether one has to include it or not. The answer is given in Fig. 4, where we show 
the deviation from unity of the ratios of the differential cross sections calculated with 
Siegert operators including only n-MEC in ~[L] to those including n- and p-MEC 
for the four gauges. The width of the resulting band, i.e. the gauge dependence, is 
qualitatively the same as in Fig. 3, whereas the absolute change in including p-MEC 
is significantly larger by an order of magnitude, but still very small compared to the 
p-contribution in the calculation with explicit currents only (Fig. 1 c), i.e., without 
Siegert theorem. 

Thus, we may conclude that missing MEC or lack of consistency in our n- and 
p-currents will contribute at most on the l~o-level. This is in agreement with a model 
study using the Paris potential [13]. For OBEPQ and OBEPT the gauge depen- 
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dence is as weak as for the OBEPR, although formally the inconsistencies in the 
currents are stronger, due to the non-reduced relativistic meson=nucleon vertices. 

The weak gauge dependence we found seems to contradict the recent results of 
Ying et al., see Fig. 3 of ref. [14]. For the OBEPR at  qlab = 100 MeV their forward 
differential cross section varies about 4~  for the two gauges ns = 1 and ns = 3, 
whereas in our calculation this gauge dependence is less than 0.2~o. In a forthcoming 
paper [15] these problems will be discussed in more detail. 

We will now turn to the discussion of meson retardation effects in the electro- 
magnetic interaction in connection with the OBEPT. For the OBEPs including 
non-retarded meson-propagators, i.e. OBEPQ and -R, current corrections referred 
to the static limit are of relative order p2/m2 at least. They originate only from 
relativistic corrections in the meson-nucleon vertices and we neglected them as 
discussed above. But for the time-dependent OBEPT a consistent construction of 
corresponding currents based on non-covariant perturbation theory yields cor- 
rections stemming from the energy dependence of the meson propagators, which are 
formally larger than the vertex-corrections, namely of relative order p2/mm~. In ref. 
[3] we presented in detail the formalism for constructing effective retarded current 
operators in N-space based on time-ordered perturbation theory in meson-nucleon 
Fock space. These currents involve the leading retardation corrections by expanding 
the retarded meson propagators in terms of p2/mm~, whereas p2/m2-corrections 
in these expansions as well as in the vertices were neglected. It was found that 
retardation effects in the n-MEC show up significantly even at low energies, and 
that they dominate the retardation effects in the wave functions in case of the 
Bryan-Scott-III potential. 

In the present work we include retarded n- and p-MEC. For the pionic part only 
the retarded propagator functions of Eqs. (4.33) and (4.44) of ref. [3] have to be 
changed in order to be consistent with the corresponding OBEPT form factor of 
Eq. (2.4). The retarded p-MEC is restricted to its leading terms in 9p/fp as in the 
static case, and it differs from the retarded n-MEC essentially only in the vertex 
structure. As in ref. [3] we pass over the problems concerning the non-orthogonality 



104 

8 

K.-M. Schmitt and H. Arenh6vel 

6- 

\ 
,.0 

4 

\ 
b 

2 

- - - -  : C + S + E + e  

OBEPT , 100 MeV 
0 

o i; o 18o 

Opn [deg] 

Fig. 5. Differential cross section at qlab= 
100 MeV for the OBEPT with (dashed) and 
without (solid) retardation corrections to the 
~- and p-MEC 

of wave functions due to the explicit energy dependence of the OBEPT, since the 
dominant contributions seem to come from current retardation. But we take into 
account the presence of non-nucleonic components in the deuteron wave function 
by applying a normalization condition according to Eq. (D.14) of ref. [2]. We take 
the retardation parts of the re- and p-MEC as explicit current contributions, i.e. 
they are not calculated via corresponding retarded charge densities in the framework 
of ST. 

In Fig. 5 the influence of current retardation on the differential cross section at 
qlab --= 100 MeV is shown. The tendency of lowering the maximum of the cross 
section found for the Bryan-Scott-III potential (see Fig. 10 of ref. [3]) is confirmed, 
but the effect of about 5% is less pronounced for OBEPT. If a theoretical accuracy 
of the order of 1% is needed, current retardation should be taken into account. 

Besides the above-collected set of meson-exchange and non-relativistic one-body 
currents, we will further include the following three contributions: 

(i) the relativistic spin-orbit (SO) current [4], which must be present in any com- 
parison with real data; 

(ii) isobar currents (IC) [1], which contribute non-negligibly even below re-threshold; 
(iii) lowest-order relativistic corrections to the one-body currents [3]. 

All these contributions are taken as explicit currents, i.e. they are calculated 
without use of the ST. For the IC it is sufficient to take them in impulse approxi- 
mation in the energy region considered. Whereas relativistic corrections in the 
meson-exchange currents are neglected systematically, the relativistic SO-current 
turned out to be very important. But this is no contradiction, since the relativistic 
SO-current represents a genuine off-shell effect [16], which would be present even 
for a purely local potential, i.e. without any exchange currents. The relativistic 
one-body current (see Eq. (4.18) of ref. [3]) partially includes the less important 
one-body part of the relativistic SO-current. To avoid double counting, this is taken 
into account, if both contributions are involved. Since the relativistic one-body 
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Fig. 6. Contributions of the relativistic spin- 
orbit current, isobar currents, and relativistic 
corrections to the one-body currents to the 
differential cross section at q~ab = 100 MeV 
for the OBEPR 

current is frame-dependent, whereas corresponding relativistic corrections in the 
wave functions are neglected, the magnitude of its contribution will be a measure of 
this inconsistency. 

A typical result is shown in Fig. 6 for the OBEPR at q~ab= 100 MeV. The 
classical part (solid line) is calculated without Siegert operators and is identical with 
that of Fig. 1 c (solid line). The relativistic SO-current decreases, whereas IC increase 
the cross section, the effects being maximal or minimal at extreme angles, respec- 
tively. Relativistic one-body currents turn out to be almost of the same order as 
current-retardation effects (Fig. 5). This important fact will be kept in mind for the 
judgement of significance of the retardation corrections. 

3 Comparison with Experimental Data 

In the following discussions of cross sections and polarization observables, the 
calculations for the different OBEPs always include, if not stated otherwise, as 
current contributions: 

(i) static n- and p-MEC, calculated with the Siegert operator for the zL-gauge, 
(ii) isobar currents in the impulse approximation, 

(iii) relativistic spin-orbit current, 
(iv) lowest p2/m2-order corrections to the one-body currents. 

In case of the retarded OBEPT, additionally included are 

(v) lowest p2/rnrn~,p)-order retardation corrections to the n- and p-MEC. 

Fig. 7 shows the total cross section for deuteron photodisintegration with the 
different OBE-models in comparison with experimental data. For low energies 
(Fig. 7 a) the theoretical results are very similar, but even the simple Bethe-Peierls 
formula [17] would give an equally good description of the experiments in that 
energy region [1]. For higher energies (Fig. 7 b), however, the cross section for the 
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OBEPT lies distinctly below the cross sections for the two unretarded models. This 
effect is due to current retardation of n- and p-exchange. It is not caused by the 
renormalization of the deuteron wave function (Eq. (D. 14) of ref. [2]) which we have 
used for the energy-dependent OBEPT, because it leads to an energy-independent 
renormalization of the cross section by about 3~o, and therefore is already present 
at  low energies (Fig. 7 a). With respect to the experimental data, the situation is not  
very clear for the higher energies: Up to 100 MeV the predictions of all the different 
OBE models are compatible with experiment, but above 100 MeV the O B E P T  
model seems to systematically underestimate the total cross section. 

The differential cross sections at laboratory photon energies of 60, 100, and 
140 MeV are shown in Figs. 8 a-c .  Concerning the different OBE models the 
OBEPQ curves always lie slightly below the OBEPR calculations, and the difference 
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increases for extreme (forward and backward) angles with higher energies. The 
retarded OBEPT model, however, gives distinct lower cross sections compared to 
the unretarded potentials. Especially the maxima of the angular distributions are 
strongly reduced, whereas the values under extreme angles are less affected. 

At 60 MeV the experimental data are well described in the maximum region by 
the unretarded potentials, whereas at extreme angles any of the models agrees well 
with the data. Also at 100 MeV the OBEPQ or -R calculations are compatible with 
the experimental values over the whole angular range, while the OBEPT calculation 
lies too low. At 140 MeV the experimental situation is not very satisfactory, because 
different experiments are still not consistent with each other. But qualitatively, the 
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theoretical cross sections for the unretarded potentials agree considerably better 
with experiment than for the retarded one. On the other hand two-body isobar 
currents are missing which are known to become more important  [18]. 

In Fig. 9 the retardation corrections to the exchange currents in the OBEPT case 
and the relativistic one-body currents for all these OBE models are switched off. 
Both corrections lower the cross sections. Without retarded currents the OBEPT 
calculation seems to be in better agreement with the experimental data. But this 
cannot be a valid argument against the inclusion of retardation effects, because they 
are needed for consistency within the non-covariant formalism underlying the 
OBEPT model. On the contrary, since the retardation effects turns out to be so 
important, while the agreement with experiments is worsened, it is an indication 
that, if the underlying physical ideas are acceptable, the restriction to the lowest 
order, i.e. p2/mm~, is not sufficient. Since the next order in the expansion of the 
retarded propagators appearing in the exchange currents, i.e. p2/m2, is a genuine 
relativistic one, its inclusion would require a complete relativistic calculation up to 
this order. 

We will now consider the energy dependence of the differential cross section at 
forward and backward angles (Figs. 10 a, b). It is well known that the originally 
puzzling discrepancy between experimental data and theoretical calculations at 
forward angles was essentially resolved by including the relativistic spin-orbit cur- 
rent [4, 16, 19]. The low D-state probabilities of the Bonn OBEPs in addition lower 
the cross section at the forward direction. The differences within the different OBE 
calculations are quite small and the results are rather insensitive to the inclusion of 
retardation corrections to the MEC or to relativistic corrections to the one-body 
currents. 

The recent experimental data from ref. [46] fit quite well into the theoretical 
predictions for forward as well as for backward angles. The same is true for the recent 
data of ref. [44], except the 14.7 MeV measurement at 0 ~ gives two high a 
value. In the energy region between 20 and 50 MeV there are still some data points 
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Fig. 10. Differential cross sections at forward (a) and backward (b) angles for the different OBE models. 
Data points are from [44]: r~, [40]: o, [45], A, [46]: +, [47]: • and [48]: 

distinctly below the theoretical curves for the forward cross section, but experi- 
mental effort is under way for remeasuring the cross section in this energy region. 
At 180 ~ more data is certainly needed. 

In the unpolarized cross section, as considered so far, most of the detailed 
information originally present in the theoretical calculated T-matrix is lost by 
averaging and summing over spin degrees of freedom. In principle, any set of 23 
independent polarization observables would carry the whole information included 
in the T-matrix [20]. Although one is presently still far away from the possibility of 
measuring such a set of observables, which is still not yet defined explicitly, polar- 
ization observables are receiving increasing interest, as the continuous beam acceler- 
ator techniques and development of polarized targets and polarimeters proceed 
further. 

Up to now only a few polarization observables for deuteron photodisintegration 
have been measured, for instance, the photon-asymmetry E ~ and the polarization 
of the outgoing neutron Py(n), for which we show our theoretical results in Fig. 11 
and Fig. 12, respectively. In case of the photon-asymmetry it is interesting to see that 
the OBEPT model, including retarded MEC, improves the description of the 
experimental data. 

The neutron polarization, however, turns out to be very insensitive to the OBE 
versions used. In addition, Py(n) is also insensitive to the retardation corrections in 
the current, while for N ~ the OBEPT curves would move significantly towards the 
curves for the unretarded models, if the retardation corrections to the MEC would 
be switched off. 

Besides the observables discussed so far, we have calculated all 288 polarization 
observables defined in ref. [20] and have looked systematically for possible candi- 
dates which would allow to differentiate between different OBEPs. Most of the 
observables differ with respect to the different OBEPs in absolute size by less than 
0.05 at qlab= 100 MeV for example. Therefore, the different OBE models can 
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introduce large relative differences only in observables which are small in absolute 
magnitude. In general, the results for the O B E P Q  and O B E P R  are more similar to 
each other than compared to the O B E P T  predictions. But there are a number  of 
observables with considerable different angular distributions for all three models, 
and hence they could serve to differentiate between different models in the future 
experiments. As an illustration we show in Fig. 13 the following observables at 
qlab = 100 MeV: 

- -  T~2: a tensor target asymmetry with circularly polarized photons; 
__ p~2(p): a tensor target asymmetry of the proton polarization along the z-axis 

(the direction of the outgoing proton momentum in the c.m. system); 



Deuteron Photodisintegration with the Bonn OBE Potentials 111 

0.2- 

0.1 

-0.1 

-0.2 

- 0 . 3  
0 

100 

\ \  

0 

(rr - Op~ ) [deg] a 

0.1 

-0.1 

-0.2 

- 0 . 3  

- 0 . 4  

-0.5" 
0 

, 4 o  

60 120 180 

(rr - 0 ) [deg] b 

Fig. 12. Neutron polarization Pr(n) at ql~b = 
100 and 140 MeV for the different OBE 
models (in the notation of Fig. 7). Data 
points are from [43] 

__ p2,11(p) and pc, 1 t (n): a vector target asymmetry with circularly polarized pho- 
tons of the proton or neutron polarization along the z-axis, respectively; 

__ p/}10: a vector target asymmetry with linearly polarized photons of the 
y-components (perpendicular to the c.m. reaction plane) of proton and neutron 
double polarization; 

__ p~;ll: as p]}10 but with x-component of the proton polarization and for a 
different vector target asymmetry. 

Note that (T~2 and P~2(p)) are two-, PS' i l (p/n) three- and (Prl} l~ and p~;1 l) four-fold 
polarization observables. The partially dramatic dependence on the underlying 
OBE model underlines the rich information contained in polarization observables 
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still to be measured in deuteron photodisintegration. A systematic discussion of all 
polarization observables will be presented elsewhere. 

4 Summary 

We have studied deuteron photodisintegration below re-threshold using the OBE 
approximations OBEPQ,  -T and -R to the recent Bonn potential. Consistent static 
meson-exchange currents for the non-relativistic re- and the dominant  p-part of the 
OBEPs are included as explicit currents. In case of the t ime-dependent OBEPT also 
the leading retardation corrections to the re- and p-MEC are constructed and 
taken into account. Missing static currents beyond these re- and p-currents are 
incorporated via the Siegert theorem up to a very high degree. The results show 
almost no dependence on the electromagnetic gauge for the Siegert operators. In 
addition, also the relativistic spin-orbit current and one-body isobar currents are 
included in our calculation. 

The retardation effects in the electromagnetic currents turn out to be much less 
pronounced in the unpolarized cross section than in a former model study using the 
BS-III potential. However, one should be cautioned to generalize this result because 
uncertainties arise from non-negligible higher-order corrections, which are of genu- 
ine relativistic order and cannot  be calculated consistently within a non-relativistic 
framework. 

All unpolarized data on deuteron photodisintegration below re-threshold, i.e., 
total and differential cross sections especially at forward and backward angles, can 
be satisfactorily described by the O B E P Q  or -R, within the existing experimental 
uncertainties. On the other hand, the OBEPT underestimates slightly the maximum 
of the differential cross section. Polarization observables provide additional tests for 
present theoretical models of the electromagnetic structure implicitly contained in 
the nuclear force model. Their accurate knowledge is indispensable for a better 
theoretical understanding. For  example, retardation effects in the electromagnetic 
interaction show up significantly in the photon asymmetry at 100 MeV. Also cer- 
tain, not yet measured observables differentiate significantly between different OBE 
models. 

In conclusion we may state that the OBE approximations to the Bonn "full 
model" provide a satisfactory description of deuteron photodisintegration and thus 
may be used for photonuclear  reactions in general. 

Appendix. OBE Expressions in (Is)j-Basis 

For the sake of applicability we summarize here the explicit partial-wave matrix elements of the 
potential 

V(p,p';jsll')=fdf~fdf~,((ls)jml,)(VlflV')(,'[(l's)jm) (A.1) 

(p = I?'l, P = ~/p) for the different OBEPs in (Is)j-basis as required for solving the wave equations 
(2.37), (2.39) of ref. [3] in momentum space for the N-N scattering states and the deuteron. 

We first consider the QBEPQ. Taking the corresponding potential amplitudes (E.21)-(E.23) of ref. 
[2] and passing through the algebra of (A.1) one finally obtains for psetldo-scalar, scalar and vector 
mesons: 
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1 3 + ~ , ^ 2  ~ t 2 2 , Vp~(p, p';jslI') = - 92~m ~ 8~ 2 (-)~ ells * ~C(jsll )(p ~ (p , p)ar(p', p) 

+ (p ~ p', l,:--~ l')) + 2pp'~L D(jsll'L)aL(P' P')}' 

1 1 f - -  ' V~(p, p'; jsll') = -a2m~ 16~2 �9 %%,6u,a~(p, p ) 2pp'6u' ~L B(IL)aL(P' p') 

~ 2 p , 2  } 
+ 36e_--~_ (-)'+~+@g 2 ~" G(jsll'L)az(p, p') , 

F, pF.p, L 

t. , t W(P, P ,jsll ) = 

(A.2) 

(A.3) 

1 1 
m ~  16~z2 

- - - -  t e  f v  2 
+ %ep,pp ou,~m 2 ~ B(lL)aL(P, p') 

+ pp'fu, ~6(0~ + s _ 4(0~ + f~)f~ _ f~(3ep,e, m 2 I 

1,~ z . L 
+(%, _%)2)] 

�9 ( B,lL, aL,p , l, J+16 {i I It F 'L'aL'PP') 
+ pZp,Ze_v~_p, [(ov+ f~)2 + 2(9v + f~)f"(%,+ep+m)m + 2~ ~-(3%'% Lz - m2)] 

,36(-)l+~+J~2~ ' ~ G(jsll'L)aL(p, p') 
L 

- - 2 ' 2 f E f ~  6~1(--)J6~'{~ l 1' I } ~  p p - ~ o u ,  ~ H(IL)aL(p, p') + K(ll'L)aL(p, p')) 

-~ pap,a__ f2m2 (-)t+~+J18g2~ ' ~ Q(jsll'L)aL(p, p') -- (-)J18~7'C(jslt'L) 
~,pg, p, L 

-- f" "e 2 "~- (p*...~p', l*-*l')] 

[ f~ "e -ep)z](-)J361~'~D(jsll'L)aL(p,p')}, _ pp, L(9~ + s _ 4~Y t ,' 

with 

C(jsll')=~s J 0 0 0 0 0 s J 1 

V(jsll 'L)=(--) L ~0 0 0 0 0 ~s J2 1 ~ �89 , 
s l 1 

(: 7 B(IL) = L 2 1 
0 0 ' 

(A.4) 

(A.5) 

(A.6) 

(A.7) 
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{1'i} F(lL) = B(1L) 1 ' 

G(js ; ; ,L )=L2  y, j2 l' ~2fi2 1 ~ 1 1 
S:tfldlJ2 S 0 0 0 0 

,(;o ;)(; o 

* �89 21 21iLl 1 2 t L J1 J2 J J1 J2 

( J ̂2 1 1 J)Z(l  L H(IL) L~ V 
o o o/ \o o o 

g( l l 'Z)=(-- )LLz~zf i2( ;  1 ~z)(1 1 f l ) (  l 0 0 0 0 0 0 0]\0~ L 

Q(jslI'L) = L z ~ ( - ) s a  *z l' ~ fi 
s~a~e's~J2 s J 0 0 0 0 0 

(10 c~ ,L#)( 1 fl ,Le')(I L ~,~(l' L ~00' ) 
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and 

*(-)J'+s'#YZ �89 �89189 �89 

�89 L J1 J~ J~ 4 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

ep = ~/p2 + m 2 ' ev = ev + m, ~2(p, p,) = gp/~p, . (A.13) 

For  isovector mesons a factor T 1 - 2" 2 has to be included in the expressions (A.2)-(A.4). The coefficients 
a L are defined via an angular  decomposi t ion of the product  of strong form factors times static meson 
propagators  

F2((ff'2 - if)2) = 2 n ~  (plLM)aL(p, p')(LMlff), (A.14) 
r _ ff L M 

which yields 

with 

aL(p, p') = (A~ - m2) 2n, ~'1 dz PL(z)&-2(p, p', z, m~)oS-4(p, p' ,  z, A~), (A.15) 

(9(p, p', Z, m~) = (p2 + p ,2  _ 2pp'z + m~) 1/2, (A.16) 

for any of the mesons considered with masses m~, cut-off parameters  A,  and regularization orders 2n,. 
Note  that  we have not used an approximat ion like (E.49) of ref. [2] for the left-hand side of (A.14). In 
the static case the a L coefficients may be expressed by Legendre polynomials  of the second kind 
according to 
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1,{QL(x(m~,) ) 2~o-x (_)k dk QL(x(A~))}, (A.17) 
a L i p ,  - 

where 

1 2 
x(m~) = 2~7(p + p,2 + m~), 

and calculated analytically. 
For the OBEPT the partial-wave amplitudes of (A.2)-(A.4) have to be changed threefold: 

(A.18) 

(i) Due to the fact that the OBEPT is not to be understood in connection with the BbS-equatlon, no 
factors of minimal relativity appear, i.e. the amplitudes have to be multiplied by 

m 

(ii) Because the off-shell term 

(ep, - ep)(g0, - 7~ro) 

for the p-meson is dropped in time-ordered perturbation theory the underlined terms in (A.4) have 
to be absent for the OBEPT and the terms underlined by dashed lines have to be substituted by 

F~p2 _~ Ep,2 ~_ 13pF, p, - -  rn 2 . 

(iii) Retardation of the meson propagators changes the aL coefficients: The ch-2-term of the right-hand 
side of (A.15) has to be substituted by 

o3-1(p, p', z, m~)[c3(p, p', z, rn~) + (% + ~p, - 2m) -- E] -1 

and the resulting retarded accoefficients have to be calculated by numerical integration. Here, E 
denotes the starting energy of the LS-type wave equation. 

Finally, the partial-wave amplitudes for the OBEPR can be obtained from the corresponding 
amplitudes of the static BS-III potential given in ref. [21] by including the factor of minimal relativity, 
i.e., by multiplying them with V/~p,ep/m and taking the resulting amplitudes up to order p2/m2. Again, 
we have not used the approximation (F.9) of ref. [2]. 
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