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C L O S E  TO I N T E G R A B L E  

N. N. N e k h o r o s h e v  

In this note we consider  the behavior  of action variables  I in a sys tem of canonical equations of 
Hamilton with the Hamiltonian 

H = H0 (l) -i- aH~ (1, ¢), s ~ 1, 

during an interval of time large in compar ison  with an a rb i t r a ry  power of 1/e.  Here the "action variable" 
I belongs to a domain of the Euclidean space E n, dim En = n, and the angle variable ~v to an n-dimensional  
torus; the unperturbed Hamiltonian H0 and the "perturbation" gH 1 are  analytic functions, and H 1 is periodic 
of period 2~r in ¢ .  

As is well known ([1, 2]), there exists in the phase space of the sys tem,  subject to the satisfaction of 
cer ta in  conditions, a closed nowhere dense set,  consisting of invariant tori close to the tori defined by the 

equat ion I = const (we shall r e fe r  to this invariant set as a Kolmogorov set). If the number  of degrees of 
f reedom is equal to 2, then when specific conditions ([2]) are  satisfied, the Kolmogorov two-dimensional  
tori  "divide" the level surface of the Hamiltonian function, and then for all initial conditions I(0), ~v(0) the 
quantity IlI(t)-I(0) II will be small  for  all t, -oo < t < + ~.  If, however,  n > 2, the so-cal led  Arnol 'd  diffu- 
sion is observed in the complement of the Kolmogorov set; the point I(t) departs ,  although very  slowly, 
f rom its initial position I(0) (see [3]). 

In Theorem 1, stated below, the mean speed of depar ture  I(t) f rom the initial point is bounded f rom 
above, at one stroke,  for all  initial conditions. It turns out that if the function H0 satisfies cer ta in  condi- 
tions, which we shall re fer  to as steepness conditions (defined below), then after  a long interval of t ime of 
order  exp (1 /ea )  the point I(t) does not depart  f rom I(0) by more  than a small  distance of o rder  eb, where 
0 < a < 1, 0 < b < 1. Functions of a general  position will be steep (see Theorem 2). Thus, in the general  
Case the mean speed of depar ture  I(t) decreases  exponentially with a l inear decrease  in the perturbation,  
i.e-., as in the examples of instability constructed by V. I. Arnol 'd .  

The motion of the point I(t) can be decomposed into a rapid "vibration" (of o rde r  ~) about a mean 
position and a "drift ," i.e., a displacement of this mean position. The drif t  may be compared with move-  
ment into "a dense fores t  with meadows:" "on the meadows" the drift  I(t) can be rapid, but in o rde r  to 
depart  f rom I(0) by a distance g rea t e r  than the dimensions of the ,meadow,  it is neces sa ry  to "get  through 
the dense forest ,"  where the drif t  speed is ve ry  small .  When the function H0(I) is not steep, the "meadows" 
may degenerate into "clearings" and the point I(t) may depar t  f rom I(0) with a speed of ordei: ¢. In gen- 
era l ,  knowing the steepness coefficients of H0(I) (see the definition below), one can es t imate  the dimen- 
sions of the "meadows" and, by the same token, i t appears ,  one can give a fairly detailed est imate of the 
deviation of I(t) f rom I(0) for  large t. The theorem formulated below is a f i rs t  step in this direction.  

If A is a set in E n , t h e n A - e w i l l d e n o t e  a set of points, which is contained in A together  with its e- 
neighborhood. 

THEOREM 1. Let the function H = H0(I) + Hi(I, ~P) be periodic of period 2r in ¢P and analytic in the 
d o m a i n F : R e I E G ,  I I m I [ < a ,  fIm~pl < p , w h e r e G r > 0 , p > 0 , a n d G ~  E n. LetH0(I) be a function with 
eharac*.eristic ~, which is steep* in G, and let M = sup Hi(I, cp) for I, ¢ E F. Then positive numbers M0, 

*See the definition of  steepness given below. 
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C, and K e x i s t ,  depend ing  only  on H0, G,  P, and  a ,  such  tha t  i f  0 < M < M0, then  fo r  an a r b i t r a r y  so lu t ion  of  
the  s y s t e m  with  H a m i l t o n i a n  H and i n i t i a l  cond i t i ons  I(0),  ~v(0) E F - d ,  and a l l  t E [0, T] ,  

II i (t) - : (o)II < d, 

w h e r e  T = e x p ( c M - a ) ,  d = M b ,  a = 3 / ( 1 2 / ~ )  +3n +14, b = Ka.  

.De__fi_ni_tion__: Le t  the  f u n c t i o n f ( x  1 . . . . .  Xn) be de f ined  in the  d o m a i n  G c E n, and le t  us a s s u m e  that  
g r a d  f i x  ~ 0 f o r  a l l  x ~ G .  L e t  [ A r ( x ) ~ b e  a s e t  o f a f f i n e  p l a n e s  Ar(x)  ~ E n, d i m  At(x) = r ,  p a s s i n g  
t h r o u g h  the  po in t  x and p e r p e n d i c u l a r  to g r a d  f Ix- We sha l l  s a y  tha t  the funct ion f (x) i s  s t e e p  in G ff fo r  
e a c h  r = 1 , . . . ,  n - l ,  n u m b e r s  K r > 0, 5 r > 0, and  (~r -> 1 e x i s t  (which we s h a l l  t e r m  s t e e p n e s s  coe f f i c i en t s )  
such  tha t  fo r  a l l  x E G the i n e q u a l i t i e s  

max rain I] gr ad (f I~r(x )) ly II > Kr ~"  

a r e  s a t i s f i e d  fo r  a l l  Ar(x)  E~Ar(x)~ and a l l  ~, such  tha t  0 < ~ < 5 r .  By a c h a r a c t e r i s t i c  of  s t e e p n e s s  we 
s h a l l  m e a n  a n u m b e r  £ such  tha t  

1/~ = (~tx (as ... (%-2 (an-1 (l/an) + n - -  t) + n - -  2) + ... + 2) + i) .  

T H E O R E M  2. A f u n c t i o n f ( x )  i s  s t e e p  in a n e i g h b o r h o o d  of a po in t  x i f  g r a d f  Ix i s  n o n z e r o ,  and  if  
the c o e f f i c i e n t s  in the T a y l o r ' s  s e r i e s  e x p a n s i o n  o f f ( x )  a t  the  po in t  x do not  s a t i s f y  any one o f  an  in f in i t e  
n u m b e r  of  s p e c i f i c  a l g e b r a i c  e q u a t i o n s .  

By w a y  o f  a p p l i c a t i o n  we c o n s i d e r  the  p r o b l e m  of  m b o d i e s :  m po in t s  a t t r a c t e d  to one a n o t h e r  a c -  
c o r d i n g  to N e w t o n ' s  law.  Le t  the  m a s s  of one body  (the sun) be  much  l a r g e r  than the m a s s  of  the  r e m a i n -  
ing b o d i e s  (the p l a n e t s )  and  le t  us  a s s u m e  tha t  the  i n i t i a l  cond i t i ons  a r e  such  a s  to s t i p u l a t e  a t  the  in i t i a l  
i n s t an t :  a) the m o t i o n  of  the  p l a n e t s ,  c l o s e  to c i r c u l a r ,  b) the  s m a l l n e s s  of  the  i n c l i n a t i o n s  of  the  p l a n e s  of 
the o r b i t s  to  one a n o t h e r  and  the s a m e  d i r e c t i o n  of r e v o l u t i o n  of  the  p l a n e t s ,  c) the  d i s t a n c e s  b e t w e e n  the 
o r b i t s  of the  p l a n e t s  b e i n g  not  too c l o s e .  

The  e q u a t i o n s  d e s c r i b i n g  the  v a r i a t i o n  of the m a j o r  s e m i - a x e s  a i  of  the o r b i t s ,  and  the mot ion  of  the 
p l a n e t s  a long  t h e i r  o r b i t s ,  m a y  be  w r i t t e n  in a s y s t e m  of  a c t i o n - a n g l e  c o o r d i n a t e s  I = I 1 . . . .  , I r a - l ,  ~P = 
¢1,  . . . .  ~Pm-1 (where  Ii  ~ q-ai) in H a m i l t o n i a n  f o r m  with  H a m i l t o n i a n  H = H0(I) + Hi(I ,  (P, t) (the v a r i a t i o n  
of  the  e c c e n t r i c i t i e s  and i n c l i n a t i o n s  m a y  be t aken  into a c c oun t  th rough  the d e p e n d e n c e  of H i on t) .  The  
a s s e r t i o n s  of T h e o r e m  1 m a y  be  g e n e r a l i z e d  to a s y s t e m  with a H a m i l t o n i a n  of  th i s  k ind  p r o v i d i n g  that  the  
func t ion  H0 i s  s t e e p  and tha t  the  p a r t i a l  d e r i v a t i v e s  of  H 1 s t a y  s m a l l  d u r i n g  the t i m e  i n t e r v a l  c o n s i d e r e d .  
In  o u r  c a s e ,  H0(I) = - ( e l / I  ~ ) - .  . . - (Cm- i / I2m-1 )  i s  a s t e e p  funct ion with the  m a x i m u m  s t e e p n e s s  c h a r a c t e r -  
i s t i c .  But the  p a r t i a l  d e r i v a t i v e s  of H i do not  r e m a i n  s m a l l  fo r  a c l o s e  a p p r o a c h  of even  two of the p l a n e t s .  
H o w e v e r ,  u s ing  cond i t i ons  a) ,  b) ,  and c) we c a n  show tha t  such  an  a p p r o a c h  does  not  t ake  p l a c e  o v e r  a 
long p e r i o d  of  t i m e .  As  a r e s u l t  we find tha t  o v e r  a long t i m e  i n t e r v a l ,  e s t i m a t e a b l e  b y  o u r  t h e o r e m ,  the  
mo t ion  o f  the  p l a n e t s  w i l l  s a t s i f y  cond i t i ons  a) ,  b) ,  and  c) and,  in add i t i on ,  the lengths  a i  o f  the  o r b i t s  of  
the  s e m i - a x e s  a r e  a l m o s t  i n v a r i a b l e .  
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