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RELATIVISTICALLY INVARIANT QUASICLASSICAL LIMITS
OF INTEGRABLE TWO-DIMENSIONAL QUANTUM MODELS

I.V. Cherednik

Two-dimensional quantum integrable models whose quasiclassical limits are principal
chiral fields with symmetric and nonsymmetric Lagrangians are proposed.

1. In this paper, we propose the analog of the Hamiltonian structure considered in [1] for the princi-
pal chiral field equation
280—8:8 '8t g8 'gs, @

where g is a function of the cone variables ¢ and 5 with values in invertible matrices. It is shown that with
respect to this structure (which is not canonical) Eq. (1) is the quasiclassical limit of an integrable quantum
model, which is constructed on the basis of the Yang identity [2]. This provides one further way of proving
the integrability of (1), which was established by Zakharov and Mikhailov [3], and, in particular, to calculate
in a very simple manner the Poisson brackets (in the introduced structure) of the coefficients of the S matrix
associated with (1) (ef. [1]).

The same device can be applied to Baxter’s identity [4] (found in the integration of the XYZ model)
instead of the Yang identity. In a limiting case, we obtain a special case of the equation of the nonsymmetric
principal chiral field,

Jgng g =g, gg  +g:g " gug N, @)
corresponding to the Lagrangian

!
_ -1 —1
3 _fSp(ggg Jeweg™),

for g with values in O(3) (J is a constant diagonal matrix). In this special case, (2) has a representation
of zero curvature of elliptic type and can in principle be integrated by the inverse scattering method for
arbitrary J.

The present paper has been written under the influence of the quantum inverse method created by
Faddeev and others (see [5-7]) and also the paper [1], in which Sklyanin obtained the Landau~Lifshitz equation
of the theory of ferromagnetism as the classical limit of the XYZ model. We draw attention to two features
of the models we consider, namely, the use of nonlocal Hamiltonians and cone variables. Note that the
construction of a systematic quantum theory of chiral fields with values on the two-dimensional sphere is
realized in the paper of Takhtadzhyan and Faddeev on the quantum inverse scattering method and the 0(3)
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nonlinear ¢ model.

I am grateful to L. D. Faddeev for a fruitful discussion of the original draft of this paper and to
P, P. Kulish, who pointed out [8], which investigates the equation obtained by {trigonometric) degeneration
of the construction of the nonsymmetric O(3) field described below.

2. We give briefly some results from the theory of the scattering equation
E=q 'UE, (3)
where U and E are matrix-valued functions of ¢, and « is a parameter. For purposes of simplification,

we shall assume that the coefficients u,; of the matrix U = (ul..) decrease fairly rapidly as & — <=, for

example, that they have compact support. We denote by E, the solutions of (3) normalized by the conditions
E, = 1 as g—~=o (1=(5y)). We set T(a)=(t;)=E.'E-. Then (cf. for example, [9])

8t/ SU = E_17°E (4)
where 1?=(08,05), and t denotes the transpose.

We postulate the Poisson brackets between wug,: {ipg(E), trs (&)} =i(8grtips () —Opsllrg(E) )6 (E—E"), We cal-
culate {iy(a), t,.(B)} for o # B. Since (a—B)-(af)~! Sp(UVyV ri—UV, 2V, ")y =8p (V. *?Vy*),, where V> =aE_
12E .~ and Sp is the trace,

+ oo
{tpq (OL), t"s (ﬁ)}: i J‘ Sp(UVﬁrs Va.pq"UVaM Vﬂrs) dg - iOLB (OL'“B) - SP (Vmpq VBN) |::j:: ==

-0

i(a—B) " (g (06) tps (B) — s (@) trq(@) ).

3. We denote by I¥/ the matrix 1%/ concentrated at site n of a one-dimensional lattice with
infinitesimal step w. We regard 1¥/ as operators with the commutation relations [7.%, /."] = (80" =8l ?) - B,
We set

Lola) = alatx) " L+x (at+x)— Zln’m gim
Im

where [, = ZI,,“ (Z. is a matrix with coefficients in the algebra generated by 1i/),

i

R(a)=o(a—n)~1181—x (a—x)“‘z 1meqm

where ® 1is the tensor product of matrices, and Z.=2,®1, £,—=10P,. The factorization relation for the S
matrix of [2] can be rewritten (cf. [1]) in the form of the identity

Z ()2, (B) R (B—a) =F (B—a) Zn (8) P (a1), (5)

where a, B€C, a, B, a—p7*—x. For integral M = N, we define the matrix 7 =7 " (0) =LvLr-s ... LoersLu (). *
Then g satisfies the same relation (5) as Z..

We consider.a quantum model dependent on some fixed a=C with Hamiltonian #.=Sp7 (a) and
equations of motion Z=ix"‘[H#., £ 1. To represent the equations of motion in the form of a closed system of
relations, we introduce the operators

%n

I

Y118 @) =T @Y, (@) (UsnsN), Piei=Vn=7"
i,i

For integral m, n (M = m = n = N), we obtain from (5) the identity
T u™ (B) =1 (0=B) " (PP (@) T u™ (B)—T w™ (B) P mmr (). (6)
For m =n, B = 0 we arrive at the equation
U =i~ (P (@) U= U P ui (@), (7a)

which together with the trivially verified relation

* The coefficients of 9~ can be expressed in terms of the operators Ij;f foralln (M = n = N).
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PP =20 (Un? nt (@)~ T (@) Un) (Th)
forms a closed system of equations of motion for the proposed model.
Some quasiclassical variants of the identity (6) can be found in [10].

The system (7) can be transformed by setting

N
V(@)= @D 5T, U= 012) (S G2 [ 1d)

k=M

for some (a-dependent) operator-matrix function %, of n. As a result, we obtain the quantum analog of
Eqg. (1) (cf. [11D:

GG (G + Gn)) = (G + Gn) GGy (M <<N), GuaGrb =Gy I3 )

Substituting m = M in (6), we readily find a zero-curvature representation for (8) and (7). If in the limit
we set [I,%, I,*]=0, then (8) goes over into an integrable discrete system (a chain) of equations for the
matrix-valued functions {g.(t)} of the continuous parameter ¢t (%.—~dg.(¢)/dt)..

The considered model can be integrated by the quantum inverse scattering technique. In particular,
from (5) for 7~ there follows the equation [#., #;]=0, and, expanding InJé, in a series in 8 in the neigh-
borhood of 8 = 0, we obtain an infinite series of local quantum conservation laws. Models with Hamiltonians,
the coefficients of the expansion Ind€,, have been investigated in a number of papers (see [12,13]). In [13],
one can also find the calculation of the spectrum of ;.

4. We calculate the quasiclasgical limit of the constructed model ag »—~0 (Ai=1), xN—>+oo, yM->—oo,
We introduce the continuous variables ¢ and 5 and make the substitution 1. —68,ul.—~>um(E), &Z+-0X/0n, in~*
[, I={,} 8w —xd8(E—F’). Ignoring the terms of order %2, we arrive at the equation of motion U.,={H,, U},
where U=(uy), H,=SpT(a), and the Poisson brackets between u,, are the same as in Sec.2. Using (4), we
find that U,=ia*[V, U], where V=E_E,~'. Since V,=a '[U, V], setting ia"'V="/,g.g7", o U =/g.g7!, we arrive
at Eq. (1).

In the same limit, the identity (5) for 7 can be rewritten as the relation
{T(), T(®)}=ilR(p~a), () T (8)], )
where T=T®1, T—=1®T, R=0#/0n|.—,. Making calculations, we obtain the formulas of Sec.2 (cf. [1]).
5. We now argue similarly on the basis of Baxter’s identity [4] in the form of [1] (see also [6]). We
denote by SZ, the operator representing the Pauli matrix of concentrated at site n. We recall that
o'=1, ¢'=1"+1%, ¢’=i1"*—i1*, ¢°=1"—1” We introduce the functions W,=1, Wi (a)=sn(x)sn(a+x)"!, W,(a)=dn

sn™ (at+x) sndn~' (x), Wi(a)=cnsn'(atx)snen(x), where sn, cn, dn are elliptic functions of modulus k.
We set

3 3
— 2 We(2)Saic', R (a)= 2 Wia)o' @ o',

Then the identity (5) holds for & and £ . As in Sec.3, we introduce 7 (o), #.=SpJ (a) and consider the
model with the Hamiltonian .. We have S,?=ix"'[#,, S.*], where

(5,2, 8,2] = ZiZ 77 807 .

-

This model can also be integrated (see [4, 6]). For it, there is an analog of the identity (6).

6. We calculate the limit of the considered model as n — 0. We replace S}; by s;(¢£). Then .
goes over into H = Sp T(a), where T(a) is determined (see Sec.2) for the equation

E§=Z w, () s:(8)0'E, w,(a)=sn""(a), w,(o) =dn sn~*(a), ws(ax)=cnsn~*(a)

(see [1]). The equation of motion can be rewritten in the form s = 2(8H_ /6s) X s, where s = (si, s, s3)5

and X is the vector product. It follows from formula (4) that J-* (8H./8s)+ —2LJs><J“6H /8s, where J=diag(w,(a),
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wy(a), ws(a)). Making the substitution 2is=u, 2/7'6H./8s=v, we arrive at the system of equations
u,=(Jv)Xu, ve={_Ju)Xv, (10)

which is the required limit. Using the analog of the identity (6), we can write down the quantum variant of
the system (10). Note that for T from this section (9) is also satisfied (see [1]).

7. We transform (10) to the form (2). It can be verified that there exists a function g(£, n) that
takes values in the orthogonal (complex) 3 X 3 matrices and for which &g~ '=U, g.g~'=V, where

— ijk 7.3 —_ ijh i — — {1 ¢ 25 4 25 4 2__
U= E gPreu d®, V= E e e, u=(uy, uy, us)', v=(0,, vy, Us)'s € =Jufas, ' =fafs, =
(A ik

Jaran, jhl=wk(05) +w, (OL) .

Then g satisfies Eq. (2). The converse is also true. Note that the condition of orthogonality of g is com-
patible with Eq. 2).
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