
Few-Body Systems 3, 123-134 (1988) sFggav ystcms 
�9 by Springer-Verlag 1988 

Elastic Scattering and Break-Up Processes 
in the n-d System 

H. Witata*, T. Cornelius, and W. G16ckle 

Institut fiir Theoretische Physik, Ruhr-Universitfit Bochum, Universit/itsstrasse 150, D-4630 Bochum, 
Federal Republic of Germany 

Abstract. A method to solve the AGS equations in momentum space is 
presented. The two-nucleon transition operators are generated with the new 
Bonn potential restricted to the states 1S o, 3S1-3D 1 , 3po, 1p1,3p1,3p2-3F2, 1D2 
and 3D 2 . Cross sections and analyzing powers for elastic and break-up processes 
are calculated at a neutron laboratory energy E n = 10.3 MeV. 

I Introduction 

The traditional approach to nuclear physics is based on a nonrelativistic Hamil- 
tonian in which the nucleons interact pairwise. There are different two-nucleon 
interactions, purely phenomenological ones (as, for instance, the Reid soft-core 
potential [1]) and ones based on meson exchanges (as, for instance, the Paris [2] and 
Bonn [3] potentials), which, when applied in such a model, describe the two-nucleon 
system with about the same, rather good, accuracy. 

Using that model in the bound systems of 3 and 4 nucleons those inter- 
actions underbind 3H by about 1 to 1.5 MeV [4, 5] and 4He by about 4 to 7 MeV [6]. 
The OBE-parametrization of the new Bonn potential [7] breaks that situation the 
first time and yields a higher binding energy for 3H [8]. On the other hand three- 
nucleon forces could be responsible for the discrepancy between experimental and 
theoretical binding energies. This is indicated by recent calculations based on the 2re- 
exchange three-nucleon force [9] and phenomenological ans~itze El0]. In order to 
get additional information more three-nucleon observables are needed. There are 
ones which scale with the 3H binding energy like the radius of 3H, the ratio of 
asymptotic D I S  normalization constants in the 3H wave function, the doublet n-d  

scattering length and others [5] and therefore yield no additional information. 
However, this can be different in the three-nucleon system at positive energies. There 
the emphasis on different force components can be varied from the ones which play 
the dominant role in the 3H ground state. For instance, polarization data in elastic 
n~d scattering depend sensitively on p-wave forces. Also in the break-up process very 
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different geometrical configurations for 3 outgoing nucleons can be chosen which 
clearly test the tails of a three-body wave function differently and in much more 
detail than for instance a root-mean-square radius for a bound state. 

Further support for more careful studies of the three-nucleon system comes also 
from a recent work [11] which compares the sensitivity of two-nucleon force off- 
shell effects in 3H to those effects in 4He and nuclear matter. The conclusion is that 
the three-nucleon system is most sensitive. 

The theoretical framework for three-body systems was originally laid by 
Faddeev [12]. Important qualitative insight into three-body scattering processes 
was gained along the line initiated by Amado [- 13] and Lovelace [ 14], who simplified 
the formalism by using separable approximations to two-body transition operators. 
Today most calculations are based on the AGS form [15] of three-body equations. 
Due to computer limitations the first three-nucleon scattering calculations have 
been made with separable approximations to two-body interactions. This approach 
has reached now a high degree of sophistication [16] and has proved to be quite 
successful in describing experimental data [ 17, 18]. However, there are discrepancies 
between calculations and experiment, especially for high-accuracy polarization data 

n (Ay) at low neutron energies [18]. Among possible explanations for those 
discrepancies there is still the purely technical uncertainty about the quality of 
describing a given realistic potential by finite-rank approximations. So before 
attributing the discrepancies for Ay to wrong off-shell (and on-shell) behaviour of 
two-nucleon or even the action of three-nucleon forces the theoretical results have to 
be established rigorously without using separable approximations to the given force. 
Pioneering work in this direction has been undertaken by Kloet and Tjon [19], Stolk 
and Tjon [20], Benayoun et al. [21]. More recently that difficult problem has been 
attacked by Takemiya [22] and Brandenburg [23]. 

Progress in experimental techniques makes it possible to perform kinematically 
complete measurements of break-up processes induced by polarized neutrons [24]. 
To plan such complicated experiments a theoretical guidance is needed to select 
those configurations which are sensitive for instance to off-shell effects. Therefore 
rigorous calculations using realistic meson-theoretical interactions are needed. 

In this paper we present cross sections and analyzing powers for elastic scattering 
and break-up processes in the n-d  system for a neutron lab energy of 10.3 MeV. They 
are obtained by solving the AGS equations in momentum space using the new Bonn 
potential. In Sect. 2 we describe briefly the formalism. The detailed techniques 
solving the system of equations are presented in Sect. 3. Our results and conclusions 
are given in Sect. 4. 

2 Formalism 

We would like to describe processes originating from bombarding deuterons by 
neutrons. We regard the three nucleons as identical and assume that they interact by 
pairwise interactions V. Then the problem can be reduced to the solution of the AGS 
equation for the elastic scattering transition operator U [25]: 

U = P G o  ~ + P tGoU.  

Here Go is the free propagator 

(1) 
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1 
Co = (2) 

E + i O - H o  

and E the total center-of-mass energy fixed by the initial momentum of the neutron 
relative to the deuteron, q0, and the binding energy of the deuteron, E~ (we choose 
h =  1) 

3 2 
E = q0 + (3) 

The operator t is a solution of the Lippmann-Schwinger equation 

t = V + VGot (4) 

and P is the sum of two permutation operators 

P = PlzP23 + P13P23. (5) 

The transition operator for the break-up process U0 can be calculated once U is 
known, 

U0 = (1 + P) tGoU.  (6) 

The main problem with solving (1) in momentum space is the presence of 
singularities in t and Go. Even more unpleasant is the action of P in (1) which smears 
out the pole in t, occurring at the deuteron binding energy, into a logarithmic 
singularity. The latter difficulty can be avoided by replacing (1) by 1-26]: 

T = tP  + tGoPT.  (7) 

Then the transition operator for elastic scattering U can be expressed as 

U = P G o  1 + P T .  (8) 

We introduce standard Jacobi momenta and partial-wave basis states (see Fig. 1): 

~ q @  =--- ]pq(ls)j(21)IJ(t�89 . (9) 

In that representation Eq. (7) is an infinite system of coupled integral equations [25] 

@q~[ T(E)I~b) = @qT[tPId~) 

;o f + 2 2  dq 'q  '2 ' dx  t~ 
d l~ - 1  7~1 

G~,(q, q', x )  @2q'dl  Y(E)td~) 
x 

l~, E + iO - q2 _ q,2 _ qq 'x  " 
7~ 2 

(10) 

Fig. 1. Choice of Jacobi momenta and definition of the 
angular-momentum coupling scheme 

\\ ,~S/......o 3 

2 "~1  
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The ket I~) = I~]md , q0, mn) describes the initial state of a neutron and a deuteron 
having spin projections rnn and rnd, respectively. The off-shell matrix elements 

of the two-body t-operator are obtained from (4). The geometrical coeffi- 
cients G~,(q,q ' ,x)  and the momenta rq = x/q '2 + 0.25q 2 + qq'x ,  rc 2 = 

x/q 2 + 0.25q '2 + qq'x stem from the matrix elements @qc~lPlp'q'e') of the per- 
mutation operator P 1-25-1. The quantum numbers in the set a differ from those in cc 
only in the orbital angular momentum l of the pair. This change in l occurs only when 
the tensor force is acting. 

The expression for the leading term (pq~ltPlO~) is given in the Appendix. 
From the amplitudes @qe]TJOp) the transition amplitudes for elastic 

(Om~, q;, rn'n[ Ul~) and the break-up process (mlrn2rn3plp2p3[ U0[+) with definite spin 
projections of the final particles are calculated by quadrature via (8) and (6), 
respectively. In a standard manner finally the unpolarized cross sections and 
polarization observables are obtained [-20, 27]. 

3 Method of Solution 

The first step is to truncate the infinite number of channels e in (10) to a finite one. 
For a given energy E the short-range two-body interaction Vcan be considered to be 
negligible beyond a certain total angular momentumjmax in the two-body subsystem. 
With increasing energy Jmax will increase. Putting t (~ = 0 for j > Jmax yields a finite 
number of channels for each total angular momentum J of the three-body system. 

As mentioned in Sect. 2 the main problem of treating (10) is caused by the 
singularities of the two-body t-operator and the free propagator Go. Only the two- 
body t-operator belonging to the 3Sr3D ~ interaction, which supports a bound state, 
the deuteron, has a pole at the off-shell energy 

3 2 
E - ~ - ~ m q  : E d .  

In other words the pole occurs at q = q0 and shows up in "deuteron"-like channels 
~z~ = { (/1)1 (212)IJ(0�89189 with I -- 0 or 2. As is evident from (10) that pole appears also 
in (pqc~lTld0). This suggests the following definitions, 

E -  ~mmq - @q~lzlOp) for c~ = eD, 
(pqc~l~lo0) - (11) 

(pqc~lzido) for ~ r ~z), 

where z = T, t or tP. Further putting 

m E  - q2 _ q,2 
X 0 = qq' (12) 

we can rewrite (10) as 
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f + ~ Z  dq'q '2 ' d x  
~ ' l ~  - 1  

Gar q', x) m 
• lr rc2 qq'(xo + iO - x) 

I 4 >< (rc2q'7' ~ ~DIT(E)Id~) + 3m 

7"C 1 

(rc2q'c(_ = ~z}]~(E)lqb)_ 7 
qo 2 _ q,2 ] -  (13) 

This is the equation we solved. As in ref. [19, 23] the Neumann series is generated 
and summed up by the Pad6 method. 

The shaded area shown in Fig. 2 comprises the q, q'-values for which Ix0] ~< 1. 
4 Thereby the maximal q (or q') value leading to a singularity is qmax = x/3 mE. We 

treat that singularity by subtracting the integrand at x = x0. Doing that throughout 
0 < q, q' ~< qmax leads to numerical inaccuracies since for small q-values x0 can be 
very large and the Legendre polynomials Pk(xo) entering G~, blow up with increasing 
J-values. Therefore the subtraction was performed only in the region Ix01 ~< 1.2 
which is inside the solid line in Fig. 2. Then for q ~< qm,~ the integral over q' in (13) is 
broken up into 6 parts (see Fig. 2) 

fo f/ fq Riq iq4fq a fq dq'= dq' + dq' + dq' + dq' + dq' + dq'. (14) 
1 q2 q3 ~ q4 max  

The regularized integrand with respect to x can be integrated using 10 GauB- 
Legendre quadrature points. The x-integral for the subtracted term can be 
performed analytically and leads to logarithmic singularities along the dashed line 
(Ix0[ = 1) in Fig. 2. Again that singularity in q' was treated by the subtraction 

Fig. 2. The singularities in the q-q'  plane 
together with the choice of integration 
intervals. Logarithmic singularities lie on 
the dashed lines. The pole at q' = qo arising 
from the deuteron bound state is shown by 
the dashed-dotted line. The regularizing in 
the x-integration was made in the region 
limited by the thick solid line 
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method. We perform the q'-integral for 0 ~< q' ~< qmax using 26 quadrature points. 
Since the lengths of the subintervals and the behaviour of the integrands in these 
intervals are different for different q-values, the distribution of quadrature points 
has to be chosen appropriately. For the numerical results presented the minimal 
number of integration points for the subintervals [0, q(1, [ql, qSI, [q2, q3], [q3, q4], 
[q4, qmax] are 4, 3, 6, 3, 6, respectively. The remaining four points are distributed to 
different subintervals according to their lengths. 

In the last interval qmax ~< q' < oO we introduce a high enough cut-off at 
q~nax = 25 fm -1 and choose 16 quadrature points within qmax ~< q' ~< q~aax. The 
deuteron pole lying in this interval at q' = q0 and occurring for channels ~' = ~z) was 
again treated by the subtraction technique. 

In the course of iterating the set (13) those integrals lead to terms in the Neumann 
series evaluated at certain p- and q-values. Thinking of the very many break-up 
configurations the matrix elements finally resulting have to be interpolated. For that 
purpose it is important to choose a good set of grid points, which includes certain 
special points. They are q = 0 and q = qmax. The second case corresponds exactly to 
a configuration of a final-state interaction, where two nucleons have identical 
momenta. At the point q = 0 most of the problems presented above do not occur. 
Besides these two special points we choose 12 q-values in the interval (0, qmax) with 3 
points lying in the vicinity of qmax. This is necessary to map out the very sharp slope 
in the amplitudes @qc~lTld0) and (pl~lt(~[~ll~) for q--. qmax and channels including 
the two-body partial-wave state ~S0. That slope is caused by the virtual-state pole of 
the 1S 0 two-body t-matrix. Based on this set of grid points we interpolate the 
amplitude (n2q'elibldp) needed for the next iteration at the above-mentioned 26 
quadrature points. This is done by spline interpolation [28]. Since the amplitude 7 ~ 
behaves like 0 - x//qZa~ - q,2 for q' --* qr~a~ we do not interpolate in q' but rather in q. 

Finally the discretization in the subsystem momentum p was done on a basis of 
16 points distributed over the interval (0, 25)fm -~. Beyond p = 25fm -1 the two- 
body t-matrix is negligibly small. The interpolation of the amplitudes in (13) at the 
values rq and 7c 2 is again performed by splines. 

Estimating numerical errors by changing the number of integration points and 
their distribution we find stability within 5%. As a further test we recalculated the 
cross sections for elastic scattering and break-up processes in the model of ref. [ 19] 
and find agreement within less than 3%. 

4 Results and Conclusions 

The presented method is applied to the n-d  system at En = 10.31 MeV lab energy. 
Sensitivity studies at En = 10.0 MeV are also reported. This work is meant to 
demonstrate the techniques and feasibility. We present first results but defer the full 
application of our program to a forthcoming publication. In this study we assume 
the pair interaction Vto act in the states 1S0,3S1-3D1,3po, I P 1 , 3 p 1 , 3 p z - 3 F 2 , 1 0 2 , 3 D  2 
(large set) and 1S o , 3S1-3D1,3po,  3P 1 (small set), respectively. The potential chosen is 
the OBE parametrization of the new Bonn potential [7]. 

The theoretical differential cross section for elastic scattering is shown in Fig. 3 
(solid line) together with experimental data from [29] taken at/in = 10.25 MeV. 
Though the energies are a bit different there will remain a discrepancy at backward 
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Fig. 3. The differential cross section 
for n~delastic scattering. The theoret- 
ical result for E,  = 10.3 MeV (solid 
line) is based on the large set of forces. 
Closed circles are experimental data 
at E, = 10.25 MeV taken from ref. 

[29] 
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Fig. 4. The differential cross section 
for n-d elastic scattering. Different 
lines represent theoretical predictions 
at E, = 10MeV: solid line for all 
waves ISo, 3St-3DI, 3P 0 and 3P t in- 
eluded, dashed line without 3P 0 wave 
and dashed-dotted line without 3P 1 
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angles and also around 70 ~ We demonstrate in Fig. 4 the sensitivity of the 
differential cross section with respect to different p-wave contributions. The 
calculation is performed at En = 10.0MeV and is based on two-nucleon forces 
corresponding to the small set. In going from the operator T to the operator U (see 
Eq. (8)) we kept either all partial waves in T (solid line) or dropped just the waves 
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Fig. 5. The angular distribution of 
the neutron analyzing power iT~u 
for n-d elastic scattering. Closed 
circles are experimental data at 
E n = 10.0MeV taken from ref. 
[18]. The dashed curve is based 
on the large set and calculated at 
E n = 10.3MeV. The solid curve 
is based on the small set and 
calculated at E. = 10.0 MeV 

with 3P 0 (dashed line) or with 3P 1 (dashed-dotted line). Note that the two cases are 
not  based on different dynamical calculations determining T. It is apparent that the 
inclusion of  the p-states is especially important  at forward and backward angles. 

In Fig. 5 we show the elastic neutron analyzing power iT~l (iT~l = ( ,~/2)A~).  
The experimental data are from ref. [18] taken at En = 10.0 MeV. The dashed curve 
calculated for En = 10.31 MeV shows nice agreement up to 0 = 80 ~ but is nearly a 
factor of  t.5 too small in the maximum. As is demonstrated in ref. [18] the maximum 
region results from a complicated interference of  amplitudes derived from p-wave 
forces. We can reconfirm that sensitivity in showing iT n from a calculation based on 
two-body forces of  the small set (solid curve). That  calculation was done at 
En = 10.0MeV. 

It will be interesting to redo the calculation for the Paris potential, where 
theoretical results [18] are available gained through finite rank approximations of  
the force. There the disagreement in the maximum of  the analyzing power is much 
less. 

We have studied also the problem of  how many total angular momentum states 
are to be included in the calculation of  different observables. As a measure we use 

A(J J1) - A(J  <. J2) 
x =  x 1oo%, (15) 

A(J  <. J1) 

where A(J <~ Ji) denotes the observable A calculated on the basis of  including 
J-states up to Ji. We calculate Xfo r  different observables as a function of  J2 at given 
J1 = ~-. The amplitudes used are generated at E~ = 10.0 MeV with the small set of  
two-body forces. It is found that the differential cross section and the elastic 
analyzing powers are well described choosing Jmax 15 As an example we show X 

- -  2 " 

for iTS1 in Fig. 6. 
Experimental data for neutron induced deuteron break-up are poor in com- 

parison to elastic data. Up to now there exist only few sets of  cross section 
measurements for kinematically complete setups [30]. Measurements of neutron 
analyzing powers in the break-up process are under discussion and therefore 
theoretical predictions are highly desirable. We show in Fig. 7 as an example the 
tensor analyzing power 2"2o in the space-star configuration. This is a break-up 
configuration, where the three nucleons have equal magnitudes of the momenta  in 
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~ 0  
X 

Fig. 6. Convergence of neutron ana- 
lyzing power iT~l for n~d elastic -1 
scattering (solid curve in Fig. 5) 
with respect to total angular mo- 
mentum J. The definition of X is -2 
given in the text. These percent- 

age deviations were obtained with 
J l  = ~- for different J2 values: cir- -3 
cles for J2 = 9 11 g, crosses for J2 - 2 , 

1 3  
squares for J2 - 2 

I I I I I 

I I I 

60 
Ocm (deg) 
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120 180 

Fig. 7. The neutron-induced deuteron 
break-up d(n, nn)p in the space-star 

geometry 0,1 = 0,2 = 48.9 ~ ~Onlz = 120~ 
In  a the deuteron analyzing power T20 is 
shown for the large set at E,  = 10.3 MeV 
(dashed curve) and for the small set at 
E n = 10.0MeV (solid curve). In b the 
convergence with respect to J of  T20 
obtained with small set is shown. The 
meaning of different symbols in b is 
the same as in Fig. 6 
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the c.m. system and lie in the plane perpendicular to the beam direction. The dashed 
Curve refers to E,, = 10.31 MeV and includes the large set of  two-body forces. The 
solid curve refers to E,  = 10.0 MeV and is based on the small set. In this case the 
inclusion of  higher partial waves changes significantly the values of  T20 but does not  
affect the shape. In the lower part  of  the figure the quantity X related to the solid 
curve in a is shown. It is evident that J = ~- is not  sufficient. The dashed curve, our 
prediction, is based o n  J m a x  - 17 

- -  2 " 
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Fig. 8. The neutron-induced deuteron 
break-up d(n, nn)p in the same geometry 
as in Fig. 7. In a the dashed line is 
the cross section based on the large set 

at E n = 10.3 MeV and the dotted line 
the cross section based on the small set 
at En=  10.0MeV. The closed circles 

are the experimental data at E~ = 10.3 
MeV from ref. [31]. In b the conver- 
gence of the cross section with respect 
to J is shown. This refers to E~ = 10.0 

MeV and the small set. The meaning 
of different symbols in b is the same as 
in Fig. 6 

The break-up cross section in the same star configuration is less demanding as 
seen in the lower part of Fig. 8. There the quantity X is shown for a calculation at 
E. -- 10.0MeV with the small set of forces. The corresponding break-up cross 
section is given by the solid line. The dashed curve is based on the large set and cal- 
culated at E. = 10.31 MeV. It is compared to the experimental data taken also at 
E = 10.3 M e v  [31-1. 

We have presented in this work our first results solving the AGS-equations in 
momentum space for a meson-theoretical potential in a truncated basis. The 
inclusion of the two-nucleon forces in all p- and d-waves is important. A more 
detailed study of the sensitivity to different force components is planned. An 
investigation for different energies and different N - N  potentials is underway and will 
be published in a forthcoming paper. 

Appendix 

The matrix elements of the tP operator, which are the zero-order solutions of Eq. (10), are given by 

t @lJt(=)(E-~mq2)hl=') 
['| dx ~ G~o(q, q o , x ) ~ C : e ~ d ,  (A.1) (pqc~ltPl~ ) 7r-2~ 

where 
~o = {(lol)1(2o~)Io(1Io)J(0~)12} 

and 2•/2/2•o+ 1 ~ 1 C~n~ rod= ~/~-~  (2~176 + md). (A.2) 

It is assumed that the incoming momentum q0 is directed along the z-axis. The quantity q)10(P) is the 
internal deuteron wave function in the momentum representation. 
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