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THREE PROBLEMS OF ARONSZAJN IN MEASURE THEORY 

V. I. Bogachev UDC 519.53 

In this paper we solve three problems posed in [i]. En route we prove an assertion (the 
corollary of Theorem i) which may be regarded as the answer to a well-known question raised 
by Gel'fand [2]. The approach to these problems is based on the theory of differentiable 
measures developed in [3-6]. 

i. Notations and Terminology. Henceforth X and ~(X) denote, respectively, a separable 
Banach space and the o-algebra of Borel subsets of X. By a measure on X we mean a countably 
additive function (not necessarily nonnegative) on~(X) with values in R. The symbol I~I de- 
notes the total variation of the measure ~ [7]. A measure ~ on X is said to be continuous 
in the direction of the vector h ~ X if lim ~(A + th) = ~(A) for all A~(X) [8]. Measure 

t÷0 
~ is said to be differentiable in the direction of h (in the sense of Skorohod [5]) if for 

~ ~ 

bounded function f: X ÷ R the limit lim~-. ~(f(x+~)--f(x))~(dx) exists. In this any continuous 
~ 0  ~ 

case a measure dh~ exists, called the derivative of ~ in the direction of h, such that the 

indicated limit equals ~f(x)~h~(dx) [6]. The infinite differentiability in the direction of h is 

defined naturally. A measure will be said to be densely differentiable if it is differentiable 
in the direction of all vectors of some sequence with dense linear span. A measure is quasi- 
invariant if it is equivalent to its translates by the elements belonging to a dense linear 
subspace. For each sequence {~} ~ ~ we denote by ~ {=~} the collection of all sets N ~ ~ (~) 

such that ~ =~ ~, where ~ ~ ~ (~) and m~s ((~ ~) ~ ~) = O~ ~, v~ (rues denotes the standard 

Lebesgue measure on the line R~n) ; in other words, every section of the set Bn by a line 

parallel with ~ has measure zero. Let ~ = ~ ~ {~, where the intersection is taken over all 
n 

sequences {~ } with dense linear span. The sets in collection ~ are referred to as exceptional. 
n 

Measure ~ is said to be absolutely continuous with respect to ~ {~} if ~ (~) = 0 w~ ~ ~ {=~}, and 

singular with respect to ~{~} if there is an ~ ~{~} such that l~l(~)=l~l(~)ll]. A nonzero 

measure is said to be exceptional if it is singular with respect to all classes ~ {~}, where 

{~n } has a dense linear span, whereas ~(A) = 0 for all ~ ~ ~ [i]. Therefore, an exceptional 

measure is "concentrated" on each of the collections ~{~}~ but vanishes on their intersec- 

tions. The class ~ was introduced in [i], where it was shown that for X finite-dimensional, 

~ coincides with the o-algebra of Borel subsets with zero Lebesgue measure. In the general 

case ~ retains some features of this o-algebra. For example, every Lipschitz function f: X ÷ R 

is differentiable everywhere except for the points of an exceptional set [i]. 

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 
18, No. 3, pp. 75-76, July-September, 1984. Original article submitted May ii, 1983. 

242 0016-2663/84/1803-0242508.50 © 1985 Plenum Publishing Corporation 



2. Problems. Aronszajn has formulated the following problems: 

(i) describe all measures which are absolutely continuous with respect to ~ {a~}(for a 

fixed sequence {an}); 

(2) find if exceptional measures actually exist; 

(3) indicate the class of measures ~ for which the integration by parts formula: 

(x)(h)~(dx)= ~/(X) Vh(dX)holds for all bounded Lipschitz functions f, where hE X ~ is somemeasure 

and f'(x)(h) denotes the derivative of f in the direction of h evaluated at the point x. In 

particular, f'(x)(h) must be defined ~-almost everywhere. 

If X is finite-dimensional, m is the Lebesgue measure on X, and {a }is a basis in X, then 
n 

the class of measures indicated in problem (i) is the class of m-absolutely continuous measures; 

the answer to (2) is negative [i]; and the solution to problem (3) (under the requirement that 
the integration by parts formula should hold for all h) is given by the class of measures 

<< m with the property that the generalized derivative of the function O = d~/dm in any 
direction is a bounded measure (this follows from [4] and Theorem 4 below). 

3. Formulation of Results 

THEOREM i. Let {a } c X. A measure is continuous in all directions a if and only if it 
n n 

is absolutely continuous with respect to some measure which is infinitely differentiable in 

all directions a . 
n 

COROLLARY. Every quasiinvariant measure is absolutely continuous with respect to some 
densely differentiable quasiinvariant measure. 

Remark i. Theorem i and its corollary hold true for Radon measures in an arbitrary se- 
quentially complete locallyconvex space. 

THEOREM 2 (Solution to Problem (i)). A measure is absolutely continuous with respect to 

{an} if and only if it is continuous in the directions {a } or, equivalently, if and only if 
n 

it admits a density with respect to some measure which is infinitely differentiable in the 
directions {an}. 

THEOREM 3 (Solution to Problem (2)). In any infinite-dimensional separable Banach space 
exceptional measures exist. Moreover, an exceptional measure exists which is not continuous 
in any direction and whose finite-dimensional projections have infinitely differentiable 
densities with respect to the Lebesgue measure. 

THEOREM 4 (Solution to Problem (3)). Let f: X ÷ R be a bounded Lipschitz function and 
let ~ be a densely differentiable measure for which dh~ exists. Then 

S 1' (x)(h) ~ (dx) = ~ f (x) dh~ (dx). 

C o n v e r s e l y ,  i f  f o r  e v e r y  e l emen t  h b e l o n g i n g  to  some l i n e a r  s u b s p a c e  t h e r e  i s  a measure  
such that n 

S f' (x) (h) ~ (dx) = S f (~) v~ (d~) 

f o r  a l l  bounded L i p s c h i t z  f u n c t i o n  f ,  t h e n  t h e r e  e x i s t s  dh~ = ~h" 

Remark 2. From Theorem 4 it follows that in an infinite-dimensional space there are no 
nonzero measures for which the integration by parts formula is valid in all directions. 

The definitions of negligible sets given in [i] and [9] can be generalized to include, 
in the finite-dimensional case, all (and not only Borel) null sets in the sense of Lebesgue. 
We denote by,the class of sets which belong to the Lebesgue extension of ~(X) relative to 
any densely differentiable measure. 

Definition i. The set A ~is called exceptional if for every sequence {a } with dense 
n 

linear space one can find sets £~ ~ such that A = UBn and mes((Bn+ x) A R1an)= 0 Vnl Vx~X. 
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Definition 2. The set A E~ is called negligible if ~(A) = 0 for any densely differen- 
tiable measure ~. 

THEOREM 5. The two properties described in Definitions 1 and 2 are equivalent. 

THEOREM 6. A measure vanishes on all negligible sets if and only if it belongs to the 
closure of the linear space spanned by all densely differentiable measures taken with res- 
pect to the topology of convergence on sets of~. 

4. Elements of the Proofs. Theorem 2 is proved using Theorem 1 and results of [9, I0]. 
We sketch the proof of Theorem 3. It suffices to examine the case where X is a Hilbert 
space. Let A and K be nuclear self-adjoint operators with dense ranges and the property 
A (X) N K(X)=0 ([ii]), and let h~A (X)+K(X). Consider the Gaussian measure ~(t) with 

Fourier transform x ÷ exp(i(th, x) -- (exp tA.K4exp tAx, x)). The measure defined by the 
I 

formula C~+I?(t)(C)dt has the desired properties. 
0 

In conclusion, the author wishes to thank O. G. Smolyanov for his interest in this work 
and E.A. Gorin for discussing the results. 
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