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i. Introduction 

i. Groups, Generated by Reflections, and Singularities: The theory of singularities 
of smooth functions is closely connected with the theory of finite groups, generated by 
reflections. This connection appears in the following three assertions. 

(i) The variety of orbits of the complexification of the action of a finite reflection 
group is biholomorphically equivalent with the base of a miniversal deformation of the corres- 
ponding singularity. Under this isomorphism the variety of nonregular orbits is mapped onto 
the bifurcation diagram. 

(2) A reflection group is isomorphic with the monodromy group of the corresponding 
singularity. 

(3) The isomorphism cited in the first assertion is defined by the period map, i.eo, by 
integration of a holomorphic form defined on the total space of the bundle of hypersurfaces 
of level zero over the complement of the bifurcation diagram, with respect to a basis in the 
homology space of the fibre which depends continuously on a point of the base of the bundle. 

Finite irreducible groups generated by reflections are classified and exhausted by the 
following list: A~, B~(==C~), D~, E6, ET, Es, F~, G=, I~(p), H3, H~. The majority of them 
are groups of symmetries of regular polyhedra: A~ of a ~-dimensional simplex, BD of a ~- 
dimensional cube, G= of a hexagon, I=(p), p > 6, p = 5 of a p-gon, H3 of an icosahedron, 
F~, H~ of the corresponding four-dimensional polyhedra [i, 2]. 

The singularities corresponding to the indicated groups are denoted by the same letters 
and are found in [3, 4, 5, 6]. In [4, 7, 8, 9], (1)-(3) are proved for the singularities 
A~, D~, E6, ET, Es of functions of an odd number of variables. In [5], (I) and (2) are 
proved for singularities B~, C~, F~ of functions of an odd number of variables on a manifold 
with boundary. In [6], (i) is proved for the singularities G=, I=(p), H~of functions on amani- 
fold with singular boundary. Recently, O. P. Shcherbak produced a singularity which he 
called H~, and proved (I) for it. 

In this paper (3) is proved for the singularities B~, CD, F4 of functions of an odd num" 
ber of variables; the singularities cited, corresponding to the groups G=, I=(p), H3, are 
different from those cited in [6], but are closely connected with them; for these singulari- 
ties (1)-(3) are proved. Analogs of (2) and (3) are unknown for the group H4. 

2. Symmetric Singularities. In [5] the following interpretation of singularities of 
functions on a manifold with boundary was used. After passage to the two-sheeted covering, 
functions on a manifold with boundary become functions which are symmetric with respect to 
the action of the group Z=, which changes the sign of one of the coordinates. In the present 
paper this analogy is extended. We consider singularities of functions, which are syn~etric 
with respect to the cyclic group Zp, and their symmetric miniversal deformations. In this 

situation Zp acts on the homology of nonsingular level hypersurfaces of the functions. This 

action commutes with the natural action of the fundamental group of the complement of the bi- 
furcation diagram on the parameter space of the deformation. Thus, the homology splits into 
the direct sum of subspaces, which are invariant both with respect to the action of the group 
Zp, and with respect to the action of the fundamental group. 

The groups G=, I~(p), Hs arise as images of the action of the fundamental group on a 
suitable invariant subspace in the homology of a suitable symmetric singularity. The period 
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map is constructed as follows. On all level hypersurfaces of functions there is singled out 
uniquely a holomorphic form of highest degree. There is singled out a basis which is co- 
variant constant in the Gauss--Manin connection, of a suitable invariant subspace of the 
homology. The period map relates a point of the complement of the bifurcation diagram to the 
vector of integrals of the form over the homology classes of the basis, defined up to the 
action of the monodromy group. One proves that this map extends holomorphically to a map of 
the parameter space of the deformation into the space of orbits of the complexification of 
the action of the corresponding group, generated by reflections, and has the properties cited 
in (i). 

In this paper the concept of an equivalent vanishing vectorin the homology of non- 
singular level hypersurfaces of functions constituting a symmetric miniversal deformation is 
defined, generalizing the concept of a vanishing vector [i0]. Equivariant vanishing vectors 
(with suitable degree of equivariance) for the singularities A~, D~, E6, ET, Es, F4, G2 form 
a system of roots of the synonomous types; those for the singularities B~, C~ do the same but 
for types CV, By respectively. The collection of equivariant vanishing vectors for singulari- 
ties I2(p), H3 have properties analogous to the properties of systems of roots. Cf. Sec. 2.7 
for more details. 

The symmetric singularities corresponding to the groups G2, I2(p), H3 arise in the follow- 
ing way from the singularities G2, I2(p), H3 cited in [6] of functions on a manifold with 
singular boundary. In each case the pair manifold-boundary is isomorphic with the pair 
consisting of the space of orbits and the space of nonregular orbits of the group of symme- 
tries of a suitable regular polyhedron. After passage to a suitable covering, the functions 
on the manifold with boundary turn into our functions, which are symmetric with respect to the 
group of symmetries of the polyhedron, in particular, with respect to the cyclic group of 
rotations of it. 

Cf. [ii, 12] also on symmetric singularities. 

The authors are grateful to 0. V. Lyashko, in whose lectures we learned the construction 
of the passage from boundary singularities to symmetric ones and the formulation of the prob- 
lem was posed. The authors are grateful to V. I. Arnol'd, E. B. Vinberg, 0. P. Shcherbak for 
many helpful discussions. 

2. Formulation of Results 

i. Equivalent Monodromies, Vanishing Vectors, and Period Map. Let G be a finite group 
acting linearly on C n, f: (C n, 0) + (C, 0)~be the germ of a holomorphic function at an isolated 
critical point, symmetric with respect to G. A deformation F: (C n x C ~, 0 x 0) ÷ (C, 0) is 
said to be a G-deformation, if for any ~ E C ~  the function F(', h) is G-invariant. A G- 

deformation of the germ f is said to be versal, if any other G-deformation of the germ is G- 
equivalent with a deformation induced from F (cf. [3, 13]) for more precision). A versal G- 
deformation with smallest number of parameters is called miniversal. As a miniversal G-de- 
formation one can take F(x, %) = f(x) + Ehj~j(x), where {~j} generate a basis in C[[xl, ..., 

Xn]]G/(~f/~x)G, and by the index G we denote G-invariant series [13]. We always take ~i ~ i. 

We choose a sufficiently small ball B = {x ~cnl llxll < e}. Depending on e we choose 

a sufficiently small ball A = {h ~C ~ I IIhll < 6}. We denote by Vh the intersection of the 

zero level hypersurface of the function F(', %) with the ball B. By the bifurcation diagram 

of the deformation F is meant the subset E ~A, consisting of those parameters h, for which 

the hypersurface V% is singular. Over A ~E the manifolds Vh form a locally trivial bundle. 

With this bundle there are associated the cohomology bundle H n-~ ÷ A ~E with fibre Hn-~(V%, 

÷ A ~E with fibre Hn_z(V~, C) The bundles H n-1 and H C) and the homology bundle Hn_ : " n-1 

are provided with the Gauss-Manin connection. 

On the fibres of these bundles the group G acts naturally. We consider the canonical 

decomposition (of. [14]) of a representation of the group G on the space H,-i (V~, C): H~-i (V~' 

C) = 0 Hx (~) (i.e. , if H~_i (V~, C) ~ Ui 0 - • • ~) U~ is the decomposition into the direct sum 
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of irreducible representations, then HX(%) is the direct sum of those irreducible representa- 

tions Uj, which have character X). Let f~i (V~, C)= ~ f~ (~) be the canonical decomposition 
X 

in cohomology. The spaces H_(%) and HX(%) are naturally dual, where X is the character of the 

X 
irreducible representation dual to the representation with character X. 

On the space Hn_~(V%, C) the fundamental group ~I(A~E) of the complement of the bi- 

furcation diagram acts. This action commutes with the action of the group G. Hence the 

spaces H (%) are invariant with respect to the action of the group ~(A~ ~). The image of 
X 

the natural representation Px(respectively pX) of the group ~(A\E)on thespaceHx(%) (respec- 

tively HX(h)) will be called the x-mono~o~ group in homology (respectively cohomology). 

Notationz M (respectively MX). It is obvious that M = M X. 
× 7 

We define the period map. We denote by ~n-~ the space of holomorphic (n -- l)-forms on 

B × A. By the period map of the form ~ - i  is meant the section P~: ~ ~ [~]~H ~-i (V~, C) 

of the bundle H n-~. For each integer k /11 0 the section P~ = (~0/o~,)~P~ is called the k-th ad- 

joint period map of the form m. (We recall that h~ is the free term of the deformation F). 

The section pk splits into a sum EX P of sections, where xPm assumes values in H ×. Obviously 

~p~ ~ pk is called the k-th a~'o~nt x-pe~od map of the form ~. = (~s/s~)~P~ The section X 

Let y~(%), ..., ym(%) be a covariant constant basis in H_(%). The basis determines coordi- 

nates in HX(%). In these coordinates × 

We recall that a linear transformation of finite order of the space C m is called a 

pseudoreflection, if exactly m - 1 of its eigenvalues are equal to i° A pseudoreflection of 

order 2 is called a reflection. Let M ~GL(C m) be a finite group, generated by pseudoreflec- 

tions. Then the space Cm/M of its orbits is isomorphic with C m [I, 15]. 

Let us assume that for some × the group M X is a finite group generated by pseudoreflec- 

tions. Then with the period map pk is associated the map ~AP~: A ~ N-+~(~o)/M ~, where 
Xm 

~0~A~ is the distinguished point. The associated map is determined by the following 

rule: the point h corresponds to the monodromy orbit on H×(ho), obtained by parallel trans- 

port of the value pk(%) in the fibre over ho. It is easy to see that the map AP k is holo- 
X ~ X m 

morphic. 

Let us assume that for a general point %'~ E all singular points of the hypersurface 

Vh, are nondegenerate. For such a G-deformation F we define the concept of vanishing vector 

in Hn_i(V~, Z),% ~ A ~ ~. Suppose given a path ?(t),t ~ [0,1] with initial point % and end at 

a nonsingular point of the bifurcation diagram, not passing through other points of the dia- 
gram. To each singular point of the hypersurface V%(t) in Hn_~ (V%(t), Z) for t close to 1 

there corresponds a standard vanishing cycle of Picard--Lefschetz [i0]. Parallel transport 

over X of Picard--Lefschetz cycles determines a collection of vectors in Hn_~ (Vh' Z). Each 

of the vectors determined by this construction is called vanishing for the given deformation. 

It is easy to see that one can form a basis of Hn_~(Vh,Z) from vanishing vectors and the set 

of vanishing vectors is invariant with respect to monodromy (cf. [i0]). 
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By the x-trace of an integral lattice we mean the image of the projection of the lattice 

/f,-1 (Vx, Z) ~ Hn_1 (Vx, E) into HX(X ) along @ H~ (~) . Notation, ZH (X). We call a vector 
t#x X 

from ZHx(X) x-vanishing, if it is the image of a vanishing vector. ZHx(X) has a natural 

structure as a module over the group ring Z[G] of the group G. The set of x-vanishing vectors 

is invariant with respect to the action of the group G. The x-trace and the set of x-vanishing 

vectors are invariant with respect to x-monodromy. 

2. Symmetric Germs Corresponding to the Groups (cf. [5, 6], Sec. i.i) 

G: x ~ x ~ + x ~ + x ~ + . . . + x ~ ,  ~t~>2, 
F~: ~' + ~ + ~i + . . .  + ~ ,  

3 X2 • ,T2 a~: Z+x~+ 3+..+ ,,, 
4 (p): x~ + x~ - ~x ~ -  x~ + .  x~ = 5 o~ "-t-x1 2 ~  . +  ,~, p p > 6 ,  

H~: x~ + x~ + x~ + . . .  + xL 

T h e s e  g e r m s  h a v e  t h e  f o l l o w i n g  s y m m e t r y  g r o u p s .  Z2 i s  t h e  g r o u p  o f  s y m m e t r i e s  o f  t h e  g e r m s  
B , C , F ~ ,  a c t s  b y  c h a n g e s  o f  s i g n  o f  x , .  Z3 ,  Z p ,  Z ,  a r e  t h e  g r o u p s  o f  s y m m e t r i e s  o f  t h e  

g e r m s  G~, I ~ ( p ) ,  H~, r e s p e c t i v e l y .  I n  t h e s e  c a s e s  Zp a c t s  a c c o r d i n g  t o  t h e  r u l e  (k )  

(x~, . . . ,  X~) ~ (exp ( 2 u i k / p )  x~,  exp ( "  2 n i k / p )  x~ ,  x s ,  • • . ,  x ,O.  

3.  C a n o n i c a l  D e c o m p o s i t i o n s  o f  H o m o l o g y .  The  g r o u p  Z h a s  p n o n e q u i v a l e n t  i r r e d u c i b l e  
P 

o n e - d i m e n s i o n a l  r e p r e s e n t a t i o n s .  T h e l r  c h a r a c t e r s  a r e  %~: (k) ~ exp ( 2 a i k s / p ) ,  s = O, i ,  . . . ,  p - -  ~ . 

I n  t h e  f o l l o w ± n g  p r o p o s i t i o n  we g i v e  t h e  d i m e n s i o n s  o f  t h e  s u b s p a c e s  o f  t h e  c a n o n i c a l  d e c o m -  
p o s i t i o n  H,~_~ (V~, C) - -  O / I x  s (~,). 

Proposition i. For the germs B , C , F~, G~, l~(p), H~ the dimensions of the spaces HXs 

are given in the table 

Bl.t Cl.t F~ /-/, 

s=0 ~--I i 

2 - -  - -  
3,4 - -  - -  

4<s<p -- -- 

2 
4 

! 
(p) 

2 3 
i 2 
i 2 

2 
- -  2 

4 
3 
3 
3 

The proposition is proved in Section 3.1. 

4. Monodromy Groups. Until the end of the paper, if nothing is said to the contrary, we 
assume the number n of variables is odd. 

In the following theorems the x-monodromy groups of versal G-deformations of the germs 
B , C , F~, G2, I2(p), H3 are described; cf. Section 2.2 for their symmetry groups. 

THEOREM i. For the germs B , C , F4t 

i. the xo-monodromy group is the group generated by reflections of type A~-z, At, A2, 
respectively. 

2. the x1-monodromy group is the group generated by reflections of type B , C , F~ 
respectively [5]. 

Remark. It is known that the groups B , C are isomorphic as linear groups, but not 

isomorphic as automorphism groups of the corresponding lattices. If the x1-monodromy groups 

are considered as automorphism groups of x~-traces of integral lattices, then the x~-mono- 

dromy groups of the germs B ~, C are groups of types C , B~ respectively, cf. Section 2.7. 

THEOREM 2. For the germ G2: 

i. the xo-monodromy group is the group generated by reflections of type G=. 
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2. the Xs-monodromy group, s = i, 2, is the group generated by reflections of type A:. 

THEOREM 3. For the germ Ii(p): 

i. the xo-monodromy group is infinite. 

2. the Xs-monodromy group s = i, ..., p -- I, is the group generated by reflections of 

type Ia(Ps), where Ps = p/GCD(p, s). 

3. If GCD (p, j) = GCD(p, l), then the kernels of the representations PXs: ~i (A ~ ~)-+ 

Aut H~s for s = j, ~ coincide. 

4. The representations OXj and 0X l are equivalent, if and only if j + Z = p. 

THEOREM 4. For the germ H3: 

i. the xo-monodromy group is infinite. 

2. the Xs-monodromy group, s = i, 2, 3, 4, is the group generated by reflections of 

type H3. 

3. The kernels of the representations 9Xs for s = i, 2, 3, 4, coincide. 

4. The representations 0X j and 0X l are equivalent if and only if j + I = 5. 

Theorems 1-4 are proved in Sec. 3.3. 

Remark. The structure of the xo-monodromy group for the germs l=(p), H~ is unknown. 

5. Period Maps. Let U be a vector space,McGL(U) be a finite group. By E(U/M) we 

denote the set of nonregular orbits. 

In the following theorems we describe the x-periods in miniversal G-deformations of the 

germs B~, C~, F~, G=, 12(p), HS; cf. Sec. 2.2 for their symmetry groups G. 

THEOREM i. Suppose given one of the germs B~, C~, F~with an odd number n = 2k + 1 of 

variables. Let us assume that ~n-1 is a sufficiently general form in the sense of Sec. 

2.6. Then the map x~P~: A\ Z-+Hx'(%0)/M~, where ~0~A\Z , extends holomorphically to the 

bifurcation diagram E and gives an isomorphism of pairs (A, E) -+ (H~, (%~) / Mm, E (f~m (%0) / Mx0). 

THEOREM 2 For a germ G2 with an odd number n = 2k + 1 of variables and forms ~ I  

sufficiently general in the sense of Sec. 2.6, the mapx~P~: A\~-+Hx.(%o)/M~, , %0~A~, 

extends holomorphically to the bifurcation diagram ~ and gives an isomorphism of pairs (A, 

E) ~ (Hx, (~o) / Mz., E (ttxo (~o)/Mx.)) 

For the germs la(p), H~ bifurcation diagram E consists of two (three for even p) irre- 

ducible components. We denote by ~ the component consisting of those parameters ~ A  for 

which the function F(', %) has 0 ~B as a critical point with the critical value zero; by 

I= the union of the remaining components. 

THEOREM 3. Suppose given one of the germs Ii(p), H3 with an odd number n = 2k + 1 of 

variables. Let us assume that ~T~-~is a sufficiently general form in the sense of Sec. 2.6. 

(for the germ H3 p 5) extend holomorphically to the bifurcation Then the maps ~AP~, ~p_AP~ = 

diagram E, the holomorphic extensions are maps of maximal rank, the preimages of the sets 

Z (Hz~ (%o)/M~), ~ (H~p-~ (k0) / 2F/~p-~) respectively coincide with E~ (here %0 ~ A \ E) . 

Theorems 1-3 are proved in Sec. 4. 

Remark. We consider for miniversal G-deformations of germs B~, C~, F4, G~ with an odd 

, AP k number n = 2k + 1 of variables the period map X ~, where ~ is a sufficiently general form, 

X is a character, different from those cited in Theorems i, 2. One proves analogously to 
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l) 

2) 
itself; 

3) 

Theorems I, 2 that the map of x-periods extends holomorphically to the bifurcation diagram 
and is a map of maximal rank, where the preimage of the set of nonregular orbits of x-mono- 
dromy coincides with one of the irreducible components of the bifurcation diagram. For mini- 
versal G-deformations of the germs I~(p), H~ and characters different from X~, Xp-1 we have 
been unable to construct good period maps. 

6. A form ~n-lin general position is defined bv conditions on the jet at the point 

0 × 0~B × A of the restriction to B × 0 of the form ~,at ...... inx~...x~dxiA... Adx, 

The form ~n-~ is called a form in general position for the germs: 

I) B~, C~, F~, G2, if ao,...,o # 0, 

2) I2(p), H3, if ai. 0 ..... 0"~.i.0 ..... 0~=0. 

7. System of Roots. The groups generated by reflections of types A~, B~, C~, D~, E6, 

E7, Es, F4, G2 are crystallographic. With each crystallographic group there is associated 
a system of roots, cf. [i]. From the point of view of the theory of singularities, the system 
of roots is the set of vanishing vectors. For germs A~, D~, E6, ET, E8 with odd n the set of 

vanishing vectors forms a one-dimensional root system in Hn~:(V%, Z) [4]. 

Proposition i. For germs B~, C~, F4 with odd n and their versal Z2-deformations, the 
sets: 

i. of Xo-vanishing vectors in HXo form systems of roots of types A~-~, A:, A= respec- 

tively. 

2. of X~-vanishing vectors in HX~ form systems of roots of types C~, B~, F4 respectively 

(cf. [5]). 

Proposition 2. For a germ G2 with odd n and its versal Zs-deformation, the set: 

i. of Xo-vanishing vectors in HXo forms a system of roots of type G=. 

2. of Xs-Vanishing vectors in HXs , s = I, 2 forms a system of roots of type A~. 

As is known, a system of roots in a vector space means a finite subset R of it with the 
following properties: 

R generates the space and does not contain the zero vector; 

for any vector a ~  there exists a reflection h a with respect to a, carrying R into 

for any a , b ~ R  ha(b)--b =ha, where h ~  Z. 

Generalization. Let X be a character of a one-dimensional representation of the finite 

group G. We set Z[G]~={z~CIz~ ~ kg%(g), where kg ~Z}. We call a finite subset R of a 
g~G 

complex vector space a system of Z[G]x-roots , if it has properties i), 27, 3'), where 

3') for any a, b~R h~ (b)-- b = ~a, where z~Z[G]~. 

Proposition 3. For a germ of type I2(p) or H3 with odd n and its versal Z -deformation 
P 

(for the germ H3, p = 5), the set: 

i. of Xo-vanishing vectors is infinite. 

2. of Xs-Vanishing vectors in HXs , s = i, ..., p -- 1 forms a system Z of [Zp]xs-rOots. 

The proofs of the propositions are in Sec. 3.4. 

Remark. With a system of roots there is naturally associated a Hermitian form, which 
is invarian-t with respect to reflections and is integer-valued on pairs of roots [i]. With 
each system of Z[G]x-rOots , corresponding to I2(p),~3, there is associated a Hermitian form, 

invariant with respect to reflections and the action of the group G, assuming values in 
Z[G] X on pairs of roots. Such a form is the form (a, b), where (;,;) is the intersection 
form. We note that reflection in the vector a, preserving the form, can be described in the 
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(b, ~) 
form ha(b)-~b--2~a. In particular, condition 3') can be written in the form 

z [al  

3. Calculation of Monodromy and Root Systems 

In this section we prove the assertions of Paragraphs 2.3, 2.4, 2.7. 

[5]. 

2 (b, a) 

i. Proof of Proposition 2.3. For the germs By, Cv, F4, the proposition is proved in 

For a germ H3 the proposition follows from the following !enana. 

LEMMA i. 

f 

For a germ H3 in Hn-~ (V%, C) there exists a basis A, A~ ..... A~, A~ .... , a~, 

A~ ..... A~ , on which Z~ acts by 

k (i): A ~ A, A 7 ~ Aj+1, A~ Af for k = i, 

and whose Dynkin diagram is pictured in the figure. 

COROLLARY. 

2, 3; j = i, 2, 3, 4, 

Hx. = <A; (A~ + . . .  Jr A~)/5, k----- i, 2, 3>, 
5 

where s = exp(2~i/5), s = i, 2, 3, 4. 

Proof of Lemma i. It suffices to prove the,lemma for n = 2, i.e., 

(1) 

for the germ I = x~ + 

x~ (cf. [i0, Sec. 2]). Let F be a deformation of the germ f, which in the coordinates u = 

(x: + x2)/2, v = (xl -- x2)/2i has the form 

4 

; ~ R .  

The zero level manifold of the function F(', X) is pictured in the figure. The basis 
constructed from the figure by Gusein--Zade's method is the one sought. 

The proof of the proposition for G= repeats the proof for H3. In this case the zero 
level manifold of the corresponding function of two variables is three lines. 

We prove the position for I2(p). 

LEMMA 2. For a germ I2 (p) in Hn-1 (V%, C) there exists a basis A, A~ .... , A~, A~ ..... A~, 

on which Z acts by 
P 

k = l ,  2, 
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The classes A~, ... &k k : i, 2, have the following intersection indices: (A~, A~) = (A~, , p, 

= = Ai+~) = i f o r  j = 1,  . . . ,  p -- 1; (A~, A~)=  ( - - i )  n(n-i)/2 (i + ( - - i )  '~1) f o r  k = 1, 

2, j = I, ..., p; the remaining intersection indices are equal to zero. 

COROLLARY. 

P 

/'h" t ~-~A ~. 2> / / x . - - - - \  , ~ - / ,  i, k = l ,  , 

p 
H l 2> 

(2) 

where s = exp(2~i/p), s = i, ..., p -- i. 

Remark. The bases in (i), (2) serve as bases over Z[G] of the traces of the integral 
lattice. 

2. Proof of Lemma 2. It suffices to prove the lemma for n = 2, i.e., for the germ 

= x l x  2 , c f .  [10,  Sec .  2 ] .  

We s e t  F (x ,  ~) f (Xl, z2) + ~2xlx~ + ~1; u ....... Z~ ~ -~ = = x2 ,  v = x , x  2. The map ~: (x l ,  x~) ~+ (u,v) i s  a 

2 p - s h e e t e d  c o v e r i n g ,  wh ich  b r a n c h e s  a l o n g  F = {(u, v) ~ E ~ ] v p = 4u ~}. C o n s e q u e n t l y ,  t h e  n o n -  

s i n g u l a r  m a n i f o l d V ~  = { f ( . ,  ~)  0 } i s  a 2 p - s h e e t e d  c o v e r i n g  o f  W~ = {(u, v ) ~ E  2 [ u n  u v  2 + ~ v +  

~1-----0} w i t h  b r a n c h i n g  i n  F ~ W x .  We s h a l l  p r o d u c e  " s e m i c y c l e s "  on Wt, f r o m  whose  p r e i m a g e s  

we c o n s t r u c t  t h e  b a s i s  s o u g h t  i n  H I ( V t ,  Z ) .  

Fo r  s m a l l  l ,  Wt h a s  4 p o i n t s  o f  i n t e r s e c t i o n  w i t h  F n e a r  z e r o .  We f i x  a g e n e r i c  v a l u e  

lo  = ( t ~ ,  t ~ ) .  The f u n c t i o n  F ( - ,  t o )  h a s  t h r e e  c r i t i c a l  v a l u e s .  One o f  them i s  t ~ .  L e t  

t ~ ,  t~  b e  t h e  o t h e r  two .  On t h e  l i n e  C z o f  v a l u e s  o f  t h e  f u n c t i o n ,  we draw two s e g m e n t s  

?i(t)~y~(t),t~ [0,1] , with origin at the common point k~ and ends at %~,~ k 2,~ respectively. 

As t ÷ 1 on W(yj(t),%~). _ _ -_ the two points of intersection with F merge. By vanishing semicycle 

we mean the small curve on W j 0 with ends at the merging points of intersection with 

F. For t~[0, i] we single out a vanishing semicycle on W j(~),~) which depends continuously 

on t. We denote it by ~j(t). One can choose semicycles so that on W(%,, %~) they intersect 

in one point. The preimage under ~ of each of the semicycles consists ofp closed curves. 

A~, We orient the curves. The homology classes defined by them will be denoted by ..., ~. 

It is easy to see that one can choose the indices and the orientations so that all the inter- 

section indices of the classes {A~} are just as indicated in the lemma, and that group Zp per- 

mutes A~,- ... 5J cyclically. ' p 

3. Proof of the Theorems of Sec. 2.4. Proof of Theorem 2.4.4. Let A, 5~ be the classes 

indicated for H3 in Paragraph 3.1. The monodromy group is generated by the following four 

transformations (generalized Picard--Lefschetz transformations): 

h = h~, h~ = h ~h ~ . . . h A ~  (k = 1, 2, 3), 
h~ A a 

where hAk is the reflection defined by the Picard--Lefschetz formulaz 

Point 1 of the theorem follows from the fact that the restriction of the transformation 

hhs to HXo has infinite order. 
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Proof of Point 2. Let j # i. It is easy to see that hlHxj = Id. One can see, by direct 

calculation with the help of the Dynkin diagram, that on each HXj the transformations hl, h2, 

h3 satisfy the relations (h3h2) 5 = (hlh3) = = (h2hl) 3 = ~ = Id for k = i, 2, 3. As is known 

(cf. [2]), these relations define the group H3 of symmetries of an icosahedron. Consequently, 

the xj-monodromy group is isomorphic with some quotient group of the group Hs. Since H3 is 

isomorphic with the direct product Zs × ~5of the group Z2 and the group ~5 of even permuta- 

tions of five elements, the xj-monodromy group is isomorphic with one of the groups Z2, Ms, 

H3 (since the group ~ is simple). Obviously T~fxj ~ Z~. Calculating the value on hl of the 

character of the representation 0Xj, we see that TFf~j ~ ~5. 

Point 3 follows from the fact that the relations listed are the defining relations for 
the group MXj. 

Point 4 is proved by explicit calculation of the characteristics of the representations 

PXj' considered as representations of the finite group ~1(A~)/Ker p~ Theorem 2.4.4 is 

proved. 

The proof of Theorem 2.4.2 is analogous to the proof of Theorem 2.4.4. Point 1 of 

Theorem 2.4.3 follows from the fact that the order of the classical monodromy transformation 
is infinite~ points 2-4 of Theorem 2.4.3 are proved analogously to the corresponding asser- 
tions of Theorem 2.4.4; cf. [5] for point 2 of Theorem 2.4.1; point 1 of Theorem 2.4.1 follows 
from the lemma. 

Let f: (C n, 0) ÷ (C~ 0) be the germ of a holomorphic function, ~: C~--~C~be the map de- 

fined by ~ (xl, . .., zn) = (x~, x2, . .., z~) Let us assume that f and fo ~have nonisolated critical 

points at the origin. The germ fo ~is invariant with respect to the group Z2 of sign changes 

of xl. 

LEMMA. The x0-monodromy of a versal Z2-deformation of the germ fo~ is isomorphic with 
the monodromy group of a versal deformation of the germ f. 

Proof. Let F be a versal Z2-deformation of the germ fo % F naturally defines a deforma- 

tion ~,Fof the germ ~(~Fo~. The lemma follows from two facts. The first is that ~F 

is a versal deformation of the germ f. The second is that the space HXo(%) corresponding to 

the deformation F is canonically isomorphic with the fibre over % of the homology bundle of 

the deformation ~,f. 

4. Proofs of the Propositions of Paragraph 2.7. The proof of Proposition 2.7.3 is based 
on the following easy lemma. 

LEMMA i. Let X be a character of the group Zp (p = 5 for H3); then for any x-vanishing 

vector a there exist a vector e from the basis indicated in Paragraph 3.1 of HX, a transforma- 

tion h~ ~f~, and a number j~Z, such that a = s3he, where c = exp(2~i/p). Conversely, any 

vector of the form s3he is x-vanishing. 

Point 1 of Proposition 2.7.3 follows from the lemma and the fact that the group MXo is 

infinite. To prove point 2, we verify conditions I), 2), 3') of the definition of a system 

of Z[G]x-rOots. Condition i) obviously holds. To prove condition 2) we consider the vector 

e k ~-~- es~-1)~ , which belongs to the basis of HXs indicated in Paragraph 3.1. We shall 
j=l 

show that the transformation h~ = ~ ~ ...h k (cf. Paragraph 3.3) is a reflection in Hxs with 
Ap 

respect to the vector e k. In fact, hk(ek) = --e k. Moreover, the transformation h k in 
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H (V%, C) has a p-dimensional antiinvariant subspace, generated by the vectors A k (j = 
n-1 3 

I, ..., p), and an invariant subspace of the complementary dimension. Since the group Z 

k the intersection of the antiinvariant subspace with HXs P cyclically permutes the Aj, is one- 

dimensional (and consequently generated by e k) , and the intersection of the invariant sub- 

space with.HXs is (p -- l)-dimensional. Further, if a is an arbitrary Xs-vanishing vector, 

then a = sJhe k for some k, j, h. Then the transformation h a = h-Z~h is reflection with res- 

pect to the vector a, belongs to the group MXs , and hence carries Xs-Vanishing vectors into 

Xs-Vanishing vectors. Conditionp 3') follows from the following lemma. 

LEMMA 2. Let e~=~Lss(J-1)A~be a vector from the basis in HXs, indicated in Paragraph 
J=! 

3.1; then for any b ~Z//zs, we have ~(b) --b = ze k, where z~Z[Zp]xs. 

Proof. Let ~ ~/f~_1 (V~, Z) project to b. Then ~(b) -- b projects to hk(b) -- b. But 

Ak s(j-~) 
h ~ ( ~ ) = ~ +  Y ,  ~ ~=~aIA ~ , where a~Z . Since 3 projects to s- e k, one has h~(b)--b= 

P 

( a~s -*if-l)) e~ , which proves the lemma. Proposition 2.7.3 is proved. 
~= 

Proof of Proposition 2.7.1. One proves, analogously to Proposition 2.7.3, that for 

germs B , C , Fa, the set of x-vanishing vectors in H forms a system of roots. The type 
X 

of the system of roots is determined by the Cartan matrix in the basis of the system of roots 
(cf. [16]). The determination of the type of a system of roots is based on the following 
obvious lemma. 

LEMMA 3. Let us assume that R is a root system in Hn_ (V~, C), S is its basis, 

g~: Hn-z (V~,C) -+ Hz~ is the projection along ~Hxi , and Vk(R) is a root system in HXk. Then 

~k(S) is a basis of the system Vk(R). 

The proofs of points i, 2 for the germs B~, C , F~ are analogous. We give the proof of 

point 1 for the germ B . If one forgets about the group of symmetries Za, then a germ B~ has 

type A2~-~. For a germ A2D-I we consider in Hn-x(V%, Z) the standard distinguished basis 

A, AI ~,. . ., A~ -~, A ~,. . ., A~ -~ , for which the group Z2 acts according to the formulas: 

( i):  A ~ - A ;  h i - , .  - -A~  fo, k = i . . . . .  , p - -  i ,  

the intersection matrix has the form(A, A) = (A~, A~)=+2 for s = i, 2; k = i ..... ~--I; (A, 

A~) = (A, A~) = (A~, A Y  ~) = iA~ A~-~,  , . - - -  ~ 2, 2 J = I for k = 2 .., ~ i, the remaining intersection 

indices are equal to zero. This basis is a basis of a root system of type A2~-: According 

to Lemma 3, {(A~--A~/2, k = i,..., ~--I} is a basis of a root system in HXo. It is easy to 

calculate its Cartan matrix and see that the proposition is Valid. 

. Proofs of Theorems on the Period Map 

Theorems 2.5-1-2.5.3 are proved by Looijenga's scheme from [9]. For example, we prove 
Theorem 2.5.3 for a germ H3 and character XI. 

We fix a miniversal Z=-deformation 

22 38 

LEMMA i. Let0)~be a sufficiently general forlh, Yz(%), Y2(%), y3(%) ~H 

multivalued constant basis. Then the map 

ZIPS: 
~,~(~) 'y ) 'Y~(,~) 

(%) be a 
XI 
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is a multivalued mapping of maximal rank for % sufficiently close to 0~A. 

Proof (cf. [17], Sec. i0], [18]). We shall prove that the minor J of the Jacobi matrix 

of the map pk corresponding to ~/8XI, ~/~%2, ~/~%s, is different from zero on A\E. Xz ~' 

This assertion is a direct consequence of the following four assertions (cf. [17, Sec. i0]). 

I. J~ is a meromorphic function on A, which is holomorphic on A~ Z. 

II. For generic values X= = %~, %s = %~, %4 = %~ the line XI intersects Z~ in one point, 

E~ in three points. We denote the corresponding values of the parameter %z by %~, ..., %~. 

IIl. For %z tending to %~, j = 2, 3, 4, along the line indicated, ~-----c(%~--~)-V'4-O(i). 
For XI tending to %~ along the line indicated J = 0(i). 

IV. For XI tending along the axis to the point 0~ A ] = c~4- 0 (%~/~,where c # 0. 

I is a consequence of the regularity of the Gauss--Manin connection. II is proved by 
direct calculation (cf. with the proof of point 4 of Proposition 2.3). 

We prove III. Let 2<]<~ . A circuit around the point %J = (%~, %~, %~, %~) on the 

line %x induces reflection in HX . We change the covariant constant basis linearly over 

R in a small neighborhood of the point xJ so that the class yI(X) becomes antiinvariant with 

respect to reflections, classes y2(%), y~(%) become invariant (from this, Jis multiplied bya 

constant). On the line XI, passing through %~, one has series expansions 

a. (X. ~3, ,), a ~ _ ~ (~_ ~); o o ~o 

0% s ~(~) r>~0 

8 ~  s 3 '  '~41' 
~,p(~,) r>~0 

(!) 

where p = 2, 3; s = i, 2 3, 4, the numbers ar, b p depend holomorphically on %~, %~ %~ 
' r ' " 

The first expansion is a consequence of the standard direct calculations in a neighbor- 
hood of a nondegenerate critical point. The second expansion is a consequence of the theorem 
on the boundedness of integrals over invariant cycles [19]. The existence of the expansions 
proves the first part of assertion III. One proves analogously that the x4-monodromy corres- 
ponding to a circuit along the line %1 about the point %1 is the identity transformation. 

Hence for (X1, %o xo X~) ÷ XI 2, 3, all the elements of the Jacobi matrix are bounded. III is 
proved. 

We prove IV. We expand ~ in characters of the group Zsz m = E~Xj. For covariant 
constant ? (~) E H~, (~) we have 

~----/ ~ ~ --~ ~ ~ ~ '  ---- - -  ~ (xlx,) j-1 (axl 4- 0 (x 2, ~)) dxl A . . .  A dx~dxF, 

where  a ~ C  and a # 0 b y  v i r t u e  o f  the  g e n e r a l i t y  o f  t he  form m ( c f .  [17,  Sec .  1 0 ] ) .  

A c c o r d i n g  t o  [ 2 0 ] ,  t h e  f o r m s ~ i  = ( x l x ~ - l x l d X ~ A  . . .  /~dxn/dxF,]  = l ,  2 , 3 ,  f o r  % b e l o n g i n g  to  

t h e  X1 a x i s ,  g e n e r a t e  i n  Hn-~(Vx,  C),  l i n e a r l y  i n d e p e n d e n t  cohomology c l a s s e s .  I t  f o l l o w s  

f rom the  q u a s i h o m o g e n e i t y  o f  the  forms i t  f o l l o w s  t h a t  f o r  X b e l o n g i n g  to  the  X1 a x i s ,  

X ~J (2) 
0}j = ~1 const, where aj = (2 i 4- i)/5 4- k - -  i.  

The form(xlx2) j-1 0 (x 2) dx 1 A -  • • /~ dx~/dxF has  a l a r g e  d e g r e e  o f  q u a s i h o m o g e n e i t y  compared w i t h  
~. o Hence t he  p r e c e d i n g  f o r m u l a s  p r o v e  IV. ] 

Remark. The germ I 2 ( p )  i s  t he  o n l y  one o f  t h o s e  l i s t e d  i n  t he  t h e o r e m s  which  i s  n o t  
q u a s i h o m o g e n e o u s .  I n  c a s e  o f  the  germ I2 (p) t o  p r o v e  a s s e r t i o n  IV, f o r  c a l c u l a t i n g  t he  w e i g h t s  
o f  the  forms ~1, ~2 ( i . e . ,  t h e  numbers a l ,  a2) and f o r  p r o o f  o f  t h e  l i n e a r  i n d e p e n d e n c e  o f  
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the cohomology classes generated by the forms, it is necessary to use Theorem 4.3 of [17]. 

Only the calculation of the weight of the form ~ =z~z,d~z/d(~ +z~z~+z~ +~+... + z~) = 

dxl A dxa A dx4 A . . . A dx. /2  - -  p x ~  l dx/2d (x~ + ~ + x~ + x~ + . . . + x~) p r o c e e d s  d i r e c t l y  w i t h  

the help of total resolution of singularities. 

LEMMA 2. The map AP k extends homomorphically to Z, while Z= into the set of nonregular 

orbits. 

The proof proceeds with the help of formulas analogous to (i), cf. [9]. 

pk to the ~i axis has the form " ~,Po(k1, 0, 0, 0) = LEMMA 3. The restriction of the map X~ 

(ci, C 2, c8) k~/z° + o (~/10), where  ( c l ,  c2 ,  c3) ~ O. 

The p P o S f  f o l l o w s  from ( 2 ) .  

Remarks. i. The number of reflections among the elements of the group H3 is equal to 
15. 

2. Let Z(C3/H3) be the discriminant of the natural projection ~: C 3 ÷ CS/H3 (i.e., the 

set of nonregular orbits). Let D be the polynomial on C 3 defining the union of all planes, 
each of which is fixed with respect to some reflection from H3. Then D 2 is invariant with 
respect to Hs, and if I is the polynomial on C3/H3 with the property D 2 = ~*I, then I deter- 
mines Z(C3/Hs) (without multiplicities). 

Property 1 is obvious, property 2 can be found in [i, Chap. V]. 
k LEMMA 4. The manifold of the discrimant Z (HX*/H3) for the map x~APm coincides with Z2. 

Lemma 4 is a consequence of the remarks and Lemmas 2, 3 (cf. [9]). 

LEMMA 5. The map z~/~Ix~=~: A~{~= O}-+HxqH3 is nondegenerate. 

Proof. Loss of nondegeneracy contradicts Remark 2 (cf. Sec. 4 in [9]). 

Lemmas 4, 5 imply Theorem 2.5.3 for H3. 
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MODELS OF REPRESENTATIONS OF CLASSICAL GROUPS AND 

THEIR HIDDEN SYMMETRIES 

I. M. Gel'fand and A. V. Zelevinskii UDC 519.46 

0. The Main Results 

Three important constructions lie behind the motivation of this paper: 

i. The classical realization of irreducible representations of the group S03 acting on 
functions on the two-dimensional sphere. We may say that the space of functions on the two- 
dimensional sphere is a model of representations of S03 (meaning that its decomposition into 
irreducible components contains all the irreducible representations of SOs, each appearing 
with multiplicity one). 

2. A recent construction of Biederharn and Flath [I]: they built a model (in the sense 
indicated above) of finite-dimensional irreducible representations of the Lie algebra sl(3, C); 
they also found that the action of s%(3, C) on this model extends to an action of the larger 
Lie algebra so(8, C). 

3. The starting point of the R. Penrose's twistor program (see [2]): the complexifica- 
tion of the Minkowski space R ~ followed by compactification leads to the Grassman manifold of 
2-planes in C 4. 

We show here that these constructions are different aspects of a unifying construction of 
models of representations which is carried out below for all classical groups. A fourth im- 
portant aspect of this construction is a remarkable parallelism between exterior and symmetric 
algebras; one of its consequences is that Lie supergroups and superalgebras arise naturally in 
the "purely even" problem. 

Let us give a systematic description of the content of this paper, beginning with the 
results concerning the first construction. 

Let G be a reductive algebraic group over C. A model of representations of the group G 
is defined as a representation of G which decomposes into the direct sum of all (finite- 
dimensional) irreducible algebraic representations in which each such representation appears 
with multiplicity one.* One of the most natural ways of realizing a model is to express it as 
an induced representation Ind~T. This realization is the most convenient when T = i: in this 

case the model is realized in the space of regular functions on the homogeneous space G/M. A 

*H. Weyl's "unitary trick" shows that constructing such a model is equivalent to constructing 
a model of representations of a compact form of G. In this paper we use the language of 
complex groups; henceforth, by group we shall always mean, without further mention, an alge- 
baic group over £. 
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