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DETERMINANTS OF CAUCHY--RIEMANN OPERATORS OVER A RIEMANN SURFACE 

Daniel Quillen UDC 517.43 

I. Let M be a compact one-dimensional complex manifold of genus g, and let E be a 
vector bundle over M of rank r and degree d. Let ~P,q(E) be the vector space of smooth forms 
on M of type (p, q) with values in E. By a Cauchy--Riemann or T-operator on E we mean a dif- 
ferential operator D:~°,°(E) ÷ ~°,l(E) which locally, in terms of a local coordinate z and a 
local frame in E, has the form D = dz(~- + ~(z)), where ~(z) is a smooth matrix function. 

Z 
Such operators are in one-to-one correspondence with holomorphic structures on the vector 
bundle E. We denote by ~ the space of these operators; it is an affine space relative to 
the complex vector space ~ = ~e,1(End E). 

The purpose of this paper is to present a construction of determinants for such Y-opera- 
tors based on the concept of determinant line bundle and the theory of zeta function deter- 
minants for positive elliptic operators. 

Since T-operators go from one vector space to another, we explain what is meant by de- 
terminants in this case. Consider first the family of operators T:V ° + V I, where V ° and V I 
are vector spaces of the same finite dimension. Each T induces a map from %(V °) to %(VI), 
where %(V) denotes the highest exterior power of V. Hence T determines an element o T of the 
line ~ (Ve)$ Q~ (V I) , where the asterisk denotes dual vector space. Upon choosing a generator 
for this line, o T can be identified with a function det (T), which is holomorphic in T and is 
nonzero exactly where the operator T is invertible. 

In the infinite-dimensional case of Y-operators the above line is replaced by the line 
~D = % (KerD)*Q ~ (Coker D), which depends on the operator D. The family of ~o forms a holo- 
morphic line bundle ~ over the space ~, called the determinant line bundle. The analogue 
of the assumption that V ° and V 1 have the same dimension is the condition that the index of 
the T-operators be zero, that is, d = r(g -- I). In this case there is a canonical section 

of ~ which is holomorphic and such that oD ~ 0 if and only if D is invertible. If we 
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construct a trivialization of ~ as a holomorphic line bundle, then the canonical section o 
can be identified with a holomorphic function det (D) on ~ , which we call the determinant 
since it is nonzero exactly where the operator D is invertible. 

In order to construct this trivialization, we define a hermitian inner product on ~, 
using the zeta function determinant of the Laplacian D*D. This is essentially the idea of 
"analytic torsion" (see [I]). The inner product and the holomorphic structure determine a 
connection on ~, whose curvature turns out to be remarkably simple and is described in Sec. 4. 
By a simple modification of the inner product we obtain a flat connection, and integrating the 
connection furnishes the desired trivialization of the determinant line bundle. 

2. In this section we describe the determinant line bundle in more detail. Let ~ be 
the space of Fredholm operators T from one Hilbert space ~0 to another ~. As an open sub- 
set of the Banach space of bounded operators, ~ is a complex Banach manifold. Over ~ is a 
morphic line bundle ~ with the fibres ~T = ~ (Ker T)*Q~ (Coker T) defined as follows. 

For any finite-dimensional subspace F of ~i , let U F be the set of T which are trans- 
versal to F in the sense that ImT + F = ~i. For such T one has an exact sequence 0 ÷ KerT ÷ 

T-IF ÷ F ÷ CokerT + 0 and an associated canonical isomorphism ~T = %(Ke[T)*~%(Coker T) ~-~ 

(T-IF)* Q%(F). The set U F is open, and the family of subspaces T-IF form a holomorphic vec- 
tor bundle over UF, whence the family of lines onthe right side of this isomorphism forms a 
holomorphic line bundle over U F. The holomorphic structure on ~ is determined by requiring 
the above isomorphism to be an isomorphism of holomorphic line bundles over U F for any F. 

Over the connected component of :~ consisting of operators of index zero we define a sec- 
tion o of ~ by setting o T = 0 if T is not invertible, and setting o T = I under the canonical 
isomorphism ~r = E, when T is invertible. It can be shown that this section is holomorphic 
[this would not be true if we took ~ tO have the fibres ~(Ker T)~ ~(Coker T)*]. 

Given a ~-operator on E we associate the induced Fredholm operator from the space of 
square integrable sections of E to the Sobolev space of (0, 1)-forms with values in E having 
square integrable first derivatives. This gives a linear map from the affine space ~ to a 
coset of ~ modulo compact operators; hence pulling back the above line bundle one obtains a 
determinant line bundle over the space ~, which is holomorphic and has a canonical section 
when the index is zero. 

3. We next define an inner product on the determinant line bundle, supposing we are 
given an inner product on E and a Riemannian metric on M compatible with its complex struc- 
ture. The spaces ~°,q(E) then have inner products allowing one to associate to a ~-operator 
D its adjoint D* and Laplacian A = D*D. The vector spaces KerD and Coker D = KerD* inherit 
inner products from the ones on ~°,q(E). 

Let ~(s) be the zeta function of the elliptic operator A; it is a meromorphic function 
of s equal for Re (s) > I to Z% -s, where % runs over the nonzero eigenvalues of A, which is 
regular at s = 0 and depends smoothly on the operator A. The number exp (--~'(0)) has a well- 
known interpretation as the determinant of A acting on the orthogonal complement of Ker D. 

We now define an inner product on ~D = % (Ker D)* ~%(Ker D ~) by taking the inner product 
induced by the ones on Ker D and Ker D* and multiplying it by the zeta determinant exp (--~'(0)). 
More precisely, by choosing orthonormal bases for these kernels and taking the Grassman prod- 
uct of the basis of elements, we obtain a nonzero element v in ~D which is unique up to a 
scalar of absolute value I. The inner product is given by setting llvll 2 = exp (--~'(0)). 

Proposition. The inner products on the family of lines ~o determine a smooth inner 
product on the determinant line bundle. 

To see this, let a ~ 0, and let F~ (resp. F~) be the subspace spanned by the eigenvectors 
of D*D (resp. DD*) having eigenvalues ~a. One has a canonical isomorphism'~D =%(F~)*Q%(F~), 
and it is easy to see that relative to this isomorphism the inner product on SD coincides 
with the one induced by the inner product on F~ multiplied by exp (--~$a(0)), where ~>a(S) = 
E% -s with h running over the eigenvalues of A greater than a. The sub space F~ and the func- 
tion ~>a depend smoothly on the operator D provided a is not an eigenvalue of A. Since a is 
arbitrary, we see that the inner product is smooth. 

In the case where the ~-operators have index zero the metric on the determinant line 
bundle is given by 

II ~D II 2 = d e t ~  (D'D), 
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where ~ is the canonical section and detG (A) is defined to be exp (--~v(0)) when KerE = 0 and 
0 otherwise. 

4. A holomorphic line bundle equipped with an inner product has a canonical connection 
compatible with the two structures, whose durvature is ~31og Jlsll 2, where s is any local holo- 
morphic section. When the underlying manifold is simply connected, the curvature form de- 
termines the line bundle and inner product up to isomorphism. We now identify the curvature 
form of the determinant line bundle. 

The ~nner product on E induces one on ~ = ~°,1(End E) as follows. Given B in ~ , say 
B = a(z)dz relative to a local orthonormal framing of E, let B + = a(z)*dz in ~l,°(EndE). 
Then tr E (B+B) is a form of type (I, I) which can be integrated: 

2__ __/ [[ B {{--~ 23 trz(B+B)" 

As the space ~ of Y-operators is an affine space relative to ~ , this inner product deter- 
mines a Kahler form on ~. Specifically, the Kahler form is 3~q, where q is the quadratic 
function q(D) = lID -- D0H 2, and Do is a basepoint in ~. The Kahler form is independent of 
the basepoint. 

THEOREM I. The curvature of the determinant line bundle is equal to the Kahler form on 

If we multiply the inner product on ~ by the function eq, then the connection corre- 
sponding to the new inner product is flat according to this theorem. Hence we obtain a 
trivialization of ~ b z taking an everywhere flat section (which exists as ~ is contractible)° 
In the case where the 3-operators have index zero the image of the canonical section o under 
this trivialization is a holomorphic function on ~ , and we have the following. 

COROLLARY. Given a basepoint Do, there exists a holomorphic function det (D; Do) on ~, 
which is unique up to a scalar of absolute value one, such that 

det~ (D'D)  = e-{"-'{l' [ det (D; Do) 12. 

Because of the dependence on the basepoint, the determinant det (D; Do) is not invariant 
under gauge transformations. The case of line bundles over an elliptic curve shows that it 
is not possible to produce determinants which are both holomorphic and gauge-invariant. 

The following sections describe the proof of the theorem. 

5. Given a Y-operator D, we construct a parametrix G0(z, z') for it in the following 
way. Let V be the unique connection on E compatible with the inner product and the operator 
D. Let F(z, z'):Ez' ÷ Ez be the parallel transport with respect to V along the geodesic from 
z' to z. Let r2(z, z') be the distance squared between z' and z. Put G0(z ~, z) = (I/2~i) × 
[dz'3 z, log r2(z, z')]F(z', z). This is well defined in a neighborhood of the diagonal in 
M×M. 

Suppose now that D is invertible and let G(z, z') = <zlD-llz'> denote the Schwartz kernel 
of the operator D -I. We define the finite part of G along the diagonal to be the element J 
of ~l,°(EndE) given by 

J (z') = l im (G (z, z') - -  Go (z, z')). 
~ g  t 

In terms of a local orthonormal framing for E we have the following local formulas: 

~2 = p (z) ldz 1"; 

D = d~ (~ + o0; 

v = dz (0~-- ~*) + d~ (~  ÷ o0; 
$" (z, z') = t + ( z - -  z') ~* (z')-- (~- -  ~') ~ (z') + . . . ;  

G(z, z ' ) =  ~i ~-~'a~' {l + ( z - - z ' ) g ( z ' ) - - ( ~ - - ~ ' ) ~ ( z ' ) +  ..  .1, 

Here $(z) is a smooth matrix function determined globally by the operator D, which depends 
holomorphically on D. One calculates 

i , 3 ..~2~zdz (fi -- a I = -- 7- 0 z log p). (~) 
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THEOREM 2. One has 

lira <z [e-taG [z> : J (z) 
t--~0 

u n i f o r m l y  i n  z ,  and  c o n s e q u e n t l y  f o r  a n y  B i n  ~ 

l ira Tr  (e-t~D-~B) : I tr (JB). 
$--*0 M 

T h i s  f o l l o w s  f r o m  t h e  c o n t i n u i t y  o f  G -- Go a l o n g  t h e  d i a g o n a l  and  t h e  f o r m u l a  

lira <z I e-t~ Go [ z> = O, 
t--~0 

w h i c h  i s  d e r i v e d  b y  c a l c u l a t i n g  t h e  a s y m p t o t i c  e x p a n s i o n  o f  t h e  h e a t  k e r n e l .  

6 .  We now d e s c r i b e  t h e  p r o 0 f  o f  Theorem 1. By t h e  d e v i c e  o f  a d d i n g  t o  E a v e c t o r  b u n d l e  
o f  t h e  o p p o s i t e  i n d e x ,  we may a s sume  t h a t  t h e  i n d e x  i s  z e r o .  I t  s u f f i c e s  t o  c h e c k  t h a t  t h e  
c u r v a t u r e  and  K a h l e r  f o r m s  c o i n c i d e  o v e r  a o n e - p a r a m e t e r  f a m i l y  D = D w o f  ~ n v e r t i b l e  3 - o p e r -  

a t o r s  d e p e n d i n g  h o l o m o r p h i c a l l y  on t h e  c o m p l e x  v a r i a b l e  w. The c u r v a t u r e  f o r m  i s  t h e n  
~0 log[[ ~1[~ = dwd@ O~w ~' (0),  w h e r e  we r e c a l l  ~ ( s )  = T r ( A - s )  , A = D*D. One h a s  

- - O ~  (s )=s  Tr(A-~-~O~A) = s  Tr(A-~D-~OwD) ~- r - ~  i Tr  (e-~ D-'O~D) t~-~ d t = s  {I tr(JO~D) + 0 (s)}as s--+ O, 
0 

where the last step uses Theorem 2. It follows that 3w~(0) = 0 and that --3w~'(0) = 

S tr  (JO~D). 
In the formula (*) for J only the ~* term is not holomorphic with respect to w. Thus 

i i (OwD)+, O~J-- ~ dz O~-a* = ~ ~ 

0 ~ ~' (0~ i + ~'~° " " =  S -~- tr (O~D) O~D, 

which proves the theorem. 

I. 
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STRUCTURE OF THE SPECTRUM OF THE SCHR~DINGER OPERATOR WITH ALMOST-PERIODIC 

POTENTIAL IN THE VICINITY OF ITS LEFT EDGE 
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• I. Statement of Problem and Formulation of the Results 
• 

Paper [I] dealt with the structure of the spectrum of the one-dimensional SehrSdinger 
operator with an almost-periodic potential for large values of E; it was shown that the spec- 
trum contains a Cantor set such that the measure of its complement decreases as E grows. 
Close results were obtained in [2]. Subsequently, the results of [I, 2] were improved in [3], 
and then were extended to the difference SchrSdinger operator in [4]. The present paper deals 
with the structure of the spectrum of the difference Sehrodinger operator in the vicinity of 
its left edge. Judging by the methods it uses, it is a direct continuation of [I]. Since 
many arguments and estimates actually repeat those of [I], we omit them here. 

First, let us describe the operators of interest to us. We confine ourselves to the main 
example and then indicate its straightforward generalizations. The example we have in mind 
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