SOME QUASILINEAR SYSTEMS OCCURRING IN THE STUDY OF THE MOTION
OF VISCOUS FLUIDS

A. P. Oskolkov UDC 517.994

We prove the existence and uniqueness of generalized solutions of initial- and
boundary-value problems for the modified equations of motion of a viscous fluid,
for the modified equations of heat convection, and for the modified equations of
magnetohydrodynamics containing linear terms with derivatives of third order which
are models in the description of the flow of some classes of fluids possessing re-
laxational properties (including the presence of heat and electromagnetic fields).

In [1, 2], for the description of the flow of a class of non-Newtonian fiuids, viz.,
that of weakly concentrated aqueous solutions of polymers, a quasilinear system of third
order has been suggested, generalizing the Navier—Stokes system of equationms,

%%—Vw i dUt {33%% am[b aB:n %:1; %;:f }B =L =G, =

where R=consl>0 is the relaxational viscosity coefficient. In [3-5], for the solution of
the first initial- and boundary-value (IBV) problem relative to a simpler quasilinear sys-
tem* of the third order:
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under the additional boundary condition
(3)
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one has the a priori estimates:
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*Obtained from system (1) for %%—(gg‘ gg) 0, 1=1,2,3.
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and on the basis of these estimates it has been attempted to prove, with the aid of a modi-
fied Galerkin method, the existence of generalized solutions of problem (2), (3) for which
the integral (4), respectively, integrals (4) and (5) are finite. This attempt is unsuccess-
ful: in order to carry out the modified Galerkin method applied in [3-5], it is necessary

e P
to construct a system of functions {QI(JD} , complete in VV(XD(\H(KY) and such that the solu-
tions of the boundary-value problems SP/A‘? x)- t?(fL) W(%) xel)s _‘-ﬁ |m =0, k=1,2, should
also form a complete system in W «n H(Q) » but this, as a detailed analysis has proved,

is not in general, possible in the case QV:E,,, .* Thus, the question of the solvability

of the IBV problems (2), (3) and (2), and of similar boundary-~value problems for the system
(1), remains open. An exception is the Cauchy problem for system (2),t for which estimates
(4), (5) allow us to prove, with the aid of the above-described modified Galerkin method,

the existence of the generalized solution with finite integrals (4) and (5) under the con-

dition that the initial function ﬂtzoz_’o@), meEw tends sufficiently fast to zero for
)= . In addition, the estimates obtained in [6] for the solutions of the Cauchy problem
for Eqs. (2), allow us to obtain the solvability of this problem in the small with respect

to t{OéT,&J[,*) and in better classes of functions, possessing finite integrals

5-' max &(D AUMgD Ul)&ﬁnm(ﬁ@ UJ*ZH lDﬂDtTrlgdﬂ,
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under the condition that I)Z‘,(CDEZW:%EQHJ(E,}, while I(m,t)EW:,O(ErD,OstsT s and ST “g“qwi,o(Ew)
dt < oo ., We note that the uniqueness theorems of the different "good" generaliozed solu-
tions of the initial~ and boundary-value problems for system (1) and (2) proved in [4, 5]
(see also [6]), allow us to hope that the boundary condition —‘6\6&;—'0 is sufficient for the

correct formulation of these IBV problems.

In the present paper we investigate, first of all, the first IBV problem for the quasi-
linear system obtained from (1) by the linearizationof the terms with third-order derivatives

with respect to x:

L@V =fomern ol TNV G UM,

1,..1,2,5

(6)

divi=0, @hels Ukm:u"m’ i) aa:o’

- 04’0— 2 .
and we assume that the known vector V(mj;)ec (QTY\J(QT) For problem (6) we prove a uniqueness

theorem of a "good" generalized solution, possessing, in particular, derivatives U, L(Q)

and, depending on the occurrence of the argument 1 in V(%t) , existence theorems for various

*1f Q#Eﬂ, then from the fact that the free term QIJ(G‘,) is solenoidal it does not follow,

in general, that the solution ‘? (’I} is solenoidal.

2
tAlso the boundary-value problem for system (1) with %(UK %%)EO (p. 779).
J g x
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2 ud -, ']
generalized solutions of problem (6) in the large: if V=Vm= 17,(‘1/)66' €9) nJ(Q\) , then
A A

the existence of "strong" solutions possessing derivatives U;,U;.U¥t€51w(()),.O$tj;T (so-
lutions of the Ladyzhenskaya type for the Navier—Stokes equations [7]) and if VEV(:LD&;
ém(Q‘”]J“l),V _ ==ﬁ(pc , then the existence of "weak'" solutions possessing derivativés i

T 7! =0T e _ '
: 1
Q$§)D O<t T and weakly continuous with respect to 'béi[OJj in VL(K)) (solutions of the
4Hopf type [7)).%

Similar results are obtained for the modified equations of heat convection

L(UV p=l+¢5y
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v=1,2,3, div 7=0, \a‘,,t)e:QT, ?:(0,0J)"

XAS+U|< -0 (mt)eQT, X =Const >0, y )

and, in the two-dimensional case, for the modified equations of magnetohydrodynamics:
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yi=1,2,dwd =0, ahel,,

%—H- ofH wt[uxﬁ]éo, divH=0, zhel,, 7 (8)
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20, Yoq

J

In addition, we obtain a series of a priori-estimates for the solutions of IBV prob-
lems
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and of their corresponding stationary boundary-value problem

L) =D+ 2= gg g—zw——————fﬁq’ - éﬂz Z%DQJ——%”D ¥ Faaw2e,

(10)
q)\Bﬂ on ]ao

Equation (9) is obtained from system (2) by investigating the axisymmetric flows having the

angular component of the velocity equal to zero: v°=0 in the cylindrical domains obtained

e ———ee s b
*The additional smoothness of kaia with respect to the variable t does not improve the
situation.
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from the revolution of the plane bounded domain fl=£tqzzbzs>0} about the Z=0 axis, by in-
troducing the flow function ‘PGQZID:02=%QQ, Uz=-%QQ , and by deleting the strongly nonlinear
terms containing the product of the second and fourth derivatives of the function () with
respect to U,Z (see [5, 6, 8]).

In [5] (see also [9]), together with the IBV problem (2), (3), one has investigated
the IBV problem

T YT, a" .5 +9wxip g diw¥=0, xheq,,

(1)
(1 - : : -
it-_-o"v;m» xe; UlaQ;O’

which has a unique weak solution (solution in the sense of Hopf [7]) and for which with the
aid of the standard Galerkin method one has proved the existence in the large of a general-
ized solution with finite integrals

m 4 Sf_u(mt)’rﬂ' ]dﬁHB(U +U$t) da, (12)

\

if —ﬁ(ﬂt) E,W:(_(DHH(Q), ;f{fl},t)eLg(QT), and of a generalized solution with a finite integral

Sww F+ ) doc (13)
o<t<T

if, in addition, gtE:Lb((%). Similar results hold also for the IBV problem

%% —VAU, +L»k%i£ {%’H—M aL w’\} a%—i_=£7 1,23

(14)
k
div T=0, .he by U] =T,

B’aa.,z 0

Namely, if the linearizing vector VID&E(Q)H]&LH then problem (l4) has a unique weak

solution (solution with a finite nuu%hUHL$Q) ); if \kakzé“(aniﬂpjhayahﬁfnﬂHGD,ﬁxbcjﬂﬁOQ,

then problem (14) has a generalized solution with finite integrals (12); if, in addition, in
QT the mixed derivatives intxjﬂ and X;ELL,GJQ are bounded, then problem (14) has a gen-
eralized solution with a finite integral (13). These results are proved in the same manner

as their analogs for problem (11).

The paper consists of an introduction and of five small sections, in each of which one
has adopted its own (binary) numerotation of the formulas and the constants. The author
expresses his sincere thanks to 0. A. Ladyzhenskaya for constructive discussions, in the
course of which the above-mentioned deficiencies of the papers [3-5] have been revealed,
necessitating the writing of the present paper.

1. TUniqueness of a "Good" Solution of the IBV Problem (6)

A "good" generalized solution of the IBV problem (6), where the known vector Vabhe
C«.OLQT)ﬂj(QT)‘ V|t=0 =ﬁ°(:n), is a function U@DeH(),0¢l<T , having a finite %l\ﬁ@iﬂlmﬂ) s
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possessing derivativesv‘(—f‘ueLg(QT) and satisfying the integral identity

() 0eidinafand-stanf G -
G (1.1)
S { (xt)q)(xt)mv (P }dﬁr g {U(m)q)(mo)me (;x ())}dm =0, o<t<T,

Q
for any @\WDEH(Q), 0<t «T  and such that q),(DxtQLz(Q), 0<t<T . We show that we have

THEOREM 1.1. The IBV problem (6) has at most one '"good'" generalized solution.

>

Indeed, assume that problem (6) has two '"good" generalized solutions ’61 and ’lT, . Then,

their difference &)'(oct) satisfies the integral identity

-

,“ {(ﬁ-;+az,5¢6xt-v&31(_ﬁ;wk u:é—uz:x@ &'kam %%), gﬁ)@

8; . L (1.2)
’ -S{«I’)@*‘&a}x@x'}o‘/m =0, o<«T,
o
t
- = +0)~(0) - -
We set in (1.2) @(ﬂ?{b-‘-s '&g—’%:u—)g—-m de' , assuming that U)Gx,,t)EO for 1<0 and then we
make P tend to zero. %hen we obtain for (,T)('I,t) the equality (see [7])
INDeh o "Qd,Q--SS aU‘dQ— oy By (1.3
| @lhradldaw| 0,5 3)
bt - o

It is easy to see, integrating by parts, that

% 0,4 v, 40-0,

t

SSVwm B dQ= Sgg\i‘%w dQ F

T (1.5)

(1.4)

o

Applying, for the estimate of the first integral in the right-hand side of (1.3), the

Holder inequality and the maximization operation, and making use of the inequality (see,
e.g., [7D)

ol yeCaledy o, (1.6)

as well as that of inequalities (1.4) and (1.5), we obtain from (1.3) the inequality

-—
*In the process of the derivation of (1.5) one requires the second derivatives of V{(I/,J[)
with respect to &, but since in the final result_’they do not occur, in order to obtain (1.5)
it is sufficient to make use of the averages of V over {) with the subsequent limiting pro-

cess of making the averaging radius tend to zero (see, e.g., [101).
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j(&‘)@’t).;a; )(iill <C(mﬁ/f, \\U l Wg/.‘IJN D %t a;d(t’ O<t‘§T9 (1.7)

from which, as is known, it follows that C)(x,t) =() in QT.

We consider the stationary boundary-value problem corresponding to the IBV problem (6)

Lm(i’r,v(m);p) —vw+vg‘;+——— am[vmam(’f*m)] =@, i=1,23, .

div T=0, xeQ; 8'3 ﬂ=O; V(m)eé‘(ﬁ)ﬂj(ﬂ), ;{(m)d_,(ﬂ),

and by a "good" generalized solution of the boundary-value problem (1.8) we shall mean a
function ’U'(CD)GH(_(D_n W:(Q) satisfying for V@(m)e:H(ﬂ) the integral identity

9 (00, , 0
S(vu Qrud q)mV(x)ax(m gx (1.9)
. Q
Setting in (1.9) ¢='ﬁ ,» making use of the fact that ;ﬂﬁﬁx“dﬂ‘r—'o, making use of equal-

ities (1.4) and (1.5), applying HSlder's inequality, and making use of Freidrich's inequal-
ity [7]

— * - —
191, gy <Colfly . VOaeH(O, (1.10)

we obtain for any ''good" generalized solution of problem (1.8) the a priori estimate:

a7 —zmaa V,1>0). .
“U"H(n)< V- ae""‘”Qﬂf’l\( 1“JK “L,(Q) (v aemrfw ) (2.11)

With the aid of estimate (1.11), similar to Theorem 1.1 one proves

THEOREM 1.2. Boundary-value problem (1.8), under the condition

Ql'_’

(v- %mgmiv ) - ”HL,(Q) >0 (1.12)

has at most one "good" generalized solution.
g

2. Existence in the Large of a '"Strong" Generalized Solution

of the Initial~- and Boundary-Value Problem (6)

Assume () is a two-dimensional or a three-dimensional bounded domain. By a "strong"
generalized solution of the IBV problem (6), where the known vector VEV(:L)=60($) e_Wj(Q)ﬂ
H(Q) , Wwe mean a function -‘S(I.i)EZH(Q), o<t <T, possessing derivatives 6t.—ﬁxt€L2(Q),Ost§f . haviﬁg
a finite *52%2% ;(-ﬁ:(x,t)+ﬁt2+6;t>dm , satisfying the integral identity

Séiﬁt@r& t(p +VUq> ﬂ;a——@ "R %i+gg>02%$ } ngiiédQ,OCtsTs 2.1
4 2,
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- 2 2,0 [ - -
for Vq)(in,t)eWQ QQT)HJ(QQ , and subject to the initial condition ’UIH):UOLI), xe) .
The fundamental result of the present section is

mroReM 2.1, Let J@D), fe LQ), T@eW(NH(D) . Then the IBV problem (6) has at

least one "strong' generalized solutionwhich can be obtained by the Galerkin method and
for any such solution one has two series of estimates: the energy inequality

- 2 - 9 2 -
&Lél/x S e+, jM+vé-umL[QsQ QIJUl oy e 7.0; (2.2)
in the three—-dimensional case the estimate
2 —_—l
iy iu TdeCllE ) o0 Blgy @), 05

where CQ —>0 for ®—(0 ; inthe two-dimensional case the uniform estimate with respect to

EAANRE

K(u vl )+ H dasC(f il

et ! ft L@ = Wy ) (2.4)

Proceeding with the proof of Theorem 2.1, we note first of all that for the solutions

of problem (6) the derivative U(:I,O) for U(x)éw (Q){\H(Q) and 3(&0}6]_ () is uniquely de-
fined as an element of the space W NH(Q) . 1Indeed, by virtue of system (6)

auot. d d (i , g _
Uy, 0)- AU o)+ (mo) g(xo AUy 7 mﬁjﬂu""mﬁkﬁfﬁb}%@’ (2.5)

while by virtue of the condition on ﬁ(oc) and 1((130) ?(a‘,)e[_(ﬂ) From the theorem on the or-
thogonal decomposition of the space L(ﬂ) there follows [7] that U(CCO) %AU(:I, 0) and gwdp
are obtained as the projections of F(fx,) onto the subspaces J(Q) and G(Q) Then, solving
the Dirichlet problem

aamm:xo) unoco)——pa Hﬂc) xe); U 100" (2.6)

we find that [9] déx,O)tZVJj(Q)ﬂH(Q), and, by virtue of the first fundamental inequality for
elliptic equations, we shall have for ﬁt(ﬁ),O) the estimate:
2.7

I, »

)

Sn‘ﬁi(m,o)ﬂ%@:oﬁdm*Ct«@@’o’“um’

In order to prove the solvability of problem (6) we make use of Galerkin's method. Let
- i3
,{‘?K(I/)} , k=1,2,...,bea complete system of functions in WZQQ)QH(Q) which can be assumed
to be orthonormalized in Lz(Q) . Therefore, for any function IT;(&)QW:(Q)QH(Q) there exists

a sequence of functions U, (%)} :

B;n)(:x;) =iC:waKCx’) y N =1,2,..., (2.8)
K=1{ : .
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3
which converges to U,(X) in the norm of WQ(Q) as n—>x,

We shall seek the approximate solutions _U"’JI‘,,JL) of the problem (6) in the form
—--n {, n ‘-—9
U@l =2 C, M9 » h=1,2,..., (2.9)

where the functions Cm@) are obtained from the system of differential equations

S{L @ Terp)-habfy @)dw& “de*%gu G SU Pezllx

XM fimjv @ +9—>¢ dz Si%Wo b=i,..0, 0teT (2.10)

and the Cauchy initial conditions
Cw]t Cw . L=1,...,w- (2.11)

We multiply the E—th equation of (2.10) by CMG,) and we sum with respect to f/ from 1
to "' . Integrating by parts and making use of equalities (1.4) and (1.5) (with W =0" and
VEB;CL) ), we obtain the equality:

s %g 7z 2 t\( M Yoo i&;f:ﬁ“dx-a’&% R

R
)0, 0%; Qo (2.12)

from which, applying H6lder's inequality, making use of Gronwall's lemma (see [7, Chap. VI,
Lemma 1]), and using the fact that

16, @ ol o <C lldo(ao,o)llwgm) «CQ) mo (U, | (2.13)

il
W,
we obtain the inequality

XN’ LAl +v&&@jda Cflll gy rae AT Qyneta,.. (2.16)

4l

osleT

where the constant C does not depend on ® . From estimates (2.14) and the orthonormality

of {L(? ((1‘,)} in L(Q) , there follows an a priori estimate for the possible solutions of Cauchy
problem (2.10), (2 11):

mach b= mamlu\fxbl\um<c n=1,2,..., (2.15)
0st<T b=t Ost<T
which ensures the unique solvability of Cauchy problem (2.10), (2.11) for any N"=1,2,... on
any finite time interval [ 0,T].
. E R dcﬂv . E
We multiply the {'~th equation of (2.10) by i Ve sum with respect to from 1 to n»

and we write the obtained equality for t=0 . Integrating then by parts, we obtain the equal-

ity:
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j{lamo)lwelu }d/L Sot(aco)w doc - Ru(xo)u
Q _ Q Q

n)k

W XY
x) ‘§‘( d +
0T,

+€ESU (EO)DL{U (I/)a aa‘"“ + u‘"‘ )} S (2,00, @ ode, no1.9,. (2.16)
Q

from which, applying the inequalities of H8lder and Cauchy, inequality (1.6), and making use
of the fact that

"Um)“wz(ﬂ) QC l‘Ucllwz(Q) , =142, ..., (2-17)

we obtain estimate [see (27)]:

I3,

Wu wol +2 @0l jdo <, (w0l

Wj(m)’ (2.18)

which is uniform with respect to N=4%2. and 2>(.

We differentiate Egqs. (2.10) with respect to't, we multiply the {-th equation by %%g’

and we sum with respect to { from1 ton . Integrating by parts and applying once again

equalities (1.4) and (1.5) (this time with ) 5.3: and V=41(33), we obtain the equality:

éa‘%S{aagfwmgtx’}dmwsm;g’dx{gta; Sktu - a&%}"%%‘g 0t<T, nei2. .. (2.19)
- Q Q

Q

1f () is a three-dimensional domain, then, estimating the second integral on the right-
hand side with the aid of the H8lder inequality and of inequality (1.6) and applying esti-
mate (2.14) we obtain:

| iu” 0] <l |7 -

kt Xt
Q

Then from (2.19) we obtain the inequality:

%%S{w@c Vral xt:jwmvjlu tldm<(“,_m)+mamhr I+ 5C“)S{IUI+&IUxtI }da,
(2.21)
0<b<T, n=1,2,...,

from which, applying Gronwall's lemma and making use of estimate (2.18), we obtain the es-

timate:

\\

S {l(ft(il‘,\l/)l +&l {:, }dl‘,ﬂ{“,()ﬁ,dQ/\ OX)E”LE(QT) "Q,"w (Q)’ >, n=4,2,..., (2.22)

T

where C;——>0° for ®&—0.



If Q is a two-dimensional domain, then, applying for the estimate of the second inte-
gral in the right-hand side of equality (2.19), instead of inequality (1.6) the inequality
{7, Chap. I]:

“‘T’“L(n) V7 ld’)l!L o II(T)JL L) (2.23)

we obtain:

S0l < P 2 0
0

(2.24)

Then from (2.19) we obtain instead of (2.21) the following inequality:
vl 2 v 9 - {3 2
! (2.25)
O<t$T, n=42,..

from which, applying once again Gronwall's lemma and making use of estimate (2.14), by vir-
tue of which

SS lﬁ:\de < %J

T

(2.26)

we obtain instead of inequalities (2.22) the estimate

(U @biralT) )dzrﬁ SSIUﬁfdQ <Gl i oy,

(2.27)
n=14,2,...,

where the constant C remains bounded for &-0.

We prove now that for a fixed U and nol , the functions llf (t) ﬂ: (mt)¢(m)+w t%m]d/l‘/
form a uniformly bounded and equicontinuous family of functlons on [OI] . The uniform
boundedness of {QQJCD} follows from estimates (2.22) or (2.27):

mom |V (W] <maa 10,1 aeémamllo ! &n b <G, n=1,9,.. (2.28)

osteT ™ T 10 of AR R (0 e A A A .
where the constant Cg depends on the constant C7 in the three-dimensional case and on the
constant (% (i.e., does not depend on @>0) in the two-dimensional case. For the proof

of the equicontinuity of {4&e(tn , we differentiate the Egqs. (2.10) with respect to 1 and

we write the result in the form

k3

%q:nl&) ‘Véﬁzﬂzdx’}jl(ﬁpn*” ) d/x~3(’/j (m)@"* +9 “> mm do +

% :r,L

’Tgl@iﬂgd@, 0<t<T, (2.29)
Q
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from this equality, integrating with respect to t from 1 to t+At$T s, estimating the inte-

gral in the right-hand side by Hdlder's inequality and making use of estimates (2.14), (2.22),
and (2.27), we obtain the inequality:

teat

10, a4 DICOUE +| 11 dt), neta, (2.30
t

where the constant Qo depends on C7 in the three-dimensional case and on CS in the two-

dimensional case.

Esﬁimates (2.14), (2.22), (2.28), (2.30) in the three~dimensional case and estimates
(2.14), (2.27), (2.28), (2.30) (uniform relative to ®>(Q ) in the two-dimensional case allow
us to conclude (see [7, Chap. VI]) that from the totality fﬁﬁﬁﬁﬂ} of Galerkin approxima-
tions for the solutions of the problem (6) one can extract at least one subsequence {Gn%ﬂﬁﬁ},
for which for n-*&>ﬁ Ux,U;, Ut converge weakly in L((D, uniformly with respect to te
(071 , to the functions [ E; s

teioj] in the weak topology of LQQQ) JI‘ converge to hj strongly in lﬁﬂaﬁ and for the

U U et and these functions are continuous with respect to

limit function ﬁﬁnb , by virtue of the properties of weak convergence, estimates (2.2),
(2.3) or (2.2), (2.4) will hold. Then, with the aid of the known arguments [7, Chap. VI]
one proves that the limit function BCDi) will be one of the '"strong" generalized solutions

of the IBV problem (6). Theorem 2.1 is proved.

Let () be a two-dimensional domain. In this case for the "strong" generalized solu-
tions .ﬁﬁaxw of problem (6) one has estimates (2.2), tZ.A), whose right-hand sides do not
depend on ®>(0. Then from tﬁe totality {Gﬁﬂzb} one can extract at least one subsequence
{(0*xD} , for which for %, >0 we have

gem%ETI;”@m~d&(ml)(-x—+7é——) 70 }dQﬁO V(PCW (Q ﬂﬂQ) | (2.31)

- - - . —
U™ converges strongly in [ﬂ(Q%) to U(xl), Uzm and Ufm converge weakly in Léjlﬁ to U

X
and ﬁt » the limit function ﬁ(mi) satisfies trivially the inequality

SS(!UI+|UI+IUJC|)0LQ<C(C,3,I), (2.32)
G

it satisfies the integral identity

Sg{ﬁtc‘éw@c 1 25 a=§(§m, <teT,
t ' Bat?

-> 0 2.0 ° - -
for VQD\m,’[) C—ZW2 (QQOJ(QQ and the initial condition Ult:O: Uo(.’[/), i.e., it is a general-

ized solution in the sense of Ladyzhenskaya of the first IBV problem for the nonstationary
system of Navier—Stokes equations [7, Chap. VI]. Since such a generalized solution is unique
[7, Chap. VI], we have proved
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THEOREM 2.2. Let () be a two-dimensional bounded domain and let ;,ﬁtéiLv(Q{>, 7, e
V@k())ﬂl4((D- Then for ®—>(0 the totality {{}&CELH of "strong" generalized solutions of
the initial- and boﬁndary—value problem (6) converges (in the above-described sense) to a

unique generalized solution {ﬂﬁDi) » in the sense of Ladyzhenskaya, of the first IBV problem
for the nonstationary system of Navier—Stokes equations.

The analysis of the proof of Theorem 2.1 shows that estimate (2.4), uniform relative
to ® >0, as well as Theorem 2.2 which results from it, hold in the large not only for two-
d1mens1onal domains fl, but also for such three-dimensional domains for which the first IBV
problem for the Navier—Stokes equations is solvable in the large in the class of the gen-
eralized solutions of Ladyzhenskaya, e.g., for three~dimensional domains obtained by the ro-
tation about some axis of a plane domain not containing the axis of rotation, under the con-
dition that the cylindrical components of the velocity vector and the free term do not de-

pend on the polar angle © [7, Chap. VI]. For arbitrary three-dimensional flows, the esti-
mate (2.4) and the assertion which follows from it regarding the limiting process of the

-z
totality {U Ctbﬁ for #—( to the solution of the Navier—Stokes equation take place in the

small under the conditions, similar to those smallness conditions under which the first IBV
problem for the three-dimensional nonstationary system of Navier—Stokes equations is solv-
able in the class of generalized solutions of Ladyzhenskaya [7, Chap. VI]. We give one of
the variants of these conditions, introducing first necessary notations (see [7, Chap VI];
see also [5], where similar estimates have been obtained for the solutions of the system

Ot L -yad+ Ukaa‘fn aeanrqmdp =f ,div 0=0)
We set ¢ QD =y, «LOmLGﬂ+&“QﬁGLOmLiQV

C= mam!u\ C, ma/xm ,C QI_(O)HIH

3 o<t<T (2.34)

QKQQ

Then we have -
THEOREM 2.3. Let () be a three-dimensional bounded domain, let Y,gtéj_AQQ ,.@(T)é

\\ UIXNH(KD and assume that the following "conditions of smallness of the data of problem

(6)" are satisfied:

204

geC \01 2 C (\/'_C +C43)§X>O, (2.35)

where (39 and CI are the constants from inequalities (1.6) and (2.2). Then, for the "strong"
generalized solution ‘Uakﬂut) of the 1BV problem (6), whose existence is guaranteed for any

®>0 by Theorem 2.1, we have uniformly relative to EBG:[OJ] estimate (2.2) and the esti-

mates:

(2.36)
mam 17 (:nt)\\um [ L\/—C +CQ} 2.3

0<t<T

rag ¢ (9421 {{ \ﬁjjaa.wfmngc;. 2.7
(1SRN
0,

*The estimate of q;ﬁ@) is given in terms of the data of problem (6) by inequality (2.7).
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For &—(0 the totality {U CXjJ} converges (in the sense described in Theorem 2.2) to

a unique generalized solution, in the sense of Ladyzhenskaya, of the first IBV problem for
the Navier—Stokes equations. :

In conclusion, we note that the first IBV problem for the Navier—Stokes equations,
whose given data satisfy the second of the "smallness conditions" (2.35), has trivially a
generalized solution from the class of Ladyzhenskaya [7, Chap. VI].

'3, Existence in the Large of a "Weak" Generalized Solution

of the Initial- and Boundary-Value Problem (6)

By a "weak' generalized solution of the IBV problem (6), where the known vector V =

V(flt) has a finite m,a/r,{l\/(%t)‘ +|V (fﬁt)\} A"- and Vlt-o=17(m) we mean a function ﬁ(xt)é;

H(ﬂ), 0447, having a fin:Lte matfrl_r\lUIlH(Q) , weakly continuous with respect to tE’.[OT] in W €9))
[(INKS

and satisfying the integral identity

- —- _o2 s N UJ au a d)
“{U‘Pﬁ”ﬂ)ﬂ V0000, 42l (o ’(r ;) MQ—
T

S (@0 +25,.9,,0}d0 =-S§§®d@, (3.1)
Q

for V@(mh)eW?(QQﬂj(Qﬂ,@(oo,T) =0 . Let us prove that we have

THEOREM 3.1. Let ﬁ(m,t)gLQ(QQ, UO(Q)EH(Q) . Then the IBV problem (6) has at least

one "weak' generalized solution and for this solution one has the energy estimate:

wa b e, Yo |60 <G
e Q

t

| T,AV). (3.2)

L) ey

As before, for the proof of the weak solvability of problem (6) we make use of the
Galerkin method and we shall seek the approximate solutions B (@}) in the form (2.9) from
the system of differential equations (2.10) and Cauchy initial conditions (2.11), (2.8).
For {Jﬁmxﬂ we have the equality, similar to (2.12):

ay, (g (i { Q) 0 0 )
Li“\ﬁnﬂw‘Umljdm’LVSium‘Qdm:SgU m—w& o, om0, ab, o<t <T, (3.3)
7 Jate) ) o, 05,

from which, applying the maximization operation, H8lder's inequality, making use of Gron-
wall's lemma [7, Chap. VI, Lemma 1] and using the fact that

15 00y ) <Clllyoy, n=t2,., (3.4)

we obtain the estimate:

—-

max&{lu KE3 l}dmv“lu ldQ\CG“L?(Q Sk T, A) o=t 3. (3.5)

ostal
T
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From estimate (3.5) and from the orthonormality of {%(w)} in l_i,(ﬂ) we obtain once
again a priori estimate (2.15) for the possible solutions of Cauchy problem (2.10), (2.11),
(2.8), guaranteeing‘its solvability for each h=I,2,... on any finite interval (011 .

In addition, from estimate (3.5) and from the theorem of weak compactness of a bounded
: —
set in a Hilbert space it follows that from the totality {U (m,t)} of Galerkin approxima-
~*H, -
tions one can extract a subsequence {U m(ﬂ‘ft)} , which converges to some function U(L}) weakly

in L(Q) together with the first derivatives with respect to X and U U el (Q) OIMIU O
in Qr and ﬂlﬂ@,_o

Let us show now that for fixed @ and N>l the functions q) f;(t S{,U (H}t)‘-PL(CL)+&U ‘-?gg;}d%
OQ{'/QT , form a uniformly bounded and equicontinuous family of functions on [0T] (see [7,
Chap. VI, Sec. 7]). The uniform boundedness of {-(Dnﬂ(t)} follows from estimate (3.5):

maoy |q) @(J(,)anmﬂlf(wt)" +a7/ma£r/ﬂ0m!| Q)qu “ QC(&CQ nela (3.6)
0<bsT o<tsT Lg( 3 ) Vo

In order to prove the equicontinuity of iq)ne(t)} we rewrite Eq. (2.10) in the form

¢

’LCP b= ‘VSU 4, a‘,+SU v %xd/ﬁ&g\/( t)(%gc‘ +%’%*> dao g?@dm (3.7)
Q

and from these equalities, integrating with respect to t s fromt to +At$T , applying the
maximization operation, estimating the integrals on the right-hand side by Hlder's inequal-

ity, and making use of inequality (1.6) and of estimate (3.5), we obtain the inequality:

teat

19 doab)-0, b1 <C L, ABQJ—+S 171, o) sl (5.

From the properties of the function g(ﬂl,t) there follows that, for a fixed [)/ and szf/ , the
right-hand side of the last equality tends to zero, as AJL -0 , uniformly with respect to
vl .

The functions (D %(t) for a fixed ®>0, represent (except for normalization) the inner
products of V(&Y and ‘{’C(ZX‘/) in W (Q), 0<b<T . By the diagonalization process, one can ex-
tract from {,(D"a(t)} a subsequence {,(Dnm,g(t)s , for which the functions (D,,,m’@(’(,) , for any fixed
Y/, converge for m--0 uniformly on [0,T] to the functions CDB‘(t)eC[O,TJ, E=4,21‘.. . In terms
of the functions (Ps(t) , the limit function _ﬁ'(ﬂ};)(/) of {-(}“"(m,t)j is determined for all tQ[O,T]
as: B(W/JO) =§_q>,,(t)r§@(’-1‘/) , and for Mm—o [k (W,t) converges to B(il)t) weakly in W;(Q) uni-

—_ =l - 2 — 1 -
formly relative to te[(),lli Q) _U'LP)Wl(Q) —0 s 0$t§T, V‘?(%)QWQKQ) , and V@) is con-
R !
4
tinuous with respect to tE:[O,T] in the weak topology of WQ(Q> . Then, with the aid of Fried-
rich's lemma one can easily show (see [7, Chap. VI]) that the approximations FI"”(mt) con-

verge to Tr(xt) strongly in LQ(QT). In addition, for the limit function ﬁ(ﬂ),t) , by virtue of

the properties of weak convergence, we shall have the energy estimate (3.2). Finally, with
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the aid of known arguments one verifies (see [7, Chap. VI]) that the limit function 1Ka%t)
satisfies also the integral identity (3.1), i.e., it is one of the "weak" generalized solu-

tions of the IBV problem (6). Theorem 3.1 is proved.

Energy estimate (3.2) and estimates (3.6), (3.8), as well as the similar estimates for
the weak solutions of the Navier—Stokes equations [7, Chap. VI], form the theoretical basis

‘for the construction of stable explicit finite-difference schemes for the IBV problem (6).

Quasilinear equations (1) are obtained from the equations of the motion of a continuous

medium in the Cauchy form

gig=dsz+f(oc,t), i =0 (3.9)

for the following determining equations, connecting the stress tensor TULFD and the strain

tensor I)ﬁD (D QU» l]%(U)—-Q gg OU’) (see [1, 5]):

T"PE*ZVD*‘Q&A/D (3.10)

where E.is the identity matrix. If the determining equation is taken in the form

T"'PE"’QVD'}QQ‘LD (3.11)

U;

@f »*¥ then from (3.9) we obtain the quasilinear equations

where DIG}'.) =([j’ijdb>) D:ZIG}) ?{Z_

e,

%’— VAU + U {‘%I}Ev [ %—U—j} +gm«ip=§,dw(7=o, (3.12)

more general than the equations of problem (2), where, however, the nonlinear terms which
are additional to the Navier—Stokes equations have a specific divergent~type structure.

We shall solve Eqs. (3.12) in the cylinder (QT under the IBV conditions

7|, =t®,reQ, '6|3QT=O |

40 (3.13)

and by a "weak" generalized solution of IBV problem (3.12), (3.13) we mean a function ﬁcp

HeHwW), o<t <T having a finite mox [#l , weakly continuous with respect to LE€[0T]
ostst  HOQ)

|
n VQKD and satisfying the integral identity

S S{Uq) 2 (D 'V%(p ~9,0, (—ﬁ*@lf,‘%%a%x +g¢}dﬂ SEI‘P(:LO)%U P x,0)ldz-0 (3.14)

0

#We note that since dw U=0, we have dWD(‘l‘f)E@—me(ﬁ))=de‘(@=%q
d
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- 091 -
for ch(ﬂ),t)ew'z (Q,)ﬁj(QT),Q(xD=O Then, similar to Theorem 3.1 (see also [7, Chap. VI,

Theorem 20]) one proves

THEOREM 3.2. Let :f(fn,t)eLQQQT), G, €H(Q) . Then the IBV problem (3.12), (3.13) has

at least one "weak" generalized solution which can be obtained by Galerkin's method and for

which we have the energy estimate:

Osth Wiabad Jdmngu d <, (“’H‘L(Q)’ oy 7 (3.15)

T

The proof of Theorem 3.2 can be carried out since for the Galerkin approximations

{ﬁnﬁb,tﬁ for the solutions of problem (3.12), (3.13) instead of equality (3.3) one has the
equality

%%SK*”}M@ )]d/.mvgw da = &__Xii)’dm, 0<b<T, (3.16)

from which one obtains estimate (3.5), uniform with respect to N=4{2, .. , with a constant G .

depending only on HXHLAQQ,.Mi“H“» and | . With the aid of this estimate, for the functions

CPWLCE) , introduced in the proof of Theorem 3.1, satisfying in this case the equations [see

(3.7)1:

(3.17)

j%'tq)n,@ (D=—v&ﬁl@mdm - Sv“ E;Fsdmaegvka%w g [qde,
Q - Q o)

we obtain, assuming that the elements qaﬁﬁ f=42., forming a basis in H(Q) are sufficiently

smooth so that n%¥nl¢e,Qme]<oo, inequalities of the form (3.6) and (3.8) where the con-

stants C3 and Cq depend only on I@HLQ(QT)’ HEHH(Q) s T, andg/ .

The inequalities of type (3.5), (3.6), (3.8) and Freidrichs' lemma [7, Chap. VI] allow
us to conclude (see the proof of Theorem 3.1; see also [7, Chap. VI]) that from the totality
{5"} of Galerkin approximations for the solutions of problem (3.12), (3.13) one can extract
a subsequence {ﬁﬂh} , which converges strongly in LQ(Q%) to the limit function U(X1) and
for which ﬁwm converges weakly in L;«zp to the derivative Uw . After this, with the aid
of the same arguments as in the proof of Theorem 3.1, one verifies that the limit function
Txl) is weakly continuous with respect to L&€[0,7] in W (Q) , satisfies the integral
identity (3.14), and estimate (3.15) holds for it.

For sufficiently smooth solutions of IBV problem (3.12), (3.13), the energy estimate

(3.15) is a consequence of the fact that for such solutions we have the equality:
S [kaxa'f,]dw__—& Kaxz:\' )d/x/ O (3.18)
Q

In conclusion, we note that if the determining equation is taken in the form

780



U

T=-PE+2vD+2&dE%, (3.19)

- # "
where DI(V) =(D1ﬂ(17)), Dﬂ({)’):% ov; , then we obtain from (3.9) the equations

o,

-0 3 - %—“’am*ap =} =123, diT-o0. 329

4. Solvability in the Large of the Modified Initial-

and Boundary-Value Problems of Heat Convection

In the present section we investigate the solvability of the IBV problem (7), where the
heat-transfer equation is taken in the Boussinesq approximation

05 05
B-t——xAS-H);‘—a—iK:O’ (4.1)

and of more general IBV problems of heat convection in a viscous incompressible fluid, sub-
jected to Eqs. (6), where the heat transfer takes into account partially (although in lin-
earized form) of the dispersion of the energy in the fluid in the form of heat as a conse-

quence of the kinematic and relaxational viscosity of the fluid*:
L(UV p=hahgSy , i=123; dieT-0. abhel;,

- o, DU?)
%%—XASWK%Sf%’,(v%VKT ’0— Om) xhed., (4.2)

U], ,=0@, 5|, =5, 2e0; Y20,70 - %|ag,=0,

where V is a known vector.

The merit of system (6), geqfréfed by the presence of the '"regulating" term —&b%ﬁg and
consisting in the fact that for VEEV(ID in the general three-dimensional case there exists
such a good ("strong") generalized solution of the IBV problem (6) as Ladyzhenskaya's solu-
tion of the similar initial-value problem for the Navier—S;okes equations, whose existence
has been proved only in the small, is preserved also in the investigation of the solvability
of the IBV problems of thermal convection (7) and (4.2). In addition, if VEEV(mi), then
for problems (7) and (4.2) one can prove, similarly as for problem (6); the existence in the

large of a "weak" generalized solution.

By a "strong'" generalized solution of the IBV problem (7), where the known vector

sz}’o(x) eW(MNH) , we mean a pair of functions {[U@&}),5@.L): T b e H), S(IIZ,t)E_W;(Q),

*In connection with this we note that the equation of heat transfer in a viscous incompres-
sible fluid, whose motion is described by Eqs. (1), has the form (see [11l, Chap. V], [5]):
as _oy, 20, , 90

T LAS +U, (v+ae,at eeuﬁ) @ aac
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Ost<l, having derivatives Bt ,th , 5, L,(Q), Ost&T,SmteLﬂ(Qr), having a finite “mg S{U +Ut“ut+

+5;’+5:}dﬁ0 , satisfying the integral identities

}dﬂ gﬂﬂﬁqd@r

§§{ﬁgb+aﬁ%¢d&*ﬁ;§t+0;%%;&uLﬂm'§§4'§4>
1

1900, oder, WBabeilignia), .
G
MtLS;Q’) = S\W’ HEO WU, %—2}})5 AQ=0, o<t<T, VLP(m,t)e,W:%QT) (4.4)
W

and subjected to the initial conditions

U| =@, )~S(m xe(), (4.5)

We prove that we have

THEOREM 4.1. Let —f,fteLngQ. T@MWONHWQ), 5@ €W, () . Then 187 problen

(7) has at least one "strong" generalized solution and this solution can be obtained by the
Galerkin method and for it we have the following estimates: the energy inequality

- 2 .2 9 =2 AN 0
nag &’U R T }Wﬁ(vux% gm>da\qﬁ|£x|L(Q) a5} ) (4.6)
Q T :
in the three-dimensional case the estimate
gggg;( DRt )dwxﬂﬁs ARSI )0 0 150 @) .

where CQ_’°° when ® =0 ; in the two-dimensional case, uniformly with respect to ®&[04]

the estimate®

o<t<T Ko

S{u #0045, T,deSw +SQdQ<C(|£ J L@, .,ws 15 ,v,;l). (4.8)

T

In order to prove the solvability of problem (7) we make use once again of the Galerkin

- 3
method. Let {‘? (m)} k=1,2,... be a complete systemof functions in W (ONH(Q) and 1et (Y (@), k=
={,2,. , be a system of functions, complete in \V «), which will be assumed to be orthonormal in

l,«D- We shall seek the approximate solution iU, 5 3 in the form
Tad =§cm(‘o)%), S0 =2 DU, w12, @

*See the remark to Theorem 2.2.
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from the system of differential equations [see more explicitly in (2.10)]
) WL 9110 @dz-g S0 @da, L, odeT, (4.10)
a 0

S S:me(w)d/l‘/ +x Ssltq’mxdm_suzsn¢mdm=0, m={.Mn, O<t<T, (4.11)
Q 0 b

Q

and the Cauchy initial conditions

(mflt Cw,to_ o €=I,.._,n/, (4.12)

where C;w and Z%” are the coefficients from the sequences of functions
Lo
(",)(:r/) Z_C ‘P (x/> , s(m)(x!) =Z_@KW¢K («Tf) ) (4.13)

converging for Yl«-’(D to the initial functions U(J‘/) and S(:I‘, in the norms of W (Q) and
VV((D s respectlvely

We proceed to obtain the a priori estimates for the Galerkin approximations {EW,SW}.
For their derivation we rely heavily on the similar estimates obtained in Secs. 2, 3 for the
Galerkin approximations " in the problem (6) and we shall indicate in detail only those

(few) changes which are caused by the transfer of heat in the fluid.

First of all for iﬁ” 5"} we obtain the equalities [see (2.12)]

x S[U Teepfi t]dmvSIU dac &gudx-wg%q—"%‘; %"%— gSS v, dx, (4.14)

| . w2 w2 o w.n
~-d’-3|5 ‘dw+%§|5m|dm=0, SU"SS da=0, o<t<T (4.15)
2 d/t K L 1
. 0 Q Q .
from which, similar to inequality (2.14), we obtain the energy estimate

it el }dmj&(w 1S <G

ost<T

Lm,mmm 151 ) (4.16)

-n=4,_2,... .
From inequality (4.16) and the orthonormality of the systems iﬁlﬂ@} and {QLCQﬁ in Lzﬂd)
it follows that the Galerkin approximations iﬁ",S"} can be constructed for each hW=1,%,..

on any finite time interval [(,T] .

Then, with the aid of Eqs. (4.10) and (4.11) and of estlmate (4.16) one shows [see
(3.6)-(3.8)] that the functions Qg () —S{u (G, + 2T, %m}dm and W g(h)= SS(fr,t)w (@) dex,
0<t$T » for fixed B and n>£ form a unlformly bounded and equicontinuous famlly of func-.

tions on [0T] :

HTW;G&)\SC(&C) mazy |, 44l <C, nal, (4.17)
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test

10, 1h#48)- OO <G (6., g BURE' | 1T gy,
, t

(4.18)

'w",t(tihﬁt) —-U)n,l&)l QC;(& Cﬂ)m r W?K, O&t&T .

Similar to inequality (2.18) is the estimate, uniform with respect to N=4,2,... and ®>0 »

f{185 ol it 15wl da < (lao it 15 o)

(4.19)
Q
Then, similar to equality (2.19), one obtains the equality

R -t 2 n 2
é‘ S{/‘Ue(ﬂ'/,{z)l"’mwwth’lst }dﬂ’+5 IUﬁl*ﬁst' d/f/=

0 Q

T - - 4 .20

S tu;dm-}. ktu)vnr 536,,& a(ﬂ agtd/m-[— ( )

Q

n
+955:";d’“ Suttsmkszd/ﬂ , 0<b<T ne,..
Q . Q

. ,
(we note that SUKStshcdﬂ::O ). In the right-hand side of equality (4.20) there are two new
0 k

terms in comparison with equality (2.19). The first one can be estimated by HSlder's in-
equality, while in order to estimate the second term it is necessary to distinguish between
the three~ and two—dimensional domains Q [see (2.20) and (2.24), however, this is necessary

only if we follow the dependence of the constant on @>() in the final inequality].

1f () is a three-dimensional domain, then, estimating the last integral in the right-
hand side of (4.20) with the aid of H8lder's and Cauchy's inequalities and inequality (1.6)

and making use of estimate (4.16), we obtain

I& 15 Shdal < "Srswtl o oG w;trm. .20

After this we obtain from equalities (4.20) the estimate:
w2
i Kgl{m [l +15 1)%53@; S+ 115,40 <

L (4.22)
cg(ﬂg,it\lw, I3, 0 Wy ) hel 2,

where Cg—aal for ®~0 [see (2.22)].

1f () is a two-dimensional domain, then, estimating the last integral in the right-hand
side of the equality (4.20) with the aid of HBlder's and Cauchy's inequalities and of in-
equality (2.23), we obtain:
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Su':tsls':dals—"g-‘gnﬁ;fdmégls et (vag;S dar- S(ut1+15t1)d ' (4.23)
a k Q- -

w2
and, by virtue of (4.16), Sﬂ'ledeCL‘(QT) . Then, from equalities (4.20) one obtains the

estimate [see (2.27)]:

S(IU ! +%lUtl +[5; )dm+5§ (55T + 150, dQ <

o Q; (4.24)

<G UEL 0y 1 18y 1), w2,

o<t<T

where the constant C“ remains bounded as ®-0.

Finally, with the aid of Eqs. (4.10) and (4.11), differentiated with respect to t , and
of the estimates (4.22) or (4.24) one shows that the functions

E]fw’e({,)sél{-&:(x,’c) z?;(:r,)ww t%mjdx and T z(’c) S St(w,f)%((l‘/)dﬂc, o<t <T,

form, for a fixed 8 =1{,2,... and nsZ » @ uniformly bounded and equicontinuous family of

functions on [0T] :

{)Yé%lﬁl@t(t)l ) mlﬁme(‘wl sQ{fﬁ), n=1,2,.. (4.25)
t+A

19,041 < COORT ] 1T, odb),
t

(4.26)
15, (b+at) -5, (DI CUNAE, nob, 0<tsT,

where the constants ( Cm depend on the constant Cg if {) is a three-dimensional domain and

12
on the constant 121 if () is a two-dimensional domain.

Estimates (4.16), (4.22), (4.25), (4.26) in the case of a three-dimensional domain Q
and estimates (4.16), (4.24)-(4.26) in the case of a two-dimensional domain () are suffi-
cient in order to conclude, with the aid of the known arguments ([7, Chap. VI]; see also the

end of the'proof of Theorem 2.1), the proof of Theorem 4.1.

Moreover, estimates (4.16)-(4.18) remain valid, obvicusly, also in the case when VE
V.(x,t)e@"o(ﬁr)ﬂj(QT), Vlt=o=ﬁ,(m} , and allow us to prove, as in the case of the IBV problem
(6), the existence of at least one "weak" generalized solution of the IBV problem (7), which,
by analogy with problem (6), we define as a pair of functions {U(T,T/) 5(x bl ’T)’(ﬂr«,t)EZH(Q),S
(oct)eL,(Q) O<t<T having a finite ";‘g’z M"H(Q) and gsxda , respectively, and satisfying the

T

integral identities

SS{U%%@% 9,459, +®V(a:\‘,)(av 0%\ )m%’m }dﬁ
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| G- 2iOmopa~{{7040-4 || 5040,
a Q’l‘ QT

V@(m,’(,)e:\;l?(@?ﬂj(@ BT -0, (4.27)

%\ {S\P 1,4 05Y, }d@ SS(m)‘P(mo)d:n V‘l’(xt)ew (Q) WxN=0 (4.28)
Q;

As we have just mentioned, one has the

THEOREM 4.2. Let ¥(x,t)eL,(Q9,5,(m)eH(ﬁ), S,(@E,L,(ﬂ). Then IBV problem (7) has at least

one "weak" generalized solution, whose solution can be obtained by the Galerkin method and
for it we have the energy inequality:

o<ter S(U(ﬁ:t)H&U +S)d,m+ SS(VU +x5 )d/Q<

(cﬁ(ﬂg“LQ(QT) )"U.,“H(Q), ﬂSal\ L,(Q) , m_g:‘/lvm‘ ) . (4.29)

By a "strong" generallz'ed solution of IBV problem (4.2), where the known vector V:

’U'(fl‘,)ew Q)ﬂH(O) and m%&ﬂ)'u‘!@ , we mean a pair of functions {‘U(’.X‘zt) S(mt)} having the same

differential properties as the "strong'" generalized solution of problem (7), satisfying in-

tegral identity (4.3) and the integral identity
Wy o (Vo 000 \|(00; 205 L (2
ool v BR| By o

and subjected to initial conditions (4.5). ’'Similarly to Theorem 4.1 one proves

THEOREM 4.3. Let Y,zeLg(Q),U(T/)QW (OONHA) and mas 1T, L l<0 , § (m)ew (D

Then, IBV problem (4.2) has at least one "strong" generalized solution {U,S} , this solution
can be obtained by the Galerkin method, and for it we have estimates (4.6)-(4.8), where the

constants (, -, depend also on mgmlﬁoﬂ],
ﬂ v

In conclusion, we note that for IBV problem (7) [and also for problem (4.2)], where
- 10~ o
the known vector V('.t,t)e(', D(Q,[)OJ(QT) , one has the uniqueness of a "good" generalized solution
which is defined as a pair of functions W(m,t),S(m,t)], subjected to the following conditions:

’U(il‘,t)EH(_Q) 0st<T, it has a finite "% [I'UIIH @ and has derivatives ﬁmeL,(Q'); S(x,t)ev,‘,(QT)n

Lq,.b(QT) with q/ and 7, satisfying one of the conditions (see [7, Chap. VI]):
y velg,00) | q,e(nzoo] or q>n,1,=00,n=2,3; (4.31)

and satisfies the integral identities
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8081{11 $+&Bw<_15ﬁ Vﬁx -0 *qu’)'ka(m,t) ; (BU. 0y ¥¢)+% 50 }dQ—

k by ) (4.32)
N SX {ﬁ(x,tﬁ(‘”,t)*a’i@x}d«w t S{i(xx)@(w,o) +ae27;(m)(—15x}dm=0, o<t <T,
a a
&Q (S“V{" Sm%%%)d(l-& Saaide +S S @Y@,0dx=0, o<t<T -
o a

1

for any ¢(@,t)€H(Q),O$t'$T , and such that @ 7(-’;t€l_a(ﬂ>,0$t§‘ , and for any q)(oc,t)e:WZ‘(QT)

The proof of this statement is obtained by combining the proof of Theorem 1.1 with Lady-
zhenskaya's method of the proof of the uniqueness of the generalized solution from \C(Q{)ﬂ

qu({l& , with % and U subjected to one of conditions (4.31), for the IBV problem for the
nonstationary Navier—Stokes equations (see [7, Chap. VI]).

For the modified equations of magnetohydrodynamics (8), the presence in the equations
of the motion of the fluid of the "regulating" term —R'a does not cause the effect which

it gives in the investigation of the solvability of the IBV problems (6) and (7). The
"strong" generalized solutions of IBV problem (8), i.e., the solution (6;“ }, which has de-
rivatives ﬁx,ﬁm,ﬁteLg(Q),0$t$I and FLtG,LQ(Q.D, in the three-dimensional case exists only in
the small, while in the large there exists a "strong" generalized solution in the two-dimen-.
sional case (more precisely, the two-dimensionality, i.e., the vanishing of one of the com-
ponents and the dependence of the remaining two components only on two space variables, is
required only from the vector of magnetic intensity‘ﬁ ), and in the three-dimensional case
there exists a "weak" generalized soclution (solution of Hopf type), i.e., a solution U] H)
possessing derivatives 1)€ZL.(Q) O‘t<T €L(Q) and such that ﬁ is weakly continuous
with respect to t€l0T) in WQ(Q) » while H(It) is weakly continuous in L;GD All these
statements are proved basically in the same way as the corresponding results for the stan-
dard equations of magnetohydrodynamics [12]. Small necessary variations in the arguments

occur in Secs. 2 and 4.

5. A Priori Estimates for the Solutions of Problems (9) and (10)

Let {) be a two-dimensional domain with a smooth boundary Eﬂ), situated in the half-
plane {1,2:U>0} at a distance 2=0 from the axis 0>0, QT=£)X(QT)5 0<T<®, By the general-
ized solution of IBV problem (9) we mean a function Qijzf), which together with all the
derivatives occurring in Eq. (9), belongs to L.(Q;) and satisfies Eq. (9) almost everywhere
in Q, We show that we have

mEoREM 5.1. Let F(vzl)el (@), 4, Hel, ),

boq; [m:O . Then for any gen-

eralized solution of problem (9) we have the estimates:
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o\t

XDWW( q’iz“q’;)]d«ﬂ+VS§(W:L+FV;+‘P;MQ <GBl g 101, Y, 6D

T

<P\ (5.2)
m”“w © A EARL 40 19, ) 5
S\{¢z+lv¢th+q/:u+q{m+ ql:zz.sd/a §Cs(5, v, a)”q 762)5 (5.3)

8,

where Cg and Ca-—>00. for =0 and 5—’0.

In order to prove estimate (5.1) we multiply Eq. (9) by 4) and we integrate over Qtv
o<t<T . Then, making use of the fact that the integral containing the nonlinear terms is

equal to zero:

B 0z U o0z o T ’ (5.4)

SMN 9 D20y 24 ) DKP-&D’ﬂlf}dQ -0

G

integrating with respect to time and integrating by parts with respect to the space vari-

W
ables, we obtain the equality. (we note that DY =AY- 4,9L )

';‘S(V‘H”L az>d'QL 504‘(15 ~% —)dﬂ t+VSS D‘KA‘P )dQ- jSFM.l (5.5)

= 0
Qt

from which, applying H8lder's inequality, the second fundamental inequality for the'Laplace
operator [7], and Gronwall's lemma, we obtain estimate (5.1).

1
In order to prove estimate (5.2) we multiply Eq. (9) by 3{04-38 qu/) and we inte-
grate over Gh” 0<t}4-r. Making use of the fact that the integral containing the nonlinear

terms is once again equal to zero:

D2 (9% 0 Dv-zD¢ 3% 0 qu-aem}
S& T {az T TR d“Q 0 (>-6)
1
and integrating with respect to time, we obtain the equality:
' 2 v i<t 2 2 ) .
-‘—S (D¢-2DY) dﬂl +vmgg(__9 ¢) dQ=VﬁD—\%mdQ+SS%(D‘P-&D‘P)dQ (5.7
2() T 0 T 4 0

Q t t
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from which, applying HSlder's inequality, the second fundamental inequality for the bihar-

monic operator [7, Chap. I}, and Gronwall's lemma, we obtain estimate (5.2).

In order to prove estimate (5.3) we multiply Eq. (9) by q& and we integrate over G% ,
0<b<T . Integrating by parts we obtain the equality:

S S vy s %%)d(l ’ %S& DWt(AKPt—% %’)@Qwﬁ yDvdlr

; th
t]

t
SDw-gﬁ«p Wy Y a%)mrgwtda,
1

(5.8)

v 0v "~ 0v 0% )

Q t

from which, applying H¥lder's inequality, the second fundamental inequality for the Laplace
operator, and estimate (5.2), we obtain estimate (5.3).

By the generalized solution of boundary-value problem (10) we mean a function WCQZ).
which belongs, together with all the derivatives occurring in Eq. (10), to L}&D and satis-

fies Eq. (10) almost everywhere in the domain Q. Similarly to Theorem 5.1, one proves

THEOREM 5.2. Let _FbuZDéngfD. Then for any generalized solution of problem (10) we

have the estimates:

(5.9)

e <C(8,v.IFI

WQ(Q) L,(Q)) ’

141 " <C.(&,v,2,IFI (5.10)

W)

where C5°900 for @—( and 0-0.

L)

It is easy to verify (see also [8]) that the generalized solution of IBV problem (9)
considered in Theorem 5.1 is unique (in the large), while the generalized solution of bound-

ary-value problem (10) considered in Theorem 5.2 is unique in the small.
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ADMISSIBLE GROUPS OF TRANSFORMATIONS FOR CERTAIN THIRD-ORDER
QUASILINEAR EQUATIONS

A, P. Oskolkov UDC 517.9

We construct the infinitesimal operators of Lie algebras for the broadest group of
transformations leaving invariant some quasilinear third-order equations with two
independent variables occurring in the mechanics of continuous media.

With the aid of the well-known procedure of continuation theory [1-3] we find the ad-
missible groups of transformations for some third-order partial differential equatlons In

order to obtain these results it has been required to construct the thlrd extension X of an
operator.

1. The broadest group of transformations admissible for the equation

U -Vlkgy-2h, =0, v, =Consl>0, on)
is infinite-dimensional. 1Its Lie algebra is generated by the infinitesimal operator
0, 8 J -
= U =

where O, (, ,(l, are arbitrary constants while Ch&xi) is an arbitrary smooth solution of Egq.

1.

2. The broadest group of transformations admissible for the equations

Uy, + WUVl =R (U + U ) <0, 3)
Ty + WUV Uy~ B(Uy o F Ul U U ) =0, @
U+ Ul + LU =0,  L=Consl >0, (5)

has three parameters. Its Lie algebra is generated by the infinitesimal operator

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo
Instituta im. V. A. Steklova AN SSSR, Vol. 52, pp. 158-159, 1975.
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