
SOME QUASILINEAR SYSTEMS OCCURRING IN THE STUDY OF THE MOTION 

OF VISCOUS FLUIDS 

A. P. Oskolkov UDC 517.994 

We prove the existence and uniqueness of generalized solutions of initial- and 
boundary-value problems for the modified equations of motion of a viscous fluid, 
for the modified equations of heat convection, and for the modified equations of 
magnetohydrodynamics containing linear terms with derivatives of third order which 
are models in the description of the flow of some classes of fluids possessing re- 
laxational properties (including the presence of heat and electromagnetic fields). 

In [i, 2], for the description of the flow of a class of non-Newtonian fluids, viz., 
that of weakly concentrated aqueous solutions of polymers, a quasilinear system of third 
order has beensuggested, generalizing the Navier--Stokes system of equations, 

~ % ' - ~ - ~ = -  ,, - - -  ~ ) J l  h,  
% . (1) 

where ~r is the relaxational viscosity coefficient. In [3-5], for the solution of 
the first initial- and boundary-value (IBV) problem relative to a simpler quasilinear sys- 
tem* of the third order: 

under the additional boundary condition 

(2) 

one has the a priori estimates: 

=0 (3) 

I [~ (~,t)+ ~lYx f ~ tT~r~]gL'z+' l)=~ ~ ~1{. (4) 

~T 

(5) 

*Obtained from system (i) for ~gk a [~ ~j~ ^ ~j ~k~+~) =0' ~=~,~,~ 
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and on the basis of these estimates it has been attempted to prove, with the aid of a modi- 
fied Galerkin method, the existence of generalized solutions of problem (2), (3) for which 
the integral (4), respectively, integrals (4) and (5) are finite. This attempt is unsuccess- 
ful: in order to carry out the modified Galerkin method applied in [3-5], it is necessary 

to construct a system of functions k~) , complete in H[~) and such that the solu- 

tions of the boundary-value problems g6&~k[~)-~k[~)=~[~)o~61]; ~IDN =0~ k=i,%, .., ,should 

also form a complete system in W~[~)~[~i, but this, as a detailed analysis has proved, 

is not in general, possible in the case ~ .* Thus, the question of the solvability 

of the IBV problems (2), (3) and (2), and of similar boundary-value problems for the system 
(1), remains open. An exception is the Cauchy problem for system (2),~ for which estimates 
(4), (5) allow us to prove, with the aid of the above-described modified Galerkin method, 
the existence of the generalized solution with finite integrals (4) and (5) under the con- 

dition that the initial function ~It=0=~), ~e~ tends sufficiently fast to zero for 

1OOlite. In addition, the estimates obtained in [6] for the solutions of the Cauchy problem 

for Eqs. (2), allow us to obtain the solvability of this problem in the small with respect 

to ~0~$~) and in better classes of functions, possessing finite integrals 

E [0, 3 F 

- -  j ~ ~ I ~ [  ~ tl~ ' I '~'~ T ~ 
under the condition that ~(~---W, {E~ ~{L~, w h i l e  EE ,o4 T, and IolI~I1W~,0[E~ 
~t ~oo We note that the uniqueness theorems of the different "good" generalized solu- 

tions of the initial- and boundary-value problems for system (i) and (2) proved in [4, 5] 

(see also [6]), allow us to hope that the boundary condition ~I~T=0 is sufficient for the 

correct formulation of these IBV problems. 

In the present paper we investigate, first of all, the first IBV problem for the quasi- 

linear system obtained from (i) by the linearizationof the terms with third-order derivatives 

with respect to x: 

--~ ~ ~,0 - o 

and we assume that the known vector V[~O(~T~J(~T). For problem (6) we prove a uniqueness 

a "good" generalized solution, possessing, in particular, derivatives ~=~L~[~ theorem of 

and, depending on the occurrence of the argument t in ~,~) , existence theorems for various 

*If ~F, then from the fact that the free term ~k[O~) is solenoidal it does not follow, 

i n  g e n e r a l ,  t h a t  t he  s o l u t i o n  ~k(~c.) i s  s o l e n o i d a l .  

#Also the boundary-value problem for system (i) with ~(~ ~)-0 (p. 779). 
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generalized solutions of problem (6) in the large: if ~=--~[05)---~.~d'(~) ~](~) , then 

the existence of "strong" solutions possessing derivatives ~i~t.~t6LL,~Q), 0~t~T (so- 

lutions of the Ladyzhenskaya type for the Navier--Stokes equations [7]) and if V~V~.t)~ 

~"'~(, , t:O='~,(.OC., ') , then the existence of "weak" solutions possessing derivatives ~/x ~ 

[~[Q%~ .0~T and weakly continuous with respect to ~e[0,~] in WI~(~) (solutions of the 

Hopf type [7]).* 

Similar results are obtained for the modified equations of heat convection 

+,~ ~5 ~t~5 _~ .~=~, ~,b~Q~, ~:=~t~o, (7) 

and, in the two-dimensional case, for the modified equations of magnetohydrodynamics: 

at 

In addition, we obtain a series of a priori estimates for the solutions of IBV prob- 
i ems 

(8) 

D~ = - ~ + Y* ~ ~ (~,~,L)~Q~ 

= . a Q T  = 

(9) 

and of their corresponding stationary boundary-value problem 

Wl a~ I 
lan = ~ Ion =~  �9 

=F(~ ~)(~z~D, 1 ( 1 0 )  

Equation (9) is obtained from system (2) by investigating the axisymmetric flows having the 

angular component of the velocity equal to zero: ~e=0 in the cylindrical domains obtained 

.'X. , .  1 

*The additional smoothness of ~,~) with respect to the variable L does not improve the 
situation. 
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from the revolution of the plane bounded domain ~=[D,~:D>~>~] about the ~:0 axis, by in- 

troducing the flow function ~(D,B,~):~ = ~  ~=-~ , and by deleting the strongly nonlinear 

terms containing the product of the second and fourth derivatives of the function ~ with 

respect to D~ (see [5, 6, 8]). 

In [5] (see also [9]), together with the IBV problem (2), (3), one has investigated 
the IBV problem 

--0 , ~fl; ~ 0, 

(ii) 

which has a unique weak solution (solution in the sense of Hopf [7]) and for which with the 
aid of the standard Galerkin method one has proved the existence in the large of a general- 
ized solution with finite integrals 

O.~t~X (L 

if %To(OCJF. ~ E-L~ ~ and of a generalized solution with a finite integral 

(12) 

0~tcT 

i .   ,mi,ar re.u t, a .o if ,  problem 

(13) 

(14) 

Namely, if the linearizing vector V(~,~)r then problem (14) has a unique weak 

solution (solution with a finite m~/~llL~(fl)0-*t.~x ); if Vk~,~)~_~'~ ~%,~)~(OT~, 

then problem (14) has a generalized solution with finite integrals (12); if, in addition, in 

~T the mixed derivatives ~t~J and ~t~LL~T) are bounded, then problem (14) has a gen- 

eralized solution with a finite integral (13). These results are proved in the same manner 

as their analogs for problem (ii). 

The paper consists of an introduction and of five small sections, in each of which one 
has adopted its own (binary) numerotation of the formulas and the constants. The author 
expresses his sincere thanks to O. A. Ladyzhenskaya for constructive discussions, in the 
course of which the above-mentioned deficiencies of the papers [3-5] have been revealed, 
necessitating the writing of the present paper. 

i. Uniqueness of a "Good" Solution of the IBV Problem (6) 

A "good" generalized solution of the IBV problem (6), where the known vector V(~,t)~ 

C~(~T)AJCQT)" - Vlt=0 =~o (06)~ is a function ~(~,t)eH(i]),0~t~T , having a finite ~ ll~{mt)llHCn) , 
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possessing derivatives~=~c~L~(~T~ and satisfying the integral identity 

(1 .1 )  

.0. n 

for any ~[OC,t)~H[~), 0%t ~-I- and such that ~,~zt~L,(~), O,~&T . We show that we have 

THEOREM i.i. The IBV problem (6) has at most one "good" generalized solution. 

Indeed, assume that problem (6) has two "good" generalized solutions ~i and ~. Then, 

their difference ~{~s satisfies the integral identity 

. . . .  L+:Z/ 

$ 

We set in (1,2) = ~? ~, assuming that ~(sc , t )~o  for ~<0 and then we 
0 

tend to zero. Then we obtain for ~,~) the equality (see [7]) make 

(1 .2 )  

0 ~t kt  Qt ~ k~ j. ~, 

(1.3) 

It is easy to see, integrating by parts, that 

(1.4) 

J K J . 

Qt 
A p p l y i n g ,  f o r  the es t ima te  of  the f i r s t  i n t e g r a l  i n  the r i g h t - h a n d  s i de  of  ( 1 . 3 ) ,  the 

H~ider inequality and the maximization operation, and making use of the inequality (see, 
e.g., [7]) 

II oo llL,{O )  CnlI%IIL ( ), (1.6) 

as well as that of inequalities (1.4) and (1.5), we obtain from (1.3) the inequality 

*In the process of the derivation of (1.5) one requires the second derivatives of V[oc,i,) 

with respect to ~, but since in the final result they do not occur, in order to obtain (1.5) 

it is sufficient to make use of the averages of ~ over ~ with the subsequent limiting pro- 

cess of making the averaging radius tend to zero (see, e.g., [i0]). 
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m o~ ll~ IIl.l(nr , o4G, 
~I " ~ '  ~ ..- @t ( l . 7 )  

from which, as is known, it follows that E}(.sC,t)~O in QT" 

We consider the stationary boundary-value problem corresponding to the IBV problem (6) 

�9 . �9 

(1.8)  

and by a "good" generalized solution of the boundary-value problem (1.8) we shall mean a 

function ~(oG)~(11) ~ W$(~) satisfying for V~(~)e~(~) the integral identity 

fl 

Setting in (1.9)$=~, making use of the fact that ~;O~:0, 

ities (.1.4) and (1.5), applying H~ider's inequality, andmaking use of Freidrich' 

iCy [7] 

(1.9)  

making use of equal- 

s inequal- 

I1~ llL(~). ~Cnll~ll,(n) , ~{(~)~_Hcn), ( i . io )  

we obtain for any "good" generalized solution of problem (1.8) the a priori estimate: 

C 
~ 

( v-~ _~tV=I n 
l l  

(l.ii) 

With the aid of estimate (i.ii), similar to Theorem i.i one proves 

THEOREM 1.2. Boundary-value problem (1.8), under the condition 

(1.12) 

has at most one "good" generalized solution. 

2. Existence in the Large of a "Strong" Generalized Solution 

of the Initial- and Boundary-Value Problem (6) 

Assume ~ is a two-dimensional or a three-dimensional bounded domain. By a "strong" 

generalized solution of the IBV problem (6), where the known vector V:--V(%)=~0~)~W;~)~ 

H(Q~ , we mean a function-~0~)eH~), o~t~, possessing derivatives ~,~t~J- (~),O~-~T-- , having 

a finite ~ ~(iT~(~,~)§ +~t)~-'~ ~2 ~ , satisfying the integral identity 

r~ t l.,cb~ "\0~; (J~;/U,,T,.LI~,, J J.~ 
~ t  J ~ J " 0 t 
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for '~tJiJ(.3r.,,[,)~,Wo~.~].)llJ(.~.[) , and subject to the initial condition 1)'1t=0='0"o(3C), goal').. 

The fundamental result of the present section is 

I70(~)~W~)~(~). Then the IBV problem (6) has at 

least one "strong" generalized solutionwhich can be obtained by the Galerkin method and 
for any such solution one has two series of estimates: the energy inequality 

II 
O ~ T  ~ '- 5. ' 

i n  the  t h r e e - d i m e n s i o n a l  case the es t ima te  

(2.2) 

where ~ --->oo for 

e [o, .I ] 

o.<t4T (2.3) 

~-~0 ; in the two-dimensional case the uniform estimate with respect to 

(2.4) 

Proceeding with the proof of Theorem 2.1, we note first of all that for the solutions 

of problem (6) the derivative ~t~,O) for L~s and ~o~,0)~L~Q) is uniquely de- 

fined as an element of the space WI(~)~(~) . Indeed, by virtue of �9 (6) 

(2.5) 

while by virtue of the condition on ~(0~) and ;(~,0) F(~s From the theorem on the or- 

thogonal decomposition of the space L=~) there follows [7] that ~t[05,0)-~A~t(~, 0) and ~a~ p 

are obtained as the projections of F[~) onto the subspaces 3[f)) and G~D). Then, solving 

the Dirichlet problem 

(2.6) 

we find that [9] ~t(~,0~i~)~(~), and, by virtue of the first fundamental inequality for 

elliptic equations, we shall have for ~t(~,0) the estimate: 

(2 ,7 )  

In order to prove the solvability of problem (6) we make use of Galerkin's method. Let 

I~K(S~)] , ~=~,2 .... , bea complete system of functions in W~Q~[Q) which can be assumed 
-" 3 

to be orthonormalized in L=[~) . Therefore, for any function <(o~)~Q)0H(~ ) there exists 

a sequence of functions [~)(0~)} : 

k=4 
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5 
which converges to ~o(9~) in the norm of W=C.O_') a s  ~1, -*~176 

We shall seek the approximate solutions G~) of the problem (6) in the form 

(2.9) 

where the functions ~Q~) are obtained from the system of differential equations 

O ~ 0 o 

" f! \- j - v  :~ 0 
( 2 . 1 0 )  

and the Cauchy initial conditions 

0 r  ~ , . . .  . (2.11) 

We multiply the g-th equation of (2.i0) by ~(~) and we sum with respect to g from i 

to ~ . Integrating by parts and making use of equalities (1.4) and (1.5) (with ~ ~Om and 

V=_Oo{~) ), we obtain the equality: 

from which, applying HDlder's inequality, making use of Gronwall's lemma (see [7, Chap. VI, 
Lemma I]), and using the fact that 

(2.13) 

we obtain the inequality 

0 ~  

w h e r e  t h e  c o n s t a n t  C 5 d o e s  n o t  d e p e n d  on ~ .  From e s t i m a t e s  ( 2 . 1 4 )  and  t h e  o r t h o n o r m a l i t y  
of { ~ K ( ~  t in [~(O) , there follows an a priori estimate for the possible solutions of Cauchy 
problem (2.10), (2.11): 

~l,= ~, ~ , . , . ,  ( 2 . 1 5 )  

which ensures the unique solvability of Cauchy problem (2.10), (2.11) for any tt=~,~, . on 

any finite time interval [0,~]. 

dq. 
We multiply the ~-th equation of (2.10) by ~--~-, we sum with respect to ~ from 1 to ~, 

and we write the obtained equality for ~ =0 . Integrating then by parts, we obtain the equal- 

ity: 
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fl ~ D 

( 2 .16 )  

from which, applying the inequalities of HSlder and Cauchy, inequality (1.6), andmaking use 

of the fact that 

W,C ) II~~ ' ~ = ~ ' ~ '  (2 .17 )  

we obtain estimate [see (27)]: 

.(2 
( 2 .18 )  

which is uniform with respect to ~4,~,...  and ~>~. 

We differentiate Eqs. (2.10) with respect to~ we multiply the g-th equation by d6~ , 

and we sum with respect to g from i to �9 . Integrating by parts and applying once again 

equalities (1.4) and (I.5) (this time with ~ m ~ and ~=~(~)), we obtain the equality: 

(2.19) 

If ~ is a three-dimensional domain, then, estimating the second integral on the right- 
hand side with the aid of the HSlder inequality and of inequality (1.6) and applying esti- 
mate (2.14) we obtain: 

86,12 
D 

( 2 . 2 0 )  

Then from (2.19) we obtain the inequality: 

~ ,  ~ ,..~n, ~ j ~ n ,  2 ~ ..~ ~ ' 

O~-<T,  ~=.l,:~, , . . ,  

C5 ~ -~ J �9 [Io, l+ ro tl 
f2 (2.21) 

from which, applying Gronwall's lemma and making use of estimate (2.18), we obtain the es- 

timate: 

Oc--t,~T ~) . . . .  ' (~T. f 2 
(2.22) 

where C~--~ O~ for ~-~0. 
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If ~ is a two-dimensional domain, then, applying for the estimate of the second inte- 
gral in the right-hand side of equality (2.19), instead of inequality (1.6) the inequality 
[7, Chap. I]: 

(2.23) 

we obtain: 

+ I0],t d/z. (2.24) 

Then from (2.19) we obtain instead of (2.21) the 

" I-" OLo , " ira 14_aelO~t I .  }d~+~o IO=t doe, ..< Ig m~l o=1 

following inequality : 

�9 -.~m. i 1 - ' , l l ,  ~ ~ . m ,  ~ ' 

n ~q 

O<t~T, n,=L'~,. �9  

(2.25) 

from which, applying once again Gronwall's lemma and making use of estimate (2.14), by vir- 
tue of which 

l~ml ~(~ "~ T ~ (2.26) 

we obtain instead of inequalities (2.22) the estimate 

nr 
O~t~T 

the constant ~ remains bounded for 8B-~0. where 

We prove now that for a fixed ~ and I r  the functions ~, ..~[~:(aT,,t)q)(X.,) ~ {m]C~ 
form a uniformly bounded and equicontinuous family of functions on [0,T] The uniform 

boundedness of [~,[(t)] follows from estimates (2.22) or (2.27): 

(2.27) 

mo~ I r I10~11L 'n) m mm~llo~tll..m.~llqcJIk m)~CJ,), ~ = ~ (2.28) 

where the constant ~9 depends on the constant C~ in the three-dimensional case and on the 

constant ~! (i.e., does not depend on ~>0) in the two-dimensional case. For the proof 

of the equicontinuity of t~,~(~)l , we differentiate the Eqs. (2.i0) with respect to ~ and 

we write the result in the form 

11 0 ~ " 

+ , O,-t-<T, 
o 

(2.29) 
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from this equality, integrating with respect to ~ from ~ to l+Al~ , estimating the inte- 

gral in the right-hand side by H~ider's inequality and making use of estimates (2.14), (2.22), 
and (2.27), we obtain the inequality: 

t+~t 

where the constant 40 depends on C7 in the three-dimensional case and on O, in the two- 

dimensional case. 

Estimates (2.14), (2.22), (2.28), (2.30) in the three-dimensional case and estimates 

(2.14), (2.27), (2.28), (2.30) (uniform relative to ~>0 ) in the two-dimensional case allow 

us to conclude (see [7, Chap. VI]) that from the totality ~,t)] of Galerkin approxima- 

tions for the solutions of the problem (6) one can extract at least one subsequence [~(~,~)} , 

for which for ~ ,g , ~ , g~t converge weakly in U=(~), uniformly with respect to ~ 

[0,TJ , to the functions ~ ,~ , ~ ,~t and these functions are continuous with respect to 

~e[0,~] in the weak topology of L=C~),~i converge to ~ strongly in q(~# and for the 

limit function ~(~,~ , by virtue of the properties of weak convergence, estimates (2.2), 

(2.3) or (2.2), (2.4) will hold. Then, with the aid of the known arguments [7, Chap. Vl] 

one proves that the limit function ~(~,~) will be one of the "strong" generalized solutions 

of the IBV problem (6). Theorem 2.1 is proved. 

Let ~ be a two-dimensional domain. In this case for the "strong" generalized solu- 

tions ~,~ of problem (6)one has estimates (2.2), (2.4), whose right-hand sides do not 

depend on ~>0. Then from the totality [O~Z~] one can extract at least one subsequence 

[~(~,~)} , for which for ~-~0 we have 

i 8" converges s t rongly  in L,CII to ~C=,t), ~:= and ~{ converge weakly in L, CQ# to W= 
and i I , the limit function i(~,t) satisfies trivially the inequality 

JJ 

it satisfies the integral identity 

Qt �9 Qt 
for V~\~,t ' )eW',  tQT)~ and the i n i t i a l  condition .~,), i.e., it is a general- 

ized solution in the sense of Ladyzhenskaya of the first IBV problem for the nonstationary 
system of Navier-Stokes equations [7, Chap. Vl]. Since such a generalized solution is unique 
[7, Chap. VI], we have proved 
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THEOREM 2.2. Let~ be a two-dimensional bounded domain and let , i ~k=  ~ ~ ( ~ ) ~  

~'~(~)~ H(~) .  Then for ~ - * 0  the to ta l i t y  {~5~, t ) ]  of "strong" generalized solutions of 

the initial- and boundary-value problem (6) converges (in the above-described sense) to a 

unique generalized solution ~(~,t) , in the sense of Ladyzhenskaya, of the first IBV problem 
for the nonstationary system of Navier--Stokes equations. 

The analysis of the proof of Theorem 2.1 shows that estimate (2.4), uniform relative 
to ~>~, as well as Theorem 2,2 which results from it, hold in the large not only for two- 
dimensional domains ~ , but also for such three-dimensional domains for which the first IBV 
problem for the Navier-Stokes equations is solvable in the large in the class of the gen- 
eralized solutions of Ladyzhenskaya, e.g., for three-dimensional domains obtained by the ro- 
tation about some axis. of a plane domain not containing the axis of rotation, under the con- 
dition that the cylindrical components of the velocity vector and the free term do not de- 

pend on the polar angle 0 [7, Chap. Vl]. For arbitrary three-dimensional flows, the esti- 
mate (2.4) and the assertion which follows from it regarding the limiting process of the 

totality ~'~)I for ' ~ 0  tO the solution of the Navier--Stokes equation take place in the 

small under the conditions, similar to those smallness conditions under which the first IBV 
problem for the three-dimensional nonstationary system of Navier--Stokes equations is solv- 
able in the class of generalized solutions of Ladyzhenskaya [7, Chap. Vl]. We give one of 
the variants of these conditions, introducing first necessary notations (see [7, Chap VI]; 
see also [5], where similar estimates have been obtained for the solutions of the system 

(o) IlvtC~mllL; m Ilo~tt~,o~ll~n)* We set = , +~ ' 

Then we have 

THEOREM 2.3. 

O:~_~t<J ,  C : , ~ i l ~ . t . ,  r +r fl ~ O-~t~.T k,(m 2-~4 ' LQ,+C~T )" (2 .34)  

~.et ~ be a three-dimensional bounded domain, let ~, ~k=(0~, ~(~)~ 
,.3.,~..~~,~l~Lll)H~iij j and assume that the following "conditions of smallness of the data of problem 

(6)" are satisfied: 

' + (2.35) 

where ~ and ~ are the constants from inequalities (1.6) and (2.2). Then, for the "strong" 

generalized solution ~,~) of the IBV problem (6), whose existence is guaranteed for any 

~>0 by Theorem 2.1, we have uniformly relative to ~[0,~] estimate (2.2) and the esti- 

mates: 

, Loco) t 0~t.~T 
(2.36) 

(2.37) 

*The estimate of ~0) is given in terms of the data of problem (6) by inequality (2.7). 
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For ~--~0 the totality IO [~,~)J converges (in the sense described in Theorem 2~ to 
a unique generalized solution, in the sense of Ladyzhenskaya, of the first IBV problem for 
the Navier--Stokes equations. 

In conclusion, we note that the first IBV problem for the Navier-Stokes equations, 
whose given data satisfy the second of the "smallness conditions" (2.35), has trivially a 
generalized solution from the class of Ladyzhenskaya [7, Chap. VI]. 

3. Existence in the Large of a "Weak" Generalized Solution 

of the Initial- and Boundary-Value Problem (6) 

By a "weak" generalized solution of the IBV problem (6), where the known vector ~ 

~,~) has a finite ma3~B {IV~06,~)! +l~3~;~)I}--~ and ~[t:0~o~), we mean a function ~,~)~ 

H(n), having a finite ~i~ll~,~n~ , weakly continuous with respect to le[0,Z] in ~ )  0~T 
' o~t~T nw) 

and satisfying the integral identity 

.0_ Q~ 

f o r  L e t  us p r o v e  t h a t  we h a v e  

TH~.ORm 3.Z.  Let ~ ( m , b ~ L ~ ( Q ~ ,  ~o~0~)~H(f l ) .  Then the IBV problem (6) has at Zeast 

one "weak" generalized solution and for this solution one has the energy estimate: 

(3.1) 

m0z~ +86 TV ~ "[ (3.2) 

As before, for the proof of the weak solvability of problem (6) we make use of the 

Galerkin method and we shall seek the approximate solutions ~(~,t) in the form (2.9) from 

the system of differential equations (2.10) and Cauchy initial conditions (2.11), (2.8). 

For { ~ , ~  we have the equality, similar to (2.12): 

~t, 0~t ~T, (3.3) 

from which, applying the maximization operation, ll~ider's inequality, making use of Gron- 
wall's lemma [7, Chap. VI, Lemma i] and using the fact that 

- ~  ~ C  IIUoll H II~ (m,o)llHm) . (m ,  ~ = ~, ~ . . . .  , (3.4) 

we obtain the estimate: 

mare {Jol+mlO.l ~ + v  Io~I~O~C,I~II aOo~ T A 
LCO.,), , , ~'--~,g,"" ~t~T QT 

(3.5) 
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From estimate (3.5) and from the orthonormality of [~($)] in L~) we obtain once 

again a priori estimate (2.15) for the possible solutions of Cauchy problem (2.10), (2.11), 

(2.8), guaranteeing its solvability for each ~= 1,2 .... on any finite interval E0,T] . 

In addition, from estimate (3.5) and from the theorem of weak compactness of a bounded 

set in a Hilbert space it follows that from the totality [~ (~,t~l of Galerkin approxima- 

tions one can extract a subsequence [~%(0~,~) 1 , which converges to some function ~(~,~) weakly 

in L~T) together with the first derivatives with respect to ~ and ~, ~ze~=(~l) , ~d ~=0 

in ~ and ~l~f0. 

r Io +++ 3d Let us show now that for fixed ~ and ~>/g the functions ,~Ct) m { . I~  ~)+~BCqO~.z ~, 

0~t#~ , form a uniformly bounded and equicontinuous family of functions on [0,~] (see [7, 

Chap. VI, Sec. 7]). The uniform boundedness of ~r follows from estimate (3.5): 

Ir (t)l-< r ~  IIv ~$,t)ll ++~.a~lU, .~;ll~oll ..... <c (~,C,), Ir (3.6) 
O~t.~T ,,,t: O-~t-~T L,,(~) O.t,.T L~(.2J ~ Ht.u.) ~ " 

In order to prove the equicontinuity of ~r 1 we rewrite Eq. (2.10) in the form 

o+= (3.7) 

and from these equalities, integrating with respect to t, from t to t+At~ , applying the 

maximization operation, estimating the integrals on the right-hand side by H~ider's inequal- 

ity, andmaking use of inequality (1.6) and of estimate (3.5), we obtain the inequality: 

t+g 

, r162 + ! 

~rom the p r o p e r t i e s  of the funct ion  ~l~,t )  there  fo l lows t h a t ,  for  a f i xed  ~ and ~>~ , the 

right-hand side of the last equality tends to zero, as A~-->0 , uniformly with respect to 

~>~g . 

The functions r , for a fixed ~>0, represent (except for normalization) the inner 

products of ~,t) and ~r in W~),0~t~ By the diagonalization process, one can ex- 

tract from ~,r a subsequence [r , for which the functions r , for any fixed 

~, converge for ~-~oo uniformly on [0,~] to the functions ~+~)~0,~]~ ~=I,~ ..... In terms 

of the functions Cglt) , the limit function ~;t) of {~m(~,$)~ is determined for all t~-~[0,T] 

as: ~95,t) = r162 , and for ~-~oo ~mm(~,t) converges to ~(~,t) weakly in ~(~) uni- 

formly relative to ~e[0,T]: ~-~,~)~((~ --->0 , 0.<t~T, V~(~)eW~[~) , and ~(~,t~ is con- 

tinuous with respect to t~[0,7] in the weak topology of W~) . Then, with the aid of Fried- 

rich's lemma one can easily show (see [7, Chap. VI]) that the approximations ~"i~,~) con- 

verge to ~(~,[) strongly in L~(~. In addition, for the limit function ~(~,~, by virtue of 

the properties of weak convergence, we shall have the energy estimate (3.2). Finally, with 
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the aid of known arguments one verifies (see [7, Chap. Vl]) that the limit function ~(~,~) 

satisfies also the integral identity (3.1), i.e., it is one of the "weak" generalized solu- 

tions of the IBV problem (6). Theorem 3.1 is proved. 

Energy estimate (3.2) and estimates (3.6), (3.8), as well as the similar estimates for 

the weak solutions of the Navier--Stokes equations [7, Chap. VI], form the theoretical basis 

for the construction of stable explicit finite-difference schemes for the IBV problem (6). 

Quasilinear equations (i) are obtained from the equations of the motion of a continuous 

medium in the Cauchy form 

d;-~ . " ~  
(3 9) 

for the following determining equations, connecting the stress tensor T~p) and the strain 

tensor D(~)-'(O~(~)), O~,j('~)=~ {'~ ' '~--~'~ \~$t 0~s (see [i, 5]): 

If the determining equation is taken in the form 

T=-pE 

where ~ is the identity matrix. 

(3.10) 

(3.11) 

=~ ,* then from (3.9) we obtain the quasilinear equations 

more general than the equations of problem (2), where, however, the nonlinear terms which 
are additional to the Navier--Stokes equations have a specific divergent-type structure. 

We shall solve Eqs. (3.12) in the cylinder ~T under the IBV conditions 

(3.13) 

and by a "weak" generalized solution of IBV problem (3.12), (3.13) we mean a function ~(~j 

~)e~CQ), 0~t~T , having a finite o~ il~li~0]) ' weakly continuous with respect to te[0,T] 

in W~L~) and satisfying the integral identity 

/~T ~ ~ ~ 

(3.14) 

,wo no e .n o 
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for ~ ~ ~ C~,T)=0. Then, similar to Theorem 3.1 (see also [7, Chap. Vl, 

Theorem 20]) one proves 

THEOREM 3.2. Let ~C~,~)eL~C~O ~ ~C~)eH(~) . Then the IBV problem (3.12), (3.13) has 

at least one "weak" generalized solution which can be obtained by Galerkin's method and for 

which we have the energy estimate: 

(3.15) 

The proof of Theorem 3.2 can be carried out since for the Galerkin approximations 

[~,~)} for the solutions of problem (3.12), (3.13) instead of equality (3.3) one has the 

equality 

n f~ f l  

from which one obtains estimate (3.5), uniform with respect to F~--~,~,.. , with a constant ~ , 

depending only on II~IIL=C~r)~ II~alIHCQ) and T . With the aid of this estimate, for the functions 

~,~] , introduced in the proof of Theorem 3.1, satisfying in this case the equations [see 

(3.7)]: 

bVV d J J J j 

we obtain, assuming that the elements ~C~),~=~,2,..., forming a basis in H(Q~ are sufficiently 
smooth so that O~IL~I~ ~r inequalities of the form (3.6) and (3.8) where the con- 

stants C a and r depend only on II~IIL2(~ II~IIHCQ), T, andg. 

The inequalities of type (3.5), (3.6), (3.8) and Freidrichs' lemma [7, Chap. Vl] allow 

us to conclude (see the proof of Theorem 3.1; see also [7, Chap. VI]) that from the totality 

{~- of Galerkin approximations for the solutions of problem (3.12), (3.13) one can extract 

a subsequence I~3 , which converges strongly in ~(~ to the limit function ~,~) and 

for which ~$m converges weakly in ~(~-I) to the derivative ~ . After this, with the aid 

of the same arguments as in the proof of Theorem 3.1, one verifies that the limit function 

~(~) is weakly continuous with respect to [e[~T] in W~(~) , satisfies the integral 

identity (3.14), and estimate (3.15) holds for it. 

For sufficiently smooth solutions of IBV problem (3.12), (3.13), the energy estimate 

(3.15) is a consequence of the fact that for such solutions we have the equality: 

(3.18) 

In conclusion, we note that if the determining equation is taken in the form 
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(3.19) 

# ~ If 
where D'(~) =(D~( ~, 0~(~)=~ ~ , then we obtain from (3 9) the equations 

~ ~ ~  ~P ~ (3.20) + 

4. Solvability in the Large of the Modified Initial- 

and Boundary-Value Problems of Heat Convection 

In the present section we investigate the solvability of the IBV problem (7), where the 
heat-transfer equation is taken in the Boussinesq approximation 

~S ~S 
= ~  , (4.1) 

and of more general IBV problems of heat convection in a viscous incompressible fluid~ sub- 

jected to Eqs. (6), where the heat transfer takes into account partially (although in lin- 

earized form) of the dispersion of the energy in the fluid in the form of heat as a conse- 

quence of the kinematic and relaxational viscosity of the fluid*: 

~V~ + ~ ~ v~+~ ~O'~"-~A5 § ~Vg~)~'~"~j ~-~), (~'~)~"QT' (4.2) 

where is a known vector. 

The merit of system (6), generated by the presence of the "regulating" term - ~  and 

consisting in the fact that for ~(~) in the general three-dimensional case there exists 

such a good ("strong") generalized solution of the IBV problem (6) as Ladyzhenskaya's solu- 

tion of the similar initial-value problem for the Navier--Stokes equations, whose existence 

has been proved only in the small, is preserved also in the investigation of the solvability 

of the IBV problems of thermal convection (7) and (4.2). In addition, if ~V(~,~), then 

for problems (7) and (4.2) one can prove, similarly as for problem (6), the existence in the 

large of a "weak" generalized solution. 

By a "strong" generalized solution of the IBV problem (7), where the known vector 
, ~ ~ ," O f  V~%(~)~W$(n)~ H(m) we mean a pair of functions [@(~,~),5( ,~)I ~(~,t)-cH(~), 5(m,b~-WZ~), 

*In connection with this we note that the equation of heat transfer in a viscous incompres- 
sible fluid, whose motion is described by Eqs. (I), has the form (see [Ii, Chap. V], [5]): 

+ R.--+~C -- + ~-~/, 
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o~t~T, having derivatives ~t,, U.xt,, St,,ff-.LzCO), o~<t~'[,.$x~.~-L~(.O-r~, 
I I  

+eo~ + S,t j ~.' , satisfying the integral identities 

If+< +, _ ,  having a finite o~tcTm~'~ +0~+ 0s + 

2 

_ o 

(4.3) 

8 5  . ~ ~,~ (4.4) 

and subjected to the initial conditions 

We prove that we have 

~o(~)~W~(~)~ HCI']) ,  ~05) e W~,o(.()_) Then IBV problem 
B 

(7) has at least one "strong" generalized solution and this solution can be obtained by the 
Galerkin method and for it we have the following estimates: the energy inequality 

]~(.x,~)l+~x+S &:~ O~+~t .~ IJ~ ~1~1,11~1 (4.6) 

~T 

in the three-dimensional case the estimate 

Q 0~+ 
(4.7) 

where ~ --~oo when ~0 ; in the two-dimensional case, uniformly with respect to ~[0,43 

the estimate* 

QT 
(4.s) 

In order to prove the solvability of problem (7) we make use once again of the Galerkin 

method. Let ~(05)l,k=l,~,... be a complete system of functions in W~C~)NH(~) and let ~k(~)J,k= 
2 

~-4,~ .... , b e  a s y s t e m  o f  f u n c t i o n s ,  c o m p l e t e  i n  W;0CQ ), w h i c h  w i l l  be  a s sumed  t o  be  o r t h o n o r m a l  i n  

~C~). We shall seek the approximate solution ~0", 5~ in the form 

~ l ~ , t ) = k Z T r  ~ =  k(~l'), ~ (~, =~=, ~ , ~= t ,2  . . . . .  ( 4 . 9 )  

*See the remark to Theorem 2.2. 
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from the system of differential equations [see more explicitly in (2.10)] 

i Co ,g+; -~+ ~,(+d, cr,= , P~=+,...,r~, O<t.<T, 

I + J ,,, :,,..,,+, 
.(I 

(4.zo) 

(4.11)  

and the Cauchy initial conditions 

where ~L and ~L are the coefficients from the sequences of functions 

~o,(~) =~c~j,r G,(~ =~G+r (4.13) 

converging for ~-~D to the initial functions ~=(~) and S~(~) in the norms of W:(~) and 

W:(~) , respectively. 

We proceed to obtain the a priori estimates for the Galerkin approximations [~, ~ml �9 

For their derivation we rely heavily on the similar estimates obtained in Sees. 2, 3 for the 

Galerkin approximations ~m in the problem (6) and we shall indicate in detail only those 

(few) changes which are caused by the transfer of heat in the fluid. 

First of all for s ,~m} we obtain the equalities [see (2.12)] 

.el 

' IIs%+I s+' + ' +  
D ~ O 

(4 .14)  

(4.15) 

from which, similar to inequality (2.14), we obtain the energy estimate 

, . ,~ lit,, l+ls I +~h,~il~+II~,,~t +;r162 
QT �9 r ~ : ~ , ~  . . . . .  

From inequality (4.16) and the orthonormality of the systems s and {t~.C~} in L~{~) 

i t  fo l lows tha t  the GaZerkin approximations ~ + , S + ~  can be constructed for  each . - ~ + , =  .... 

on any finite time interval [0~T] �9 

(4.16)  

Then, with the aid of Eqs. (4.10) and (4.11) and of estimate (4.16) one shows [see 

(3.6)-(3.8)] that the functions O~,~C~) ~{~ ~ ~ ~ = ~ ~ ' ~ f ( ~  + ~ ~r t ~ and ~,~C~)~ J ~ (~,~C~)~/~,  
fl  

O ~ T  , for  f ixed ~ and ~w~ , form a uniformly bounded and equicontinuous family of func- .  
tions on [~T] : 

0~t~T ' ~ O~.t~T 
(4.17) 
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(4.18) 

Similar to inequality (2.18) is the estimate, uniform with respect to ~=~,~,... and ~>0 , 

fl 

Then, similar to equality (2.19), one obtains the equality 

Io~I+%1 = 

" ~  -~/1~ - .~  " -.~/1~ ' ~ (4.20) 

+ , 

o. Q 

i~:~ ~=0 ). In the right-hand side of equality (4.20) there are two new (we note that ~z k 

terms in comparison with equality (2.19). The first one can be estimated by H~ider's in- 

equality, while in order to estimate the second term it is necessary to distinguish between 

the three- and two-dimensional domains ~ [see (2.20) and (2.24), however, this is necessary 

only if we follow the dependence of the constant on ~>0 in the final inequality]. 

If ~ is a three-dimensional domain, then, estimating the last integral in the right- 

hand side of (4.20) with the aid of HSlder's and Cauchy's inequalities and inequality (1.6) 

and making use of estimate (4.16), we obtain 

fl f~ fl 

(4.21) 

After this we obtain from equalities (4.20) the estimate: 

, IJoollw co ) ,  . . . .  , 

(4.22) 

where ~-~m for ~0 [see (2.22)]. 

If ~ is a two-dimensional domain, then, estimating the last integral in the right-hand 

side of the equality (4.20) with the aid of HDlder's and Cauchy's inequalities and of in- 

equality (2.23), we obtain: 
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0 0 

and, by v i r t u e  of  ( 4 . 1 6 ) ,  ~l . Then, from e q u a l i t i e s  (4 .20)  one o b t a i n s  the  

e s t i m a t e  [ see  ( 2 . 2 7 ) ] :  

( "...)1, ~ , --~lg ~ t~ ~ / -.,.~ ~ ~ 

O 

where the constant 0~ remains bounded as ~-~0. 

FinallY, with the aid of Eqs. (4.10) and (4.11), differentiated with respect to ~, and 

of the estimates (4.22) or (4.24) one shows that the functions 

o~i) =~ 1 1 ~'~)~(~)+~Z~ @fzIO~ and ~((f')=-I ~ (~,t)~(o~)d0~. o.<~.~T, 

(4.24) 

form, for a fixed g = ~,~  . . . .  and ~g , a uniformly bounded and equicontinuous family of 

functions on [0,~] : 

OCt,~T , ' OCteT ' 

t 

(4.25) 

(4.26) 

where the constants C4~-q~ depend on the constant C 9 if ~ is a three-dimensional domain and 

on the constant q~ if ~ is a two-dimensional domain. 

Estimates (4.16), (4.22), (4.25), (4.26) in the case of a three-dimensional domain 

and estimates (4.16), (4.24)-(4.26) in the case of a two-dimensional domain ~ are suffi- 

cient in order to conclude, with the aid of the known arguments ([7, Chap. VI]; see also the 

end of the proof of Theorem 2.1), the proof of Theorem 4.1, 

Moreover, estimates (4.16)-(4.18) remain valid, obviously, also in the case when Q-- 

e~ ~ NJ(~T) , ~=0=~,(~), and allow us to prove, as in the case of the IBV problem 

(6), the existence of at least one "weak" generalized solution of the IBV problem (7)~ which, 

by analogy with problem (6), we define as a pair of functions [~(~.~), ~(~,~)I: ~(0~.t)~H(O.),~ 

having a finite o.~t~Tm~ ~[]H(Oj and JI~ , respectively, and satisfying the 
QT 

integral identities 
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o ~T QT 
-,, o,, J Q  , Q ,) (4.27) 

O. T n 

(4.28) 

As we have just mentioned, one has the 

THEOREM 4.2. Let $[~,~)~&[~T),~,(~[~]), 5o<~)e~Cn) Then IBV problem (7) has at least 

one "weak" generalized solution, whose solution can be obtained by the Galerkin method and 
for it we have the energy inequality: 

O~t,~T QT 

By a "strong" generalized solution of IBV problem (4.2), where the known vector V-- 

<~05~5W~0~ ~ and ~ ~ ,  we mean a pair of functions {~(~,~), 5(~,~)~, having the same 

differential properties as the "strong" generalized solution of problem (7), satisfying in- 

tegral identity (4.3) and the integral identity 

(4.30) 

and subjected to initial conditions (4.5). Similarly to Theorem 4.1 one proves 

THEOREM 4.3. Let ~,~t~k2~Q~, o~)~C~)NHC~) and ~ 1~ox~oo, ~oC~)~ W$(~) 

Then, IBV problem (4.2) has at least one "strong" generalized solution {E 5}, this solution 

can be obtained by the Galerkin method, and for it we have estimates (4.6)-(4.8), where the 

constants ~ -C 3 depend also on m~l~o~_~l 

In conclusion, we note that for IBV problem (7) [and also for problem (4.2)], where 
CC~,~ ~ 

the known vector V ( ~ )  ~7(~ , one has the uniqueness of a "good" generalized solution 

which is defined as a pair of functions ~(~,~),~,~)}, subjected to the following conditions: 

~C~,~C~),0~, it has a finite ~0~t~] [I~IIH(~ and has derivatives ~ &C%); ~,b~C~ ~ 

kq,~ with ~ and D,satisfying one of the conditions (see [7, Chap. VI]): 

o, (431) 

and satisfies the integral identities 
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f l  . f l  

(4.32) 

Qt n n 

-" 

f o r  any ~)(~,~)---c~(~),o~t,~T, and such t h a t  ,~-cL~(~),o~t~T, and fo r  any * ~ )  -----~W~Q~. 

The proof  of  t h i s  s t a t emen t  i s  ob ta ined  by combining the  proof of  Theorem 1.1 wi th  Lady- 

z h e n s k a y a ' s  method of the  proof  of the  uniqueness  of the g e n e r a l i z e d  s o l u t i o n  from V, IQ n 
L~,~ , with ~ and V subjected to one of conditions (4.31), for the IBV problem for the 

nonstationary Navier--Stokes equations (see [7, Chap. VI]). 

For the modified equations of magnetohydrodynamics (8), the presence in the equations 

of the motion of the fluid of the "regulating" term -~-~- does not cause the effect which 

it gives in the investigation of the solvability of the IBV problems (6) and (7). The 

"strong" generalized solutions of IBV problem (8), i.e., the solution (~,H), which has de- 

rivatives ~,~,NteL~{~),0~t~T, and e , in the three-dimensional case exists only in 

the small, while in the large there exists a "strong" generalized solution in the two-.dimen- 

sional case (more precisely, the two-dimensionality, i.e., the vanishing of one of the com- 

ponents and the dependence of the remaining two components only on two space variables, is 

required only from the vector of magnetic intensity ~ ), and in the three-dimensional case 

there exists a "weak" generalized solution (solution of Hopf type), i.e., a solution (~,H) , 

possessing derivatives ~x~h~[~), 0~t~T, H~ ~(QQ and such that ~ is weakly continuous 

with respect to ~e[0~] in W~) , while H(~.~ is weakly continuous in ~). All these 

statements are proved basically in the same way as the corresponding results for the stan- 

dard equations of magnetohydrodynamics [12]. Small necessary variations in the arguments 

occur in Secs. 2 and 4. 

5. A Priori Estimates for the Solutions of Problems (9) and (I0) 

Let ~ be a two-dimensional domain with a smooth boundary ~, situated in the half- 

plane [L~:~>0} at a distance ~=0 from the axis ~>0, QT=~x<0,T), 0<T<o0. By the general- 

ized solution of IBV problem (9) we mean a function ~(~,~,~), which together with all the 

derivatives occurring in Eq. (9), belongs to Le~T) and satisfies Eq. (9) almost everywhere 

in ~T " We show that we have 
I 

THEOREM 5.Z. net FC ,e.t)eL,COT); %cq )eWJ(1 ), %l n-  *ol - o  T h e n  f o r  a n y  g e n -  
- -  B ~ ' l ~ n - -  " 

eralized solution of problem (9) we have the estimates: 
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o.~t~T n 
(5.1) 

(5.2) 

(5.3) 

where ~ and ~3-->o O, for ~-~0 and ~"~0. 

In order to prove estimate (5.1) we multiply Eq. (9) by ~ and we integrate over ~t, 

0~t~T Then, making use of the fact that the integral containing the nonlinear terms is 

equal to zero: 

(5.4) 

integrating with respect to time and integrating by parts with respect to the space vari- 
_~ !~__* 

ables' we obtain the equality (we note that D~ = x-~ o~ ): 

,v (5.5) 

from which, applying HDlder's inequality, the second fundamental inequality for the Laplace 
operator [7], and Gronwall's lemma, we obtain estimate (5.1). 

In order to prove estimate (5.2) we multiply Eq. (9) by ~U~-~U~J and we inte- 

grate over -- ~, 0~ 4T . Making use of the fact that the integral containing the nonlinear 

terms is once again equal to zero: 

Qt 
(5.6) 

and integrating with respect to time, we obtain the equality: 

Ot Qt 
(5.7) 
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from which, applying HSlder's inequality, the second fundamental inequality for the bihar- 

monic operator [7, Chap. I], and Gronwall's lemma, we obtain estimate (5.2). 

In order to prove estimate (5.3) we multiply Eq. (9) by ~t and we integrate over q , 

0<t~T. Integrating by parts we obtain the equality: 

dt Qt 

Qt O't' 

(5.8) 

from which, applying H~ider's inequality, the second fundamental inequality for the Laplace 
operator, and estimate (5.2), we obtain estimate (5.3). 

By the generalized solution of boundary-value problem (I0) we mean a function ~(D,E), 

which belongs, together with all the derivatives occurring in Eq. (I0), to L~[~) and satis- 

fies Eq. (i0) almost everywhere in the domain ~. Similarly to Theorem 5.1, one proves 

THEOREM 5.2. Let .~(~,z)~-L(.,Q). Then for any generalized solution of problem (i0) we 

have the estimates: 

tlq llw (  ) v, II F IIL2CO.)), (5.9) 

iz+ lIw0l  ) .<%cs.,,, Is r IIqc  ) ' 

where q--~oo for 8g-~0 and $-~0. 

(5.10) 

It is easy to verify (see also [8]) that the generalized solution of IBV problem (9) 

considered in Theorem 5.1 is unique (in the large), while the generalized solution of bound- 

ary-value problem (i0) considered in Theorem 5.2 is unique in the small; 

i. 

2. 

3. 

. 

. 
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ii. 
12. 

ADMISSIBLE GROUPS OF TRANSFORMATIONS FOR CERTAIN THIRD-ORDER 

QUASILINEAR EQUATIONS 

A. P. Oskolkov UDC 517.9 

we construct the infinitesimal operators of Lie algebras for the broadest group of 
transformations leaving invariant some quasilinear third-order equations with two 
independent variables occurring in the mechanics of continuous media. 

With the aid of the well-known procedure of continuation theory [1-3] we find the ad- 
missible groups of transformations for some third-order partial differential equations. In 

order to obtain these results it has been required to construct the third extension ~ of an 
operator. 

i. The broadest group of transformations admissible for the equation 

v, t =_co st>o, (1) 

is infinite-dimensional. Its Lie algebra is generated by the infinitesimal operator 

where ~ , , m , , ~  are arbitrary constants while t~(~,~) is an arbitrary smooth solution of Eq. 

(1). 

2. The broadest group of transformations admissible for the equations 

+ (4) 

at+ uu + > O, (5) 

has three parameters. Its Lie algebra is generated by the infinitesimal operator 
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