
T H E  U N I Q U E N E S S  A N D  G L O B A L  S O L V A B I L I T Y  

'OF B O U N D A R Y - V A L U E  P R O B L E M S  F O R  T H E  E Q U A T I O N S  

O F  M O T I O N  F O R  A Q U E O U S  S O L U T I O N S  O F  P O L Y M E R S  

A.  P o O s k o l k o v  

It has been exper imen ta l ly  es tabl i shed [1] that if we introduce in a viscous fluid, which moves  

around a body, a ve ry  smal l  (up to a f rac t ion  of a hundredth percent)  amount of specia l  po lymer  

subs tances ,  without changing the densi ty  and the v iscos i ty  of the fluid, then the motion of the fluid in 

a boundary l aye r  will be signif icantly affected and the f r ic t ion  r e s i s t ance  of the moving body will 

d e c r e a s e .  The compar i son  of the physical  c h a r a c t e r i s t i c s  of water  and weak aqueous solutions of 

po lymer s  [2-3] show that for  p rac t i ca l ly  identical values  of the densi ty  and viscosi ty ,  these fluids 

di f fer  sha rp ly  in thei r  re laxat ional  p r o p e r t i e s  - the re laxat ional  p r o c e s s e s  in the po lymer  solution 

being ve ry  slow in c o m p a r i s o n  with those in water~ 

It is known (see, e.g.,  [4]) that Newton's  equation, connecting the s t r e s s  tensor  T ,  the s t r a in  
4 a~o,  , -~-~/ and the p r e s s u r e  p for  the motion of a viscous incom-  

p r e s s i b l e  fluid has the f o r m :  

T=-?E§ 

where  V is the k inemat ic  v i scos i ty  coeff icient .  This re la t ion  has been obtained under the assumpt ion  

that  the fluid does not p o s s e s s  re laxa t ion  p rope r t i e s ,  i~ it r e tu rns  instantly to its initial s ta te  as soon 

as the ex t e r io r  s t r e s s e s  applied to it have been removed .  In [2-3] one suggests  to take into account the 

re laxat ion  p r o p e r t i e s  of aqueous solutions of po lymer s  with the aid of the following modification of the 

governing equation: 

dD T:-pE*~,vD+s176 (1) 

where ~ is the re laxat ional  viscous coefficient  and ~ :  ~Tt~v0~ is the Stokes der iva t ive .  Inser t ing the 

s t r e s s  t ensor  (2) into the equation of the motion of a continuous medium, wri t ten in the Cauchy fo rm 

4 7  , 

~,t 

we obtain the s y s t e m  of equations 
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~ t  . . . . . .  .~,~o~ ~ ~ (3) 

and f rom this sys tem,  neglecting the te rms  containing the products of the f i r s t  and second derivatives 

of "~ C~,L) with respect  to the space derivatives since they are small  compared to the velocities and 

deformations,  we obtain the following sys tem [2, 3]: 

which will be the main object of investigation in the present  paper. For  ~ =0 

reduce to the sys tem of the Navier -Stokes  equations 

sys tems (3)and (4) 

If we introduce a new unknown function ~=mA~-~ , then system (4) can be rewrit ten in the 

following form: 

2. Let ~ be a bounded domain in the two- or three-dimensional  Euclidean space, let 3~ be 

the boundary of the domain ~ ,  QT = ~ x  [0,T], 0<T<~, ~Q~ = 3~x [0,T] the la teral  surface of the 

cylinder QT , ~ t  =- ~ the cross  section of the cylinder Qr by the plane t =Co~t, 0 ~<t ~<~ . 

We shall consider in the cylinder QT the solution of system (4), satisfying the initial-boundary 

condition 

In Sees, 2-4 we shall prove uniqueness theorems of the solution of the in i t ia l -boundary-value 

problem (4), (7), which is the main object of investigation of the present  paper, and also of the i n i t i a l -  

boundary-value problem (3), (7) and of the boundary-value problems for the corresponding systems 

(3) and (4) of a s tat ionary sys tem.  

By a generalized solution of the ini t ia l -boundary-value problem (4), (7) we mean a function 

~c:c,t)~_j(Q~ which has generalized derivatives J~ ~t. ~ ,  ~=t , ~ /2 (-(~rJ ' sat isf ies  the integral 

identity 

q 

for any 

initial -boundary conditions ('f)o It is easy to see that if 

occur in identity (8) make sense.  

(pCo~,t)~(O,T~ , ~l~(~T=G,havingthesame differential propert ies as UC~t), and satisfies the 

~(m,t) ~L~4(QT) , then all the integrals which 

(8) 
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Firs t  of all we prove that we have the following theorem. 

THEOREM 1o The generalized solution ~t3;,L) of the initial-boundary-value problem (4), (7), 

possessing in (~T bounded derivatives ~ ,  g-+=; , is unique. 

Indeed, if ,problem (4), (7) has two solutions ~ and ~0, possessing the properties indicated in 

Theorem 1, then their difference ~ ~ ~ -~, satisfies the integral identity 

Q~ 

and, in addition, 

 tt=o=O' =o. (lO) 

Taking in (9) ~ - ~ , integrat ing by parts,  and making use of (10), we obtain: 

+x \" 4Ca7 6(0 N 6t~I ~t ~ ~ o~a% ox..- . (I I) 

and from here. applying HSlder's inequality and making use of the boundedness of ~ . ~.~: in QT . 

we shall have: 

I~ols ,=~+= i%1, ,=,~.O (.= o, 7,'J(1r ,~r162 s ,~ ~, o<f.,T. ".<~%' ~-~'+~'~.' ,. >__ "."~' .,..r (12) 

From the last inequality, making use of Gronwall's lemma [5, Chap. VI] and of (10), we obtain 

~(~.~) -=(3 , (~.b ~-Q,. 

The stationary system, corresponding to system (4), has the following form: 

We shall consider the solution of system (13) in the bounded domain 

condition 

71~ n --0. (14) 

By a generalized solution of the boundary-value problem (11), (14) we mean a function 

~C~) r which has generalized derivatives ~ ,  ~ i=(El) and satisfies the integral identity 

for any function ~(m) possessing the same properties as ~(x). 

We introduce the notation [5, Chap. VII: 

co \i"+ 

(13) 

~L , satisfying the boundary 

(15) 
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and we prove that, under well-defined conditions relative to the smallness  of the data of the problem 

(13), (145, we have the following theorem. 

THEOREM 2. The generalized solution ~C~) of the boundary-value problem (135, (145, possess-  

ing in l'~ bounded derivatives O= , ~ and such that 

I =I (16) 

is unique, 

Indeed, for the difference ~C~) of two possible solutions of problem (135, (14) we have the 

equality 

from which, applying HSlder's inequality for the estimate for the second integral and making use of 

the boundedness of ~ and ~ in ~ , we obtain: 

and f rom this inequality, making use of condition (16) and of the boundary condition ~l~n =0 , 

we obtain ~(.~c)=-0, ~e.s ~ 

3. Uniqueness theorems for the solutions of the in i t ia l -boundary-value problems s imilar  to 

Theorems 1 and 2 for sys tem (4) and (13) hold also for system (3) and its corresponding stat ionary 

system 

(17) 

(18) 

By a generalized solution of the ini t ia l -boundary-value problem (35, (75 we mean a function 

identity 

(19) 

which has generalized derivatives ~ ,  ~t,  ~'~x, t~'~, ~ : r  L,((~r) , sat isfies the integral 

ff-[ (20) 
~t Qt 

for any $(.~:,t,>~JCQ~, $ [ ~ 0  possessing the same smoothness propert ies as ~C~,t>, and satisfies 

the initial -boundary conditions (75. We show that we have 

THEOREM 3. The generalized solution ~(~c,t) of the in i t ia l -boundary-value problem (3), (7), 

having in [~T bounded derivatives ~ .  ~_~ , is unique. 

Indeed, assume that problem (35, (75 has two solutions ~1 and ~ and let ~ ~- ~, -~= ~ Then, 

reasoning in the same manner as in the proof of Theorem 1 and also integrating once by parts  in the 

additional nonlinear t e rms ,  in which t ransformation for the vanishing of the boundary integrals the 

boundary condition ~laQ, --0 is sufficient, we obtain an equality which differs f rom equality (11) by the 

additional te rm 
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Ct 
\ o:c, + "~'s dQ. (21) 

F r o m  equali t ies (11)+(21) and also f rom equality (11), there  follows inequality (12), which 

together with the condition  lt.o =0 gives ~c~,L)-o ,  (~:,~)eQr . 

we  now define the general ized solution of the boundary-value problem (19), (14) as a function 

~(~=)~C~b which has genera l ized  der ivat ives  ~:~=, ~ = = ~ _  ( ~  and sat isf ies  the integral  identity 

for  any function 

one proves  

THEOREM 4. 

bounded der iva t ives  

(22) 

having the same proper t ies  as the solution ~ )  . Similar ly to Theorem 2, 

The general ized solution of the boundary-value problem (19), (14), having in 

~ and ~=~ and such that 

(23) 

is unklueo 

4. In the two-dimensional  case,  the uniqueness theorems for  the above-defined general ized 

solutions of the in i t ia l -boundary=value  problems (3), (7); (4), (7) and of the boundary-value problems 

(19), (14); (13), (14) can be proved without assuming the der ivat ive IY~ to be bounded in QT or ~) , 

respec t ive ly .  At the foundation of these resu l t s  is the known inequality [5, Chap+ 1]: 

valid for  any function t ~ ( ~ ) ~ i ( ~  ) and any two-dimensional  domain ~ . 

THEOREM 5. Let  ~ be a two-dimensional  bounded domain+ Then the general ized solution of 

the initial -boundary -va lue  problem (3), (7), having in QT bounded derivat ive ~z , is unique. 

Indeed, if in equality (11) + (21) for  the difference ~(m,t) of two possible general ized solutions 

of problem (3), (7) one integrates  by par ts  in the third and the fifth t e rms ,  then one obtains the equality: 

++ 

For  the es t imate  of the third and the fifth t e rm in (25) we make use of the H61der and Cauchy 

inequalities and of inequality (24), while for  the est imate  of the fourth and the sixth t e rm  we make 

use of the boundedness of ~ in QT o Then f rom (25) we obtain: 

(25) 

Qt o 
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t 

and from this inequality we obtain this est imate:  

(26) 

(27) 

Selecting 15~ , satisfying the condition 

t~ 

0 

(28) 

we obtain from (27) that ~ (x,L) - 0 in (~t with ~ ~ ~, . After this, the fact that ~ C~c.t) is equal to 

zero everywhere in QT is proved in steps with respect  to ~ (see [5, Chap. VI, Sec. 2]). 

In the stat ionary case we have the following theorem. 

THEOREM 6o Let ~ be a two-dimensional bounded domain. Then the generalized solution of 

the boundary-value problem (19), (14), such that 

" - {291 

is unique~ 

In the two-dimensional case, the finiteness of rr~a> I~I occurring in condition (29) of Theorem 

6, follows for the generalized solutions 15(~)e~i(D) from So L. Sobolev's imbedding theorem. 

Similar uniqueness theorems hold also for the problems (3), (7); (13), (14). For example, in the 

stationary case we have 

THEOREM 6'. Let ~ be a two-dimensional bounded domain~ Then the generalized solution 

of the boundary-value problem (13), (14), satisfying the condition 

(30) 

i s  unique. 

In the two-dimensional case, for system (3), (4) and its corresponding stationary systems (19) 

and (14) one can introduce the stream function ~ with the aid of the same relations as for the Navier- 

Stokes equations: 

For system (4), the equation of the stream function ~(~,,~,.~) has the form: 

(31) 

(32) 
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This equation is solved in the cylinder 

and Cauchy initial conditions 

QT under the boundary conditions 

(33) 

The equation for  the s t r eam function ~rC~,,~ , corresponding to s tat ionary sys tem (13), has, 

obviously, the form:  

solved in the domain ~ under the boundary conditions t~l~(~--la~l:Oo._ It is 

50 We consider  now for the nonstationary sys tem (4) the f i rs t  in i t ia l -boundary-va lue  problem, 

viz., we shall seek in the cylinder Q~ its solution ~cm,tb, pC~,t), satisfying the following initial and 

boundary conditions: 

(37) 

This problem was investigated for the f i r s t  t ime in [6]. It has been proved there that if 

~oL~)r ~ j (~)N J (~ )  and ~(cc,t)CL,.~ (QT) ,* then the problem (4), (36) has at leas t  one weak solution 
~ o ~ ' ,0  

(solution in the sense  of E. Hopf), i.e., a solution ~c~c,t)~.J(QT)N ~], (Qr) satisfying the integral 

identity 

~t a n "a 0 t 

for  any (~Ccc , t )~ :  CQ,YIS(Q,), and for any weak solution d.m,t) of problem (4), (36) we have the 

inequalities: 

o~t,T ~T QT 

m,o~m l~c~,t)l -'- C~CE],CO, 
&T ~ ~ (39) 

where the constant C~ depends only on U~otlw:(~) and I]~[l~,(Q~ and it is independent of ~ >~0 ~ In the 

present  paper t  we introduce the strong solution of problem (4), (36) (solution in the sense of Ladyzhen.  

skaya [5]) which we define as a function ~c~c,t)r , ~I~Q~:0' for  which ~ , ~ , ~ , 

~ t r  L~C(~) and which sat isf ies  the integral identity 

*For the notations see  [5]. 

*See also [8]. 
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QT 

for ~ y  ~c~ , t~W,(O~ ] @ ,  and we show that the following existence theorem in the large for the 

strong solution of problem (4), (36) holds. 

THEOREM 7. Let g.~)eW,{~)(~J(/~), ~ ( ~ . ~ Z : ( ( ~  �9 Then ini t ia l -boundary-value problem 

(4), (36) has at l eas t  one strong solution ~<~,t) and for any such solution we have the inequality: 

O. T [0.x] J JJ " 

For the proof of Theorem 7, just as for the proof of the existence theorem for the weak solution 

of the in i t ia l -boundary-value problem (4), (36) (see [6]), we make use of the method of introducing a 

vanishing viscosity.  To this end, we consider in Qr the four th-order  system with a small  parameter  

("vanishing viscosity")  

-~-~-wt i  *e, At) * t l ,<~-~t . -D-~-~" , , "~ '<) ~ a . p  =% (42) 

which for ~ =0 degenerates into system (4), and we shall solve it under the conditions 

=~( . x ) ,  ~ '  : 0 ,  ~ '  =0. (43) 
t=o ~1 r ~ 

Following [6], by the strong solution of problem (42), (43) we mean a function ~ J ( O r ~ ,  for 

-~ -, ~, -, L,(Qr) which ~J~ , 0~ , ~ , ~ I = ~  and which sat isf ies  the integral identity 

- ~  o 2,o 

for any (~(z,~y--~,(Q~3{Q~ �9 It is proved in [6] that for a strong solution ~(zD3 of problem (42), (43) 

we have the inequality 

I~'c:c.bl -+- ~ f O s +  is. +ls:i')clz,'~l{ki ~cr,=i ~ ~ q(.~, t17o11~:@, II~-its_:c~) (45}  
~ T  [O,TI ~ ~ ~ 3 3  

We set  now in (44) ~ - ~  . Then, making use, for the est imate of the nonlinear te rms,  of 

tgSlder's inequality, S. L. Sobolev's embeddingtheorem, and inequality (45),*we obtain for the strong 

solution O~ of problem (42), (43) the following additional inequality: 

C~c~ t~  + ~,'~do., ~ ~ I IA~ I ~<s ~Q,,,~, I!l-, ,,~ D, (46) 
J )  ~. ~-~. Co.r] J - ,,,u.,s' ~ ~,,.~?, 

where C~,C, ----~, ~ - ' O .  

In order  to obtain the strong solution 7~Ca:,t) of problem (42), (43) for every ~ > 0  , we make 

use, as in [6], of the modified Galerkin method. Let ~ C ~  , ~ = 4, ~, be a complete system of 

�9 We emphasize that for the estimate of the integral m ~AO ~ ~ it is essential to make use of 

the boundedness of in ~r ' ensuring inequality (45). 
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functions in ~]:~(~)~,J(~) , let  ~.~C~:') , ~ = ~, 2,. be the solutions of the boundary-value problems 

(47) 

The system ~G(zc3 is also complete in ~,(~)(~3(~Q) We shall  seek the approximate solut ion of 

problem (42), (43) in the fo rm o =~C~ c~)a L~c) , where C~.L~) are obtained f rom the equat{ons 

where 

and the initial Cauchy conditions 

(48) 

~ "  (49) 

It is shown in [6] that the Gaterkin approximations ~'~ can be constructed for each 1~=1,2,. 

and for  them we have the es t imate  

t n ~  II1,1,' ~LSm+f~ j~ Ihl;: I dQ.,r %l (5[)  
[0,~] O-t (~T 

uniform with r e spec t  to ~ >~0 a n d  n ,  = t.~, . . . . .  Then, multiplying (48) by ~ :  and summing with 

r e spec t  to ~ f rom 1 to r~, we obtain: 

and f rom here ,  integrating with r e spec t  to ~ [0,T] and making use of HSlder 's  inequality and es t i -  

mate (51), we obtain the es t imate ,  uniform with respec t  to ~ )0  , 

�9 ~ ( 5 3 )  
t L~{.Qp I:o,T] 4( ) ~ W,CO.) ,LU.TV 

Then, since 0 (oc,~) is a "solution" of the boundary-value problem 

[ ; ' -~hO =t~ , ~ c ~ ,  ~ ~=0  , t ~0,  (54) 

for  ~'~ and 0~ the second fundamental inequality [7] holds (in order  to obtain this inequality it is 

ne c e s sa ry  to assume that the boundary ~ is twice boundedly differentiable):  

llO I]., ,.C(~,OD)liu. it, ..,IPJ ~,.,,^._--CoUu,,.ll.,,,, t~,O, W~C.O.'~ ~ ~ ~ " ~ "  .. . _=.. , (55) 

and then f rom inequal i t ies (55) and inequal i t ies (51) and (53) it fo l lows that 

m~to,T; lt0" llw:~a)~C~(C~,C , (56) 

T 
, a t  
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Inequalities (51), (53), (56), (57) and the theorem on the weak compactness of bounded sets in a Hilbert 

space allow us to conclude (see [5, Chap. VII) that f rom the sequence of the Galerkin approximations 

~s~] one can extract  at least  one subsequence ~6~, ] ,  which for n~--r  converges strongly in 

/2(C~T) to the l imit  function ~C~,t) and for which ~.~k , ~.~. -~ . . . .  ~ , ~ , 6~" converge weakly 

in L2 to ~: , I/t , {)=t , ~"~ , respectively.  This l imit  function ~c~,t) wilt be the strong 

solution of the in i t ia l -boundary  problem (42), (43). This statement is proved in the same way as the 

corresponding statement  in the proof of the existence theorem of the strong solution of the in i t i a l -  

boundary-value problem for the system of Navier-Stokes  equations [5, Chap. VI], but in this case the 

integral I ~ "  (~d~ in Eqs. (48) has to be t ransformed by integration by parts to the form 

Since for any strong solution ~ c~,t) of in i t ia l -boundary-value  problem (42), (43) we have the 

est imates (45), (46), uniform with respect  to s>~0 , f rom the totality ~t) C ,t)J of the strong solutions 

of the problem (42), (43) one can select  a subsequence [~'~, which for 8~--~0 converges strongly in 

Z-2((~T~ to the l imit  function ~ (x , t )  and for which 0~ ~=t , {~ converge weakly in 

/~(C[~ to ~ , ~t , ~ t  , ~ ,  respectively.  In addition, 

Making use of all these limiting relations and taking the l imit  in integral identity (44) with respect  to 

the selected subsequence ~, --* 0 ,  we obtain that the l imit  function ~C~c,t) will sat isfy the integral 

identity (40), i.e., it will be the strong solution of problem (4), (36). Inequality (41) is obtained by a 

limiting process for 8~--* 0 f rom est imates (45), (46). 

6. We return once again to the problem of the uniqueness of the in i t ia l -boundary-value problems 

considered in the present  paper.  In the theorems on the uniqueness of the generalized solutions, 

proved in Secs. 2-4, both in the formulation of the theorems and in the process  of their  proofs, we 

have assumed that these solutions possess  the derivatives ~.=.c~t)~ L~((~3 (or ~=~C~) ~ L~ (~) ). 

In the present  section, assuming that s is a two-dimentional bounded domain, we prove uniqueness 

theorems for a class of generalized solutions, wider than in the Secs. 2-4, for which the existence of 

the derivatives ~=== is not assumed but on the other hand 5,:=c=t)r (or ~=c~)~L.C~ ). 
we define the strong generalized solution of in i t ia l -boundary-value problem(3), (7) as a function 

~(~,~) ~ J((~) which admits in ~ bounded derivatives ~= , possesses  derivatives ~t '  ~=t~ L~ (QT~ 
"* / , ,  and derivatives C==~ , ~(QT') , sat isf ies  the integral identity 

(59) 

~C~c,t)r = 0 , .  has the same differential  propert ies  as ~C~.t), and sat isf ies  the for any 

in i t ia l -boundary  conditions (7); let us prove that we have 

THEOREM 8. Let ~ be a two-dimensional bounded domain. Then, the strong generalized 

solution of initial -boundary-value problem (3), (7) is unique. 
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Indeed, forming the integral identity for the difference ~ c ~ , t ) = ~ - ~  of two possible strong 

general ized solutions of problem (3), (7), substituting in it q)=~, and integrating by parts,  we obtain 

the equality 

-~Cilmt~,co,r < § ,%mdl2+ <cn)< ~2 
~t 2 l t, 

-.r,.,..,. . ] , , , , r  u~l.~ ~.tJ - " ~ ~ i . x  4" 

t ~ t  
(60) 

and f rom this equality, making use of the boundedness of 

we shall have: 

t 
j I ~ ~ ~ ~ ~ ~ ~ 2  ~ ~ ~ 

" {)t  

~a in Qr and applying H~)]der's inequality, 

(61) 

From inequality (61), applying inequality (24), F r i edr ich ' s  inequality, and the operation of 

maximization, we obtain the est imate:  

! --T, (62) 

and f rom this es t imate,  selecting t~ satisfying the condition 

(63) 

we obtain that ~ (~c,t) - 0  in (~t with t~  t~ . After this, the vanishing of ~ C~,t~ in the entire 

cylinder (~T is proved in steps with respect  to t (see Seco 4). 

A s imi la r  uniqueness theorem holds also for the strong generalized solutions of ini t ia l -boundary~ 

value problem (4), (7), for whose definition one has to omit in the leftohand side of the integral identity 

(59) the t e rms  - ~e ~ ( . .  

We turn now to s tat ionary problems. By the strong generalized solution of the boundary-value 

problem (19), (14) we mean a function ~(:O~_H(~). which possesses  the derivatives ~ = ~ / ~ ( ~ 3  and 

sat isf ies  the integral identity 

~.~ ~ 2 ~ 2 

r r . , . ~  .~.=~ _~: ~1 ~ j , ~ . ~  ~v~r~~_z_+~~< ~r =~Cbd~ (64) 

for any ~ ( ~ ) c ~ ( O ' )  having the same smoothness as 7 ( . ~ )  . F rom Sobolev's embedding theorem it 

follows that the strong generalized solution ~(~) of problem (19), (14) has in ~ bounded derivatives 

With the same arguments  as those used for Theorem 8, one proves the following theorem~ 
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THEOREM 8'. Let ~ be a two-dimensional bounded domain. 

tion of boundary-value problem (19), (14), satisfying 

(~+ cn )~ l+~  Q ~i~ I ~  ~/~, 

is unique. 

Then the strong generalized solu- 

(65) 

A similar  uniqueness theorem in the small  takes place also for the strong generalized solution 

of boundary-value problem (13), (14), which is defined as a function ~(~)~H(;l) , possessing derivatives 

~ L ~ ( ~ )  and satisfying the identity 

for any ~r having derivatives ~ / 4 C ~ .  

THEOREM 8"~ Let ~ be a two-dimensional bounded domain. Then the strong generalized 

solution of boundary-value problem (13), (14), satisfying the condition 

is unique. 

7. Now we turn to the problem of the relationship between the solutions of in i t ia l -boundary-  

value problem (4), (36) for m --,0 and the solutions of problem (5), (36) for the system of Na v i e r -  

Stokes equations into which sys tem (4) degenerates for ~ ~ 0 .  For  sys tem (4), until now nobody has 

succeeded in answering this question; it has not been successful ly proved that for the weak (and, 

moreover,  the strong) solution of problem (4), (36) converges strongly in L2(QT) at least  to a weak 

solution of problem (5), (36). Therefore,  instead of sys tem (4) we consider the following simplified 

sys tem 
" -~C-m.tr -~ ~ p=~(oc,~,), ~=0, (66) 

which for ~=0 becomes Ozin's nonstationary sys tem 

but for every ~>0 retains the terms which describe the relaxational properties of the fluid~ As 

before, we shall solve systems (66) and (67) in QT under initial-boundary conditions (36)~ 

For initial-boundary-value problem (66), (36) one can, in analogy with original problem (4), (36), 

determine the weak and strong generalized solutions, which, as before, are determined by integral 

identities (37) and (40), respectively, where ~ =-c~ ~ . After this the situation is exactly the 

same as in the case of problem (4), (36), i.e., by the introduction of a vanishing viscosity one proves 

the following existence theorems for the weak and strong solutions of problem (66), (36). 

THEOREM 9. Let {(m-)~i(~l)(IJ(~), ~(=,b~L~,,(Q~). Then problem (66), (36) has at leas t  one 

weak solution ~(m,~) and for any such solution we have the est imate:  

g,,~ [07] fl O,~. 

438 



where the constant ~,~ is determined only by the norms h/.llW:Cm and t1~11~, (07, n~l~(~,~)l . 

THEOREM 10. Let ~o(~:)~:(~)~ J ( ~ ,  i(0c,t~)e-L~(QT') o Then problem (66), (36) has at least  

~(m~) and for any such solution, in addition to est imate (68), we have the in- one strong solution 

equality 

QT 

where the constant C,. depends only on llt~~ ~ . tI~IIL.(Q 0 , ~ x  J~l . G,3 and does not depend on ~ ~0.  

We emphasize that the occurrence of ~ in inequalities (68), (69) is completely different than 

in inequalities (38), (39), (41) for the solutions of problem (4), (36) and this allows us to prove the 

following theorem~ 

THEOREM 11. Let ~.~) ~ ~',(~3/~ J(~3, ~(~,~)~-/,CQ~ . Then for ~ any strong solution 

~'(mt) of problem (66), (36) tends to the unique strong solution (Ladyzhenskaya's solution) of i n i t i a l -  

boundary-value problem (67), (36)~ 

We recall  [5, Chap. IV] that the strong solution of problem (67), (36) is defined as a function 

~ ~L.~(Q~ and which sat isf ies  the integral identity ~(~, t )~J(Q) for which ~. ~t'-" ' 

o {,0 o 

for any ( ~ ( ~ , t ~ ,  (Q~(~J(Q~ . For  the proof of Theorem 11 it is sufficient to note that, by virtue of 

inequalities (68), (69), f rom the totality f~(~,t)l of strong solutions of problem (66), (36) one can 

extract  a subsequence iq" l .  which for ~,---0 converges strongly in L (Q~') to the l imit  function 

~(~,t) and for which ~ : ' ,  V~' convergeweakly in L,(QT') to ~= , ~ , respectively.  In addition, by 

virtue of inequalities (68) and (69) we have 

,Q'r Q~ 

Now, if in the integral identity (40), with ~ = ~ a ~ ' ~ ,  , we take the l imit  as ~, ~ 0  , we obtain that the 

l imit  function ~(~c.D sat isf ies  identity (70), i .e. ,  it is a strong solution of the l inearized uroblem 

(67), (36), which, as is known, is unique. 

8. We consider one more part icular  case of the sys tem (4), the system 

-g--v~ . ~ -  --g- ~ p=~, ~ g--o, (72) 

which we shall solve in the cylinder Q~ under the  in i t ia l -boundary  conditions (36). This sys tem also 

has a real  physical sense; it descr ibes  the flow of a viscous incompressible Newtonian fluid which 

requires  ~ units of t ime in order  to be set  in motion under the action of a suddenly applied force.  

A model for such a fluid has been suggested by Voigt and is character ized by the following defining 

equation: 
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(73) 

Inserting this s t ress  tensor into equations of motion (2), we obtain sys tem (72). 

For  the init ial-boundary-value problem (72), (36) we introduce two generalized solutions: a 

strong and a weak one. The strong solution of problem (72), (36) is defined as a function ~(m,~r 

for which ~ ,  ~t, ~ r  and which sat isf ies  the integral identity 

QT 0,~ 

for a n y  @(~C.{).~[~"Ar,~(Q](~]((~T] while the weak solution of problem (72), (36) is defined as a function 

~(~,b- J(,~) for which ~i, ~ .  L~(Q.) and which satisfies the integral identity 

(75) 

i 0.,, 

. . . . . . . . .  ~' & ~ ~ i: ~ As it will be shown below, for any weak, and for any ~ , t , ~ % ( t  L) i~,~:~ and such that ".~t . . . .  ,.~, �9 

moreover  also for a strong solution of problem (72), (36), we have the energy inequality 

L,.73 J '" 

w h e r e  the cons tan t  (],s depends  o n l y  on li~ilz:C,~. ~ . i~olW:C~ ) , and T . 

Fi r s t  of all we prove the following theorem. 

THEOREM 12. The weak (and therefore,  also the strong) solution of problem (72), (36) is unique- 

ly defined. 

Indeed, assume that problem (72), (36) has two weak solutions ~, and ~ . Then their  difference 

sat isf ies  the integral identity 

Vz, ,o,~v~, ~ r , . , r , ~ ,  Q ~ ~ ( '~ ~, Taking in iden t i ty (77)  
~ W 2 k m / T / ~ 1 , ' t . 3 ~ . ; ,  T t :-2 ' ~T .  ~ 

(77) 

t-e 

,o  (78) 

(here we assume without loss of generali ty that ~,~L)~0 for tcc ), taking then the l imit  for c - 0  

and making use of est imate (76), we obtain for ~:~,~) the equality (see [5, 1st ed., pp. 174-175]): 

4' 

(79) 
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Now we make use of the following well-known inequality [5, Chap~ q: 

II UilL~(m -~On II u ll L:Cm, (80) 

which holds ~ z ) e ~ i ( ~ )  and for  any bounded domain ~ . Then, est imating the right-hand side 

of equality (79) which {he aid of Holder ' s  inequality and inequality (80) and making use of the a 

p r io r i  es t imate  (76), we obtain: 

Setting ~ ( b - [ I ~ Q  , from (79), (81)we obtain the differential inequ~ity 
et  

~6 f '  
-~Ct,)&Q~(t), o<t-~T, ~(o)=0, (82) 

from which it follows that ~(~)-0 , O<.t~T, and therefore, also ~(m,~)=-0, Gc,~)~0. 

Proceeding to the proof of the existence theorem for the solutions of the init ial-boundaryovalue 

problem (72), (36), we show that system (72) regularizes the Navier-Stokes system of equations (5) 

in the following sense: 1) i f  ~(=,~) , ~ ~L~(Q~) , ~o(~r , then problem (72), (36)has for 

each ~ >0 a strong solution ~(~,t) in the large;  2) under well-defined conditions of smal lness  on 

the given data v", ~(~:,~) , ~o(~) of the problem and on the dimensions of the cylinder (}T , for  which 

the initial -boundary -va lue  problem (5), (36)for  the sys tem of Nav ie r -S tokes  equations has a strong 

solution ~(~,~) (Ladyzhenskaya's  solution), the strong solution ~(~,t) of problem (72), (36) goes, for  

~ 0  , into the strong solution ~(=,~) of problem (5), (36) for  the sys tem of Nav ie r -S tokes  equations; 

3) if ~(~c,t)eL, CQT), ~o(:C)ej~(~), then problem (72), (36) has for  each ~>0 a weak solution ~(oc,t) in 

the la rge  and for  ~--*0 this solution goes into the weak solution (Hopf's solution) of problem (5), (36) 

for  the sys tem of Nav ie r -S tokes  equalionso 

At the foundation of all these resu l t s  a re  the a p r io r i  es t imates  for  the solutions of i n i t i a l -  

boundary-value problem (72), (36). These es t imates  are  der ived f rom the equalit ies 

(83) 

t 

• +~c,ll. ~+vll~=d. e\o,u_o,d==kh ~t) 04-~T, (84) 
f l  

| 

which, in turn, a re  der ived with the aid of integrat ion by par ts  f rom the equalit ies 

.0. ...q ~ ._0. 

(85) 

(86) 
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In order  to obtain these es t imates  we shall make use, in a substantial  manner, of inequality 
(80) and of Gronwall 's  i emma.  

LEMMA 1. If ~(~c,t) sa t is f ies  for ts relation (83), ~r  and ~(~c,o):~oC~C]~j:Cl~) , 

then for it we have the inequalities: 

(88) 

Est imates  (87), ( 8 8 )  are  obtained f rom equality (83) with the aid of Hb]der 's  inequality and 

Gronwall 's  lemma.  

We introduce the following notations: g(t)=11 ~<~ t)llL,(a ), tlI~(t,)=lhltltL,(m+~lltIJ~,~m, F(.t):ll~J~,~m, 
o ~ t ~ T  . 

LEMMA 2. If ~(:c,b sat isf ies  for t~[o,7] relat ions (83), (84) and if ~ ,[teL~(Q~], 

~o(~) eW:(fl)(J:(f)), then for  any te[0,T] and a n y  ~ >0 we have the following inequalities." 

t 

G o 

where r ~]. 

Indeed, f rom equality (84), applying H~lder 's  and Cauchy's  inequalities and making use of in- 

equalit ies (87), (88), we obtain the inequality: 

(89) 

(90) 

( I t  ~ ~ ut\ t L~(fl) ~vIl)} uawu 11 

(91) 

+Cali~,ji4c~>ll~&,t~ >.~' " ' " " ~ '/' - ' ~ ~.tl.~llz,~ m ~.g,,(.a~')tp~(.{), o , t  ~-T, 

and f rom this inequality, applying Gronwall 's  lemma,  we obtain est imate (89). 

Then, inequality (91) can be rewri t ten in the following manner: 

-~t ~'~'t)+&vF~t)~ll~ll'z,<n,+O',Ca~)tPJ(b)' o,t-'T, (92) 

f rom where,  integrating with respec t  to t f rom 0 to t~T and making use of est imate (89), we obtain 

es t imate  (90). 

L EMMA3.  If ~r sa t isf ies  for t~[o,T] relat ions (83) and (85) and if ~r , ~o(Z)r 

then for any t ~  [Off] and for any ~>0 we have the inequality 
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9 

o 

where the constant C,~, depends only on "~, (~) , II~olw:{CI), % '  and ~ and ~ , ( ~ , ) ~  for ~ --0 . 

Indeed, integrating equality (85) with respect  to f rom 0 to t~T and making use of the HSlder 

and Cauchy inequalities, we obtain: 

t 

o ~ Qt Qt Qt (~t 

:From here, estimating the last integral in the right-hand side with the aid of inequality (80) and 

making use of the already proved estimate (87), we obtain estimate (93), 

Now we prove some est imates  which generalize the est imates obtained by Ladyzhenskaya for 

the strong solutions of the Navier -Stokes  equations [5, Chap. VI]. Unlike est imates (89), (90), and 

(93), they hold uniformly with respect  to mr and are proved basically in the same way as the 

analogous est imates  for the solutions of the Navier -Stokes  equations. 

LEMMA 4. Assume that the function ~C~c.t) sat isfies for tc[O,T] relations (83), (84), 

v.C~)r and assume that 

2 /C ~ 

where ~,, is the constant f rom est imate (87) and O~=~,(0)+ I~tlL,,(~p, C~ =~X~[o,T] I~(='t)~L,Cm . Then 

Vt~E0,T] we have, uniformly with respect  to ~r , the inequalities 

r C '/, -,'1~ 

(95) 

(96) 

~t) -~C~, (97) 

t 

(98) 

Indeed, f rom equality (84), with the aid of inequality (91), we obtain 

d i 9 9 ~ 
(99) 

On the other hand, f rom equality (83) and est imate (87) we have 

and therefore 

(1oo) 

(1oi) 

At the initial moment t = O  , by virtue of (95) and (101) we have 
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2 

v - Q@ Co) >~X >O. (102) 

Then, as in the case of the Navier-Stokes equations, it is easy to show that also Vt~C0,T] 

2 

v - C~ cb >o, (lO3) 

and then from inequality (99) it follows at once that 

t 

* ( t ) .<  l~" (o)* ! I~]L,~mct,t -<(~,, (104) 

After this,  f r o m  inequality (101) we obtain es t ima te  (96) and the inequality 

2 2 

v-C~ ct)~, 0-<t~T. (lO5) 

Finally, f rom inequality (99), making use of estimate (104) and inequality (105), we obtain estimate 
(98). 

Remark. From (72) i t  follows that 

Oo(%)~WoC~J(~J,C~) , then ~(mjeL, C~) . Then ~tC~c,0)-n~t(z,0) and ~w~p(:c,o) 

a r e  obtained as the projec t ions  of ~(:c) onto the subspaces  J ( ~ J  and ~(~)  , r espec t ive ly .  

solving the elliptic boundary-va lue  p rob lem 

we find ~tCmo) , ~t~Cm,o), andtherefore also ~Co), whichoccur in estimates (96)-(98). 

We mention one more  var ian t  of the conditions under which for  the solutions of the initial - 

boundary-value  p rob lem (72), (36) one can obtain e s t ima te s  of the type (96)-(98), uniform with res~)ect 

to ~E0,1]  (see [5, Chap. VI]). 

LEMMA 5. Assume that the function ~(m,t) sa t i s f ies  the same  conditions as in L e m m a  4 and 

let  ~ and k be posi t ive numbers  such that 

= v-~(Jt;~llqcm+k ) ] >0. (108) 

Assume fur ther  that 

t,T/k~)j~ , (109) 

s=qJCO')-~b,,b,~b=e/~p V +~t~cp--~--, (Ii0) 

where  C~ , C,~ , O,, are  the constants  f rom L e m m a s  1 and 4. Then for  all t ~  [0,T] , where 

Finally,  
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T~ ~ ~ ' ,  (111) 

we have, uniformly with respect  to ~6e~[0,1], the inequalities: 

R(t) ~< LT ~2 C~=emp *C:,)] , (112) 

*,d,) .~ q = e ~  ~ ,  (113) 

Finally, we show that if all the given data of the in i t ia l -boundary-value problem (72), (36) and its 

solution ~(~,t) do not depend onone of the spatial variables (e.g., on ~3 ), then, as in the case of the 

Navier -Stokes  equations, the functions ~(t) , ~(L) , fjF~%)~ can be est imated uniformly with 

respect  to ~ [ 0 , s  without any res t r ic t ions  on the smallness  of the given data. Namely, we have the 

following lemma.  

LEMMA 6. Assume that ~(~:,t~ satisfies for L~[0,T] relations (83), (84), assume that ~Gc,L) , 

.~(:c.t) , and ~oCm) do not depend on m~ , and let , . 

~tr we have, uniformly with respect  to ~e~[0,~], the inequalities: 

t 

c ~ p  V+~, ~ p _ ~  j ~.C~ (116) 
, r  c.1 

Indeed, making use of the fact that ~C~c,L) depends only on two spatial variables, we estimate 

the integral in equality (84) with the aid of the following inequality [5, Chap. 1]: 

' u' tom ~ 9" flt~' Ca1) ' hi~ U'L,(~) ' (117) 

valid for any function ~(~c)~ W:(~) and any two-dimensional domain: 

Then f rom equality (84) we obtain the inequali ty 

~'=(b+vF:(b~,e(b~l(t)+ll~:il~,(a,~,(b, o4~T, (110) 

from which, making use of Gronwall's lemma and estimate (88), we obtain estimates (115) and (116). 

With the aid of the a priori estimates, obtained in Lemmas 1-6, one proves by the Galerkin 

method the following existence theorems for the strong solution of problem (72), (36). 
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THEOREM 13. Let  ~. ~tCL:CQT), t~(m)cW, Cfl)(lJj(~) . Thenthe in i t i a l -boundary-va lue  problem 

(72), (36) has for  eve ry  ~>0 a unique strong solution and for  this solution the es t imates  of Lemmas  

1 and 2 hold. 

THEOREM 14. Let  ~(.~:.t)r CQ), ~tc--L,,(QT), -" ' " , OoCZ)r Cfl)DJx~) and assume that the initial 

data of problem (72), (36) sat isfy one of the smal lness  conditions formulated in Lemmas  4, 5. Then 

problem (72), (36) has for  each m>0 a unique strong solution ~'(m,t) , the es t imates  of Lemmas  

1, 4 or 1, 5, respect ively ,  hold for  it, and for  m --, 0 the solution ~'(m,t) converges  to the unique 

strong solution ~(m.t) of problem (5), (36) for  the Nav ie r -S tokes  equations. 

For  the proof of the last  asser t ion  of Theorem 14, we note that, as it follows f rom the a p r io r i  

es t imates  (96)-(98) or (112)-(114) for  the solutions ~'(m.t) of problem (72), (36), f rom [~'} one can 

ex t rac t  a subsequence [ J which for  m,~0 converges  strongly in Lq(Q~ to the l imit  function 

for which . , <;,: eonverge weary in to , , respeetivelyo 

Finally, f rom the a p r io r i  es t imate  (97) or (113) it follows that we have, uniformly with respec t  to 

~L0,4] and tc..tO.T], 

II ~ t  ll4(n) r (120) 

and f rom here  it fonows at once that % ~{~) c ~ O - * 0 , ~ 0  V C e ~ ( O ) .  Taking the l imit  in 

integral  identity (74) for  ~e~0  , we obtain that the l imit  function ~(m.t) will sat isfy the integral  

identity 

-'-'+ * " "-" "-' Vq E.JjQ), (121) 

QT QT 

i .e. ,  it will be a strong solution of problem (5), (36) for  the Nav ie r -S tokes  equations [5, Chap. VI]. 

Since the strong solution of problem (5), (36) is unique~ it follows that also the ent i re  totali ty f~ ~] of 

solutions of problem (72), (36) converges for  ~--*0 to ~(m,t) �9 

THEOREM 15. Assume that none of the given data of problem (72), (36) depends on the Car tes ian  

coordinate :c~ , assume that ~ is a two-dimensional  bounded domain and assume that ~(m,t) ~ L~(Q~ , 

~t~ L2,~(Q ~ , ~oCCC) ~W~(~)()Jj(~) . Then problem (72), (36) has for  each ~>0 a unique strong solu- 

tion ~ (~,t) , the es t imates  of Lemmas  1 and 6 hold for this solution and for  ~ - - 0  these solutions 

~" converge to the unique strong solution ~(m,t) of problem (5), (36) for  the sys tem of N a v i e r -  

Stokes equations, andalso  for the difference ~ -~-=~  one has the est imate:  

~o.x~ h 0 T 

In order to prove estimate (122), first of all we note that for c~(m,t) we have the equality 

Qt Qt Qt 

Applying, for the estimates of the integrals in the right-hand side of (123), the H~ider and 

Cauehy inequalities and also inequality (117), we obtain from (123) the inequality 
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.,,., % 

a Qt ~t Q' Qt 

and f rom this inequalilT, "making use of the es t imate  (116) of Lemma 6, we obtain the inequality 

- '  ' C~,(v) (~=) ~Q! IcoL .~-T, ,~,,:c..(v.C~. (!I , .  o~t . 
Qt 

By vir tue of es t imate  (88) of Lemma 1, for  sufficiently small  

0<t <t, we have 

t4,:G (~(PfLQ)~& therefore for  
2g J J  :g / ~ ' 

(124) 

(125) 

(126) 

After this es t imate  one can prove (122) on the ent i re  interval  [0, T] by success ive steps with 

r e spec t  to t (see [5, Chap. VI, Sec. 2]; see also [9]). 

The general ized solutions of the in i t i a l -boundary-va lue  problem (72), (36), whose existence has 

been proved in Theorems  13-15, possess  be t te r  p roper t ies  than are  required  by definition f rom the 

strong solution of problem (72), (36), since they have for  each t ~_[0,T] der ivat ives  ~t , ~ ~/~(~) " 

Correspondingly,  the conditions on ~(xL) are  overstated (one needs the existence of the der ivat ive 

~t f rom /-=(QT) or As. , (Q~)). T~nerefore, the following theorem presents  interest ,  being proved, as 

before ,  by the Galerkin method with the use of the a p r io r i  es t imates  given by Lemmas  1 and 3~ 

THEOREM 16. Let  ~(:c.t)~/2(QT) , ~o(:O~W:(~))0JI(~)) Then problem (72), (36) has for  each 

~e >0 a unique strong solution and for  this solution the es t imates  of Lemmas  1 and 3 hold. 

Now we proceed to the investigation of the weak solutions of problem (72), (36). Here the 

following theorem is fundamental .  

THEOREM 17. Let  ~(m,~) c-/=(QT) , ~o(~C)~j:(~) . Then problem (72), (36) has for  each m>0 

a unique weak solution ~'tc,D and for  this solution we have the following es t imates :  

EO,T] 
11 QT 

and for  sufficiently small  % >0 , under the condition that ~O_~Cf f  ) 

T 

o 

where h~ ' - r -~ ' ( :c , t+~)-~. t )  while the constants C~, , C~ and the exponent ~<2/~ depend only on 

II~]lzAe~ ' ~~ ' ~ , ~ C  r and dd not depend on ~ 0  . 

The existence of the weak solution of problem (72), (36) is proved by the Galerkin method. The 

a p r io r i  es t imate  (127) [or, which is the same,  (76)] is proved by the limiting p rocess  for  ~-~oo f rom 

the s imi la r  es t imates  for  the Galerkin approximations ~ ( ~ , t )  for  the solutions of problem (72), (36), 

which, in turn,  is proved in the same way as the es t imates  of Lemma 1. Finally, a p r io r i  es t imate  

(128) is proved with the aid of es t imate  (127), basical ly  in the same way as the s imi la r  es t imate  for  

the weak solutions ~(~,~) of problem (5), (36) for  the Nav ie r -S tokes  equations [10]. 
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The a pr ior i  es t imates  (127) and (128) are uniform with respect  to ~ ~0 and the well-known 

compactness c r i t e r ia  in /~ ( (~  allow us to prove: 

THEOREM 18. Let ~e/~(Q~, ~o(~)~-Ji(~), ~ .  Then f rom the totality [ U~] of the weak 

solutions of problem (72), (36) one can extract  a subsequence [ ~ }  which converges for ~--~0 to 

the weak solution ~(~,~) of problem (5), (36) for the Navier-Stokes  equations. 

In the two-dimensional case every totality ~ }  of weak solutions of problem (72), (36) con- 

verges to the unique weak solution ~ of problem (5), (36). 

In [11], the existence theorem for the weak solution of problem (72), (36), under the same con- 

ditions on ~ and ~o as in Theorem 17, is proved by the method of finite differences.  Also there it is 

proved that f rom the totality ~ t  of the multi l inear solutions of the finite-difference problems, 

approximating problem (72), (36), one can extract  a subsequence which for h~ , A~=~. , ~-~0 

converges to the weak solution ~C~c.~) of problem (5), (36) for the system of Navier-Stokes  equations. 

9. We investigate the problem of the limiting process  for ~---0 in the case of the stat ionary 

problems. The stat ionary system, corresponding to (4), is 

3~ ~ DA~, =~C=~, c~ ~=0. (129) 

We shall solve system (129) in the bounded domain under the boundary condition i')_ 

~l~fi =0. (130) 

In [6] one has introduced for problem (129), (130) the generalized solution ~(~) f rom the space 

~ ( ~ )  (~ J(~) , which is defined as that function f rom the indicated space which sat isf ies  the integral 

identity 

for any ~C~eBC;I~, and one has proved that if ~c~)e-L~C~ , then problem (129), (130) has at least  one 

generalized solution ~C~)~:C~D N~(~] and for any such solution the following energy inequality 

holds: 

I ' 

Inequality (132), whose right-hand side does not depend on �9 >~0 , allows us to prove the follow- 

ing theorem. 

THEOREM 19. Let  ~(~)~-Z~(~) . Then for ~-~0 the generalized solution ~C~) of problem 

(129), (130) f rom ~:(fl3(~J(~l) tends to the generalized solution f rom HC~)(Ladyzhenskaya's solution) 

of the f i r s t  boundary-value problem for the stat ionary Navier-Stokes  system 

(133) 
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We recal l  [5, Chap. V] that the generalized solution f rom H c~) of the boundary-value problem 

(133) is defined as a function ~(:c)~H(fl) which sat isf ies  the integral identity 

(134) 

It is proved in [5] that the general ized solution from H(~) of problem (133) exists for any ~)~.L~(fi) .  

Theorem 19 is an immediate consequence of inequality (132). Indeed, by virtue of (132), f rom 

totali ty ~ t  of the generalized solutions of problem (129), (130) one can select  a subsequence [~ ' t ,  

which for ~--~0 converges w e a r y  in ~(~)) and strong_.ly in ~-~(~)) to the limiting function ~(~)r 

F rom here it follows that ~ g~ v" " ~ a ~ - - ~ ! t r  ~ % d ~ ,  V~C )cH(~) o Then, by virtue of (132), 
ll a 

(135) 

Taking in the integral identity (131) the l imit  when ~--~0 we obtain that the limiting function 

~(:~)r sat isf ies  the integral identity (134), i .e.,  it is a generalized solution from H(s of prob- 

lem (133). 

10. Let ~ be a three-dimensional  unbounded domain, situated outside a smooth surface 3~ 

We consider in ~Q the s tat ionary sys tem (129) and we shall solve for it the flow problem with zero 

boundary conditions at infinity: 

~].0.=0 ; ~.~)--*0,  I~1 ---, oo. (136) 

o(,~) o 2 a 

We define the general ized solution of the problem (129), (136)from the class H (~ ) -~12(~ )0J (~ )*  

as a function f rom this space which sat isf ies  the integral identity (131) for any q)(~)~-~(fi) (see [5, 

Chap. V]) and we prove that we have the following theorem. 

THEOREM 20. Let ~(~)~L,/~(_Q)OL,(~). Then flow problem (129), (136) has at leas t  one 

general ized solution ~(~)~g~(~) and for any such solution we have the est imate:  

where the constant C31 depends only on the norms I1~/IL~z~(m ) and tlg I1L,(m and on V. 

For ~ 0  the general ized solution ~(~:) of problem (129), (136) f rom the class  H~(/1) tends 

to the general ized solution f rom H (~)) (Ladyzhenskaya's solution) of flow problem (133), (136) for the 

s tat ionary sys tem of Navier -Stokes  equations. 

In order  to prove the theorem we consider the sequence of extending domains D~ with exterior  

boundaries 3~)~, a = ~,2, , exhausting in the l imit  the entire domain ~ and in each of them we approximate 

the sys tem (129) by the following sys tem with a small  parameter  6>0 ( [6] ): 

*Obviously, H~(~)) is the closure of the set J (~)  of the smooth, finite, solenoidal vectors in ~ , 

in the norm induced by the inner product 
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(138) 

which will be solved in the domain D~ under the following boundary conditions: 

~]:5~ 8~q=O ~ =5[ 1 =0. (139) 

For  each of problems (138), (139), ~--~,'2,... , we define, following [6], a general ized solution 

~'~(~) f rom ~ ( l ] ) ~ J ~ )  as a function of this space which sat isf ies  the integral  identity 

a,~ .0.,, .O.,v fi~, 
(140) 

for any ~ ( a : ) ~ J ( ~ ( o r ,  which for the bounded domain ~ is the same, for any cP(m)~V~:(r 

For the generan~ed soiuUons of problem (I~81, (13~)from ~]:(~)n](fi) we have the inequality 

(141) 

in which the constant C3~ depends only on V and on the norms II~ltL~/s(/l), II.~}lq~m_ and depends neither 

on the dimensions of the domain l~  , nor on a~>~0 . In order  to prove inequality (141) it is suf- 

f icient to take in the integral identity (140) ~ ( ~ : ) = ~ - ~  and then to es t imate  the r ight-hand side 

with the aid of the H~lder and Cauchy inequalities and of the well-known inequality [5, Chap. I] 

(142) 

valid in any three-dimensional  domain, including the unbounded ones too. 

On the basis  of a p r io r i  es t imate  (141) one proves  (see [6]) that problem (138), (139) has for  

each ~ =t,~ .... and s>0 at leas t  one general ized solution ~'~(~) f rom ~:(~)NJ(xQ~ and that for  

each fixed v~--~,~, one can ex t rac t  f rom the totali ty f~ (~ ) ]  of such solutions a sequence [~'~(~)1 

which for  5 i ~ 0  converges  weakly in ~ ( ~ )  and strongly in /~ (fl) and in / ~ ( ~ )  to the limiting 

function ~(~)~H~]) .  In addition, 

,) 
-% 

Taking now the l imit  in integral  identity (140) as ~ ~ 0  , we obtain that the function 

the integral  identity 

(143) 

~"(~) sat isf ies  

for  any ~(~)eJ(~]~)aJ(~) . In addition, for  any ff (~) we have the inequality 

(144) 
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vI: 
(145) 

where the ~onstant  ~ does not depend on r~ =t,~ ..... and on the dimensions  of the domain ~ .  

"SF.) We extend each_of the functions t%~ ~ outside the domain ~ by assigning the value ze ro  there  

and preservingthe same notation for the extended function. It is easy to see that t~ (m)e H (~), 

r~ = I, ~ .... and {g {~l.~-{t~ ]Hr Then from inequality (145) there follows the inequality 

F r o m  inequality (146) it follows that f rom the total i ty of extended functions f~(~)] one can 

ex t rac t  a subsequence ~'(~z)l , which converges  weakly in Hr and s t rongly  in ]_~(I~l-<Cv~s~) and 

in L~({~{ ~Co~st) to the l imit ing function ~ ( 0 c ) ~ ( ~ ) .  Then, assuming that in integral  identity (144) 

we have ~(oc)r and taking the l imi t  as % - - ~ o ,  we obtain that the l imit ing function ~(0c) sa t i s f i es  

the integral identity 

VI (147) 
ll I1 I1 

for  any ~ ( ~ ) ~ J ( l ? ) ,  i .e. ,  it is the des i red  generalized solution of p rob lem (129), (130) f rom H~'~II) . 

Inequality (137) is obtained by the l imit ing p r o c e s s  as n - - . ~  in inequality (146)o 

The second pa r t  of Theorem 20 is proved in the s ame  way as Theorem 19 in the ease  of a bounded 

domain and it is a consequence of the fact  that the constant  G~ in inequality (137) does noi depend on 

~ 0  o We mention only that a genera l ized  solution of the flow prob lem (133), (136) for  the N a v i e r -  

Stokes s y s t e m  f r o m  H(I1) is defined as a function ~<~;)~HCfl) which sa t i s f ies  the integral  identity 

II 11 (I 

for any ~(oc)r and that, as proved in [5, Chaps. If and V], such a solution exists for any 

~C~:)r . From Sobolev's embedding theorem with a limiting exponent, from Leray's inequality 

[5, Chap. X] 

fl o 
(149) 

valid for  any domain ~c_~ 3 and any smooth,  finite function t~C~L) in ~ ,  and f r o m  inequality (137) 

there  follows that for  a genera l ized  solution ~(~) of flow prob lem (129), (136) f r o m  the c lass  Hr 

we also have the inequality: 

(150) 

Inequali t ies (137) and (150) show in what sense  the solution ~(=c? of flow problem (129), (136) f rom 

the c lass  ~r and a lso  i ts  der iva t ive  ~ tend to ze ro  as {cci _ o o .  
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11. Some simple cases  of initial -boundary-va lue  problems for Eqs. (3) and (4), describing the 

motion of aqueous solutions of polymers ,  admit, just as the case of the Nav ie r -S tokes  equations, con- 

siderable simplifications and can be solved in a closed form.  One of these problems is the problem 

of the nonstationary motion of an aqueous solution of a polymer in the half-space - ~ < ~ z < ~ , ~ > 0, 

caused by the harmonic oscillations of its bounding plane. For  the Nav ie r -S tokes  equations this 

problem has been solved, e.g., in [12, Sec. 24 t. 

Namely, we assume that an aqueous solution of a polymer,  whose motion is described by Eqs. 

(3), is in contact with the plane -r < ~, z < ~ which per forms  a simple harmonic oscillation with 

frequency ~0 in the direct ion of the ~ axis. Then the problem consists  in solving in the half-space 

-oo<~,z~oo,~>0 system (3) with ~-~0 and under the boundary conditions 

L~ 
tY--0, d ,=0 , tY =tie for ~=0.  (151) 

The symmet ry  conditions of problem (3), (151) induce the same simplifications as in the ease 

of the s imilar  problem of Nav ie r -S tokes  equations [12] and we arr ive  to the solving of the following 

simple problem for the unique nonzero component tY~-~tr(:c,~) of the velocity: 

~ ~ , ~ .,~t 
~ - - ~ - ~ = v ~ - ~  ~>0; tY o= t~o r176176176176  (152) 

We shall seek a solution of problem (152), periodic with respect to ~ and ~, of the form 

trCa:.t? = t~o# r 

where 

Inserting this solution into (152), we obtain k ~ too . = ~ , whence kc~) =+_[o.c~)+,.~c~)], 

(153) 

Then 

~c~;,t) =Uo e (154) 

As in the case of the Nav ie r -S tokes  equations, solution (154) represents  a t r ansverse  wave, whose 

wave vector  is perpendicular  to the direct ion of motion of the bounding plane, and whose amplitude 

fades away exponentially with increasing ~ > 0 .  

The fr ict ion force acting on a unit a rea  performing a harmonic oscillation along the ~ axis, is 

directed along the ~ axis and is computed according to (2). The unique nonzero component of the 

s t r e ss  tensor  turns out to be 

2 

Inserting (154) into (155), assuming t~o real and separating the real part, we obtain 

(155) 

(156) 
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where 

( 1 5 7 )  

For  ~ = 0  the obtained solution.coincides with . thesolution of the s imi la r  problem for the 

Na v i e r - S tokes  equations [12], for  which 

t co)  =-  ~9 

Tf ~ is sufficiently small, then we have the asymptotic equality 

(158) 

(159) 

Since the cosines in (156) a re  in opposite phase, it follows f rom (156) and (159) that the fr ic t ion 

res i s t ance  of a weakly concentrated solution of polymer  can be in absolute value e i ther  smal le r  or 

g rea t e r  than the f r ic t ion  res i s t ance  computed f rom (158) for  the "usual" viscous fluid. 

12. Investigated sys tem (4) and its corresponding s ta t ionary sys tem (129) r ep re sen t  a special  

case  of sys tem (3), which f rom the point of view of the quasi l inear  equations, because of the p resence  

of the convective t e rms  of the second order  -~etl~(g%~ +tY~:), is a sys tem with a strong nonlinearity and 

difficult to investigate.  Desir ing never the less  to take into account the effect  of these t e rms ,  we 

l inear ize  them, replacing ~i~, by ~j~, , where ~c:r is a given solenoidal vector ,  equal to ze ro  on ~QT 

and having bounded f i r s t  and second der ivat ives  with r e spec t  to the ~ 's and we also set  

I ---C.,,o. (16o) (2.f 

We shall solve the par t ia l ly  l inear ized  sys tem 

. . . . .  

in Q-r under in i t i a l -boundary  conditions (36). For  problem (161), (36), as well as for  problem (4), 

(36), one can introduce weak and strong general ized solution, whose definitions differ  f rom the defini-  

tions of the corresponding general ized solutions of problem (4), (36) only in the fact  that in the lef t -  

hand side of integral  identities (37) and (41) one adds the integral  

l inear  with r e spec t  to ~ .  

THEOREM 21. Let  

one weak "solution ~c~,L) 

on ~ f r o m  (160)o 

There fore ,  in analogy with Theorem 7 and Theorem 1 of [6], one proves :  
o 2  o 

~.C~)r and ~C~,t)~-L,.,(Q~ �9 Then problem (t61), (36) has at least  

and for  any such solution es t imates  (38), (39) hold, where C~ and ~ depend 

~ ~  
Let Oo(~,~2(D)0j(~),~(cc,t)~L=((~ . Then problem (161), (36) admits at leas t  one strong solution 

and for  any such solution es t imate  (41) holds, where C s also dpends on ~3~" 
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Moreover ,  for  sys tems  obtained f rom sys tems (66) and (72) by the addition of the l inear  t e rms  

-~.t~s g~,=.), where ~C~,~) possesses  the above-enumerated proper t ies ,  all the resu l t s  which have 

been proved for  sys tems  (66) and (72) are  p rese rved .  

The f i r s t  boundary-value problem for  the s ta t ionary sys tem corresponding to (161) has at leas t  

one general ized solution ~t~)e~:(~)(~ J(~) satisfying for  any ~C~)r163 the integral  identity 

if ~(oc)r and we have the condition 

(164) 

which a r i ses  at the est imation of the integral  

(165) 

and ensures  for  the solutions of the s ta t ionary problem under considerat ion an est imate  of the type 

(132) in which the constant C~ depends also on the constant C~. 

13. A se r i e s  of non-Newtonian fluids (see, e.g. ,  [13]) are  descr ibed  by the following defining 

equation, more  general  than (1), 

where ~ , ~  =t,. , N are  given nonnegative constants (the relaxat ion viscosi ty  coefficients of different  

o rders ) .  Inserting the s t r e s s  tensor  (166) into the equation of motion (2) and neglecting in the f i r s t  

approximation,  as well as in the derivat ion of sys tem (4), the t e rms  containing the products  of the 

der ivat ives  of ~ with r e spec t  to the ~ 's and t ,  we obtain the sys tem of equations 

We shall solve sys tem (167) in the cylinder QT under the following in i t i a l -boundary  conditions 

, . . . .  ( 1 6 8 )  

The initial -boundary  problem (167) admits a unique c lass ical  solution. In o rder  to prove this 

uniqueness theorem it is sufficient to multiply the equation for  the difference ~(~,b) of two possible 

solutions of problem (167), (168) by ~ , to integrate the obtained equality with r e spec t  to 

(~t , 0<~ c T ,  to pe r fo rm the integration by par ts  in the same manner  as we have done it in the proof 

of Theorem 1, and to make use of the H~lder inequality and of Gronwall 's  lemma.  

The solvabili ty of problem (167), (168) can be investigated by introducing the vanishing viscosi ty  

~ ~ , in a s imi la r  way as the solvability of problem (4), (36) has been studied; however,  problem 

(167), (168) has for  ~v~  one significant distinction: because of the presence  of the nonlinear t e rms  
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J ~  FW-]3  
o r d e r  u v - i - L < - ~ - }  o 

subsequent paper. 

,2(, even its "weak" solution must  possess  der ivat ives  with respec t  to ~ up to the 

A detailed investigation of the solvabili ty of problem (167), (168) will be given in a 

tn conclusion, ! wish to express  may thanks to O~ A. Ladyzhenskaya and V. A. Solonnikov for  

useful discussions of the resu l t s  of this paper~ 
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