THE UNIQUENESS AND GLOBAL SOLVABILITY
OF BOUNDARY-VALUE PROBLEMS FOR THE EQUATIONS
OF MOTION FOR AQUEOUS SOLUTIONS OF POLYMERS

A. P. Oskolkov

It has been experimentally established [1] that if we introduce in a viscous fluid, which moves
around a body, a very small {(up to a fraction of a hundredth percent) amount of special polymer
substances, without changing the density and the viscosity of the fluid, then the motion of the fluid in
a boundary layer will be significantly affected and the friction resistance of the moving body will
decrease. The comparison of the physical characteristics of water and weak agqueous solutions of
polymers [2-3] show that for practically identical values of the density and viscosity, these fluids
differ sharply in their relaxational properties — the relaxational processes inthe polymer solution
being very slow in comparison with those in water.

1t is known (see, e.g., [4]) that Newton's equation, connecting the stress tensor T, the strain
tensor D =D @) Dkk(5)=4§ %%j %%) and the pressure p for the motion of a viscous incom-~

pressible fluid has the form:
T=-pE+2vD,

where V is the kinematic viscosity coefficient. This relation has been obtained under the assumption
that the fluid does not possess relaxation properties, i.e., it returns instantly to its initial state as soon
as the exterior stresses applied to it have been removed. In [2-3] one suggests to take inte account the
relaxation properties of agqueous solutions of polymers with the aid of the following modification of the

governing equation:

TepE 2D =R, »

where ® is the relaxational viscous coefficient and (%fs%—ﬁgwd is the Stokes derivative. Inserting the

stress tensor {2) into the equation of the motion of a continuous medium, written in the Cauchy form
AT _ s T+0
—_—= d/(,OT"’ y (2)
at :

we obtain the system of equations
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%Y, 2 -
+3—m¢iagj*a‘%=gw v=f, .n,  diw T =0,

and from this system, neglecting the terms containing the products of the first and second derivatives
of UTxly with respect to the space derivatives since they are small compared to the velocities and

deformations, we obtain the following system (2, 3]:

o0 @g 08, . 268 1 %
T AU -2 T +c3wd—§. dw 1 =0, 4)

which will be the main object of investigation in the present paper. For %=0 systems (3) and (4)
reduce to the system of the Navier —Stokes equations

g—g-wm kaﬁ +ijzip§ dw ¥ =0. (5)

K we introduce a new unknown function U =%AT-0 , then system (4) can be rewritten in the

following form:

24,

+oka—“ L3+ LT-gradp={ 247-5-0, dw=0. ®)

2. Let () be a bounded domain in the two- or three-dimensional Euclidean space, let 3Q be
the boundary of the domain 0, Q. = (0% 10,7, 0<T<e>, 30, =90 x [0.T] the lateral surface of the

cylinder Q. , QtE {1 the cross section of the cylinder Q. by the plane 1 =Consl, 0<t <T .

T
We shall consider in the cylinder QT the solution of system (4), satisfying the initial~boundary

condition

6\’@0 =1, ze); %Q:o_ (1)

In Secs, 2-4 we shall prove uniqueness theorems of the solution of the initial “boundary-value
problem (4), (7), which is the main object of investigation of the present paper, and also of the initial -
boundary-value problem (3), (7) and of the boundary-value problems for the corresponding systems

(3) and (4) of a stationary system.

By a generalized solution of the initial —boundary-value problem (4), (7) we mean a function
Fabhed (Q) which has generalized derivatives J,.0,. 3., . Uxy . Jaees £, (Q,) , Satisfies the integral
identity

ﬂ [ﬁté v, +ae-6,x(-ﬁl+vk-% - 2HP1d0 =ﬂ§ EﬁdQ, o<t (8)
& Q

for any (D(cct)ej(o,) Qlaa =(, having the same differential properties as U (x.t), and satisfies the
initial ~boundary conditions (7). It is easy to see that if {(x.t) €Ll,,(Q,) , then all the integrals which

occur in identity (8) make sense.
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First of all we prove that we have the following theorem.

THEOREM 1. The generalized solution 0(Xt) of the initial ~boundary-value problem (4), (7),

possessing in Qr bounded derivatives Uz, Vux + iS unique.

Indeed, if problem (4), (7) has two solutions 0, and ¢, , possessing the properties indicated in
Theorem 1, then their difference & = ¥, -G, satisfies the integral identity

j(;j 13, ) +v&3§$;w5ﬁx+v,,‘%‘(€o‘ ~aemf))<-1§+wk—a§fk(ﬁ~ 247)0)dQ-0, (9)

and, in addition,

00 . @lgq 0. (10)

Taking in (9) C—ﬁ =& , integrating by parts, and making use of (10), we obtain:
L(ﬂ&jhﬂ +%h(-5 nz )'}Vn:) "9 _‘ﬁ[w @ (‘E-QAE)*&@L‘M@]AQ‘O (11
2 L) L *LQ) o « 0,2 2/ X, 0%, 0x, 1% )
4

and from here, applying Holder's inequality and making use of the boundedness of Gx + U in CZT ,
we shall have:

Iwnz,(

- 2 - - - 2 ~ 2
QQ"&MJL,(qu @3, 5, sl “/.,(QQ)’ o<t <T. (12)

N

From the last inequality, making use of Gronwall's lemma [5, Chap. VI] and of (10), we obtain
dxh=0 , @whed,.

The stationary system, corresponding to system (4), has the following form:
VAE—WK% (ﬁ-mﬁ)wwdp%m, diw =0, xe . (13)

We shall consider the solution of system (13) in the bounded domain 1 |, satisfying the boundary

condition
0]y =0- (14)

By a generalized solution of the boundary-value problem (13), (14) we mean a function
Ty H(Q) which has generalized derivatives U,,, U € L,(0) and satisfies the integral identity

f [ﬁﬁ;m—%ﬁ(&-mﬁ)@]h =- f {Pda (15)
Q a2

for any function OIED) possessing the same properties as T,

We introduce the notation {5, Chap. VI|:
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and we prove that, under well-defined conditions relative to the smallness of the data of the problem
(13), (14), we have the following theorem.

THEOREM 2. The generalized solution U@) of the boundary-value problem (13), (14), possess-
ing in () bounded derivatives Ux , U.r and such that

2 mag I +Cy mﬁmamﬁkv, (16)

is unique,
Indeed, for the difference @) of two possible solutions of problem (13), (14) we have the
equality

fw (u AT, )d - &Jav“ 2, 39 -0, am

Vlwl ox; 9x; O,

L)
from which, applying Holder's inequality for the estimate for the second integral and making use of
the boundedness of U, and 0., in () , we obtain:

nd, < C, a5 2, v mg §,)1E. (18)

LD =L

and from this inequality, making use of condition (16) and of the boundary condition &|aq =0 ,
we obtain d=0, xe(),

3. Unigueness theorems for the solutions of the initial ~boundary-value problems similar to
Theorems 1 and 2 for system (4) and (13) hold also for system (3) and its corresponding stationary

system
VAU, -0 .a__(u'-amj')ﬂp, _,_3\/ +——-‘—av N dig =0 (19)
(ALY "3 i ﬁ o) oz, 2 T v

By a generalized solution of the initial ~boundary-value problem (3), (7) we mean a function
If(:x:,t)ej(QQ which has generalized derivatives T, v T, V:t ) Toen € L,(Q,) , satisties the integral
identity

%[ [ﬁé+V3§;%§:@¢*m%—‘(§—uz\ﬁ)@ %'ﬁkau&c B, la *ﬂ §0da, odteT, (20)
t 0

for any (P(;r,,t,)ej Q), q)‘aa =0 possessing the same smoothness properties as U@t) , and satisfies
T
the initial ~boundary conditions (7). We show that we have

THEOREM 3. The generalized solution Ux}) of the initial ~boundary-value problem (3), (7),
having in Q,bounded derivatives . ,T.. , is unique.

Indeed, assume that problem (3), (7) has two solutions ¥, and ¥, andlet ®d=7,-T,. Then,
reasoning in the same manner as in the proof of Theorem 1 and also integrating once by parts in the
additional nonlinear terms, in which transformation for the vanishing of the boundary integrals the
boundary condition mlaa, =0 is sufficient, we obtain an equality which differs from equality (11) by the
additional term
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%Sé[ agtva *azc‘%; w; %(: %"‘%‘% 2w +%‘£“)} 4Q.

t

(21)

From equalities (11)+(21) and also from equality (11), there follows ineguality (12), which
together with the condition a]vo =0 gives d=xt)=0, xbeq,

We now define the generalized solution of the boundary-value problem (19), (14) as a function

T@eH) which has generalized derivatives i xx 1 S e.l_a (Q) and satisfies the integral identity

TXRX
-

S [vi.$,-u T @ %AU)(DW%% gmvgm Yox ax}?]dm Ji@dm (22)

for any function {(x) having the same properties as the solution ) . Similarly to Theorem 2,

one proves

THEOREM 4. The generalized solution of the boundary-value problem (19), (14), having in (]

bounded derivatives U, and U.. and such that
- % - s - V
% ma !UxI+Cn(aem8mlvul+m&m|u-amuD <Y, (23)

is unique.

4, In the two-dimensional case, the uniqueness theorems for the above-~defined generalized
solutions of the initial “boundary-value problems (3), (7); 4), (7) and of the boundary-value problems
(19), (14); (13), (14) can be proved without assuming the derivative V., to be bounded in Q, or Q ,
respectively. At the foundation of these results is the known inequality [5, Chap. 1]:

l\u\ltq@ <2 i\uﬂumhw ﬂL @ 4)

valid for any function u(m)eW;(m and any two-dimensional domain () .

THEOREM 5. Let (] be a two-dimensional bounded domain. Then the generalized solution of
the initial ~boundary-value problem (3), (7), having in QT bounded derivative U, , is unique.

Indeed, if in equality (11) + (21) for the difference @ (x> of two possible generalized solutions
of problem (3), (7) one integrates by parts in the third and the fifth terms, then one obtains the equality:

12'(“(7)“2,(0 N azﬂ@ﬂi,(nt) + Vﬂ(ﬁxﬂl(a Qﬂﬂw@ Z%K(Ez -mAﬁ)dQ_%SSg%‘ 'c;a;)k %&(h
N (25)
S ~ax(ox %, gg’éx)dﬁmﬂétal _a‘& (awc ; aw.‘wa 0.

For the estimate of the third and the fifth term in (25) we make use of the Holder and Cauchy
inequalities and of inequality (24), while for the estimate of the fourth and the sixth term we make
use of the boundedness of U. in Q,. Then from (25) we obtain:

dt <

Q(Ilwlé(mmliw [ )<c e, U)ﬂw da+( (m)jﬂu)ﬂl (! Ui

=Lyt0p n[ @

t
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t
- 2 "
CQ “wxﬁ/_’(at) +Cz ) i‘fﬂﬂlzml, wa!l_z(ﬂgv D:xxSBant)a’t ¥ "“) RL 2{Qy 7+

L (26)
o {u 0 easl) @ 7o\'c} ma.z @, mwwxnlm], 0<h<T,
and from this inequality we obtain this estimate:
e o “ +hw (9)%@ Jnﬁ”‘“lmv Qﬁ%ﬂmni(ﬂ‘n@‘“ﬁm} (27)
Selecting 1, , satisfying the condition
2
Clts jﬂumx b o 04, (28)

we obtain from (27) that @(xt)=0 in @, with t<t, . After this, the fact that @(xl) is equal to
zero everywhere in (., is proved in steps with respect to U (see [5, Chap. VI, Sec. 2]).

In the stationary case we have the following theorem.
THEOREM 6. Let () be a two-dimensional bounded domain. Then the generalized solution of
the boundary~value problem (19), (14), such that

amaa T G, o 120Dl o) <Y (29)

is unigue.

In the two-dimensional case, the finiteness of max m | , oceurring in condition (29) of Theorem
6, follows for the generalized solutions U(x,)e.\l\i @ from S. L. Sobolev's imbedding theorem.

Similar uniqueness theorems hold also for the problems (3), (7); (13), (14). For example, in the

stationary case we have
THEOREM 6', Let () be atwo-dimensional bounded domain. Then the generalized solution
of the boundary-value problem (13), (14), satisfying the condition

azm%m@+G;n<6-aeaﬁ)xnw)gv. (30)

is unique.

In the two~dimensional case, for system (3), (4) and its corresponding stationary systems (19)
and (14) one can introduce the stream function Y with the aid of the same relations as for the Navier -
Stokes eguations:

L B 31)
%, U ox, ¢
For system (4), the equation of the stream function Yx,x, ) has the form:

& oy-2d0)-viv-{2 L (ay-adv)-Z L (y-adv) -

5 32}
_%{Lﬁq\{f’-&z(ﬁ%f -%—QAW gégjm oz’ m)‘”}‘ P -—-*Cj(x,,.’r,,{),
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This equation is solved in the cylinder QT under the boundary conditions
Yl - aw\ - (33)
\aQT-O ’ é‘ﬂ aQT O
and Cauchy initial conditions
zp\tzo Y, a), Y, = 0,0, Y, 20,0, (34)

The equation for the stream function W(x,.x,) , corresponding to stationary system (13), has,

obviously, the form:

Rl (T8 (5 Dy (L Dl ez 5)

It is solved in the domain (] under the boundary conditions W\ J%‘ =
o0 e

5, We consider now for the nonstationary system (4) the first initial “boundary-value problem,
viz., we shall seek in the cylinder QT its solution db , P(m,t) , satisfying the following initial and

boundary conditions:

=Q. (36)

alt=o=ﬁ°@)’ T

g
aQ
This problem was investigated for the first time in [6]. It has been proved there that if
e W: (Q)ﬂﬂj () and g(ac,t) €L,,(Q,) ,* then the problem (4), (36) has at least one weak solution
(solution in the sense of E. Hopf), i.e., a solution TcxbeJ(@Q)N W:’O(QT) satisfying the integral

identity

-

ﬂ UCD+ 5.0 mv@«»aequ) 1dQ+(35 \ dz - &Sﬁx | da- 3(0+aeAU)®(ﬁcO)dx jj;fCT)AQ,0<tsT 87)

t

t=t

- 021 g -
for any QeheW, @Q)NJQ), and for any weak solution T.T.H) of problem (4), (36) we have the
inequalities:

m;fm %(ﬁ (a1 +22T +aelAU|)dx+VS& ;deae&%IAfflﬁdQ <C,, (38)
o T QT

max |Gl G0 C)

T

(39)

where the constant C, depends only on 14, ﬂwz @ and ||§l| @
Al

present papert we introduce the strong solufion of problem &) (36) (solution in the sense of Ladyzhen~

skaya[ ]) which we define as a function Uiz tyeS Q) U‘ao =0, for which U, , G, , 0.

FrY 2
L€L (Q) and which satisfies the integral identity

and it is independent of ® >0 . In the

*For the notations see [5].

tSee also [8].
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ﬁ GPnid —ujéx:r 27,0, + 2y a7 @)dQ =ﬂ§@dQ

t x
2 .
- 0,20 [
for any Pxbrel, (Ql)ﬂ]@ , and we show that the following existence theorem in the large for the
strong solution of problem (4), (36) holds.

(40)

- o3 2 -
THEOREM 7. Let GameW, ()N, lxbhel(Q) . Then initial ~boundary-value problem
(4), (36) has at least one strong solution Ucx.!> and for any such solution we have the inequality:

mgaliabls wym:f;mg\ @A <Cliag T o). Cmem =0 )
T
For the proof of Theorem 7, just as for the proof of the existence theorem for the weak solution
of the initial “boundary-value problem (4), (36) (see [6]), we make use of the method of introducing a
vanishing viscosity. To this end, we consider in QT the fourth-order system with a small parameter
{("vanishing viscosity")

T - 3e = 3 T -
%-vmﬂeﬁu mi%g-k-ae %Lgurk%c‘i rgead g={, dir =, (42)

which for &=0 degenerates into system (4), and we shall solve it under the conditions

=0. 43)

T

o*‘l =4, @), 5‘| =0, A¥
t=0 8d,

20

Following [6], by the strong solution of problem (42), (43) we mean a function B‘EJ(QT) , for

& i d

which ¥ , O ,0, . 3..€L,(Q,) and which satisfies the integral identity
x 1 t 2 T
H (5: q)*VBZ@ET€A55A®'Ui55(1);&6;@;861)‘5(1&?@1)&@=§S§ aQ (44)
T

- 020
for any CD@,bew,(Qpﬂj(Op . Tt is proved in [6] that for a strong solution U(x!) of problem (42), (43)
we have the inequality

m&r/.n T *Wkwi“’x . xx)dx*&%élwm\ dQ (C (=, LAV ngan) 45)
T

We set now in (44) (D sﬁz . Then, making use, for the estimate of the nonlinear terms, of
Holder's inequality, S. L. Sobolev's embedding theorem, and inequality (45),* we obtain for the strong
solution ° of problem (42), (43) the following additional inequality:

¢ el g2 - I"
%\wt + %’da +& r[ré%x, \I AT dstg,(ae, "U"NWZ(Q)’ |‘g“L,(Q,5>’ (46)
Q, .
where C,.C,—, =—0,

In order to obtain the strong solution %axl) of problem (42), 43) for every ¢&>0 , we make
use, as in {6], of the modified Galerkin method. Let {q‘fm} , =12, be a complete system of

*We emphasize that for the estimate of the integral &SS UiAae fodQ it is essential to make use of

Q.
the boundedness of in Q. , ensuring inequality (45).
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functions in WADNJD ,let &@ . L=1,2,. be the solutions of the boundary-value problems
=t S r P
a-=208 =0, 2eQ, G)y=0- @47)

>t 02, 2
The system |G (X)] is also complete in W, {(DNJ((Q) . We shall seek the approximate solution of
problem (42), (43) in the form 56'"=Z"_Ck“(t)5tk@) , where C,({) are obtained from the equations
k=t

&”"@ VU, @«‘aw W3- . ergen ) )dx;&;@dx, L<i, n 120 48)
2
Q

where
Uat)y=0"-2a5" (49)
and the initial Cauchy conditions

C 0=, e keh.on. nw=i1, .. (50)

W(m’

It is shown in [6] that the Galerkin approximations *" can be constructed for each t=1,2,.

and for them we have the estimate

mage 171, e &\lAﬁ”l&Q*&\(&IAﬁ”\ﬁvﬁf:vaelt.v "da «CAT , I

fo,T 0, R

(51)

W(Q)' -gL(QQ

uniform with respect to ¢>0 and n=12.. . Then, multiplying (48) by -d—c%‘-"- and summing with

respect to [ from 1 to n , we obtain:

en.—»&n 6":

W&y v(nm,uxt)L Q)+5(AU , Al )L(Q)

LD )L (ﬂ) "(i u’»)l_(ﬂ)’ 20 9 (52)

and from here, integrating with respect to 1e[07) and making use of Holder's inequality and esti~

mate (51), we obtain the estimate, uniform with respect to #®30 ,

£>0. (53)

) +8mamIIA3“II

Uy LQ) = @ °Bchn>’ Iy ﬂi,(QT\ :

Then, since 0 (x}) is a "solution" of the boundary-value problem

R et

£n
20=0 " 130, (54)

for ¢*" and 5:’” the second fundamental inequality [7] holds (in order to obtain this inequality it is
necessary to assume that the boundary 3Q is twice boundedly differentiable):

=€ 1

10 u Wi G an)aui i\ut nw(m\c W, 120, (55)

and then from inequalities (55) and inequalities (51) and (53) it follows that

ma hg II <G (C.C, (56)
516 ’w db <6, EC,.0). 67)

)
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Inequalities (51), (53), (56), (57) and the theorem on the weak compactness of bounded sets ina Hilbert
space allow us to conclude (see [5, Chap. VI)) that from the sequence of the Galerkin approximations
10"} one can extract at least one subsequence {6 , which for 7,~-o converges strongly in
£,(Q)  to the limit function T%xt) and for which T , T , T, §E- converge weakly
in L,Q) to T , 0 , T ., T ,respectively. This limit function T'@1) will be the strong
solution of the initial ~boundary problem (42), (43). This statement is proved in the same way as the
corresponding statement in the proof of the existence theorem of the strong solution of the initial—
boundary-value problem for the system of Navier ~Stokes equations [5, Chap. VI], but in this case the

integral S*‘;" ®dx in Eqs. (48) has to be transformed by integration by parts to the form
-
& “*CD 20, O, ydx, 0.
Since for any strong solution §(al) of initial ~boundary-value problem (42), (43) we have the

estimates (45), (46), uniform with respect to &»0 , from the totality [7°x.t)} of the strong solutions
of the problem (42), (43) one can select a subsequence {v* '}, which for & —>0 converges strongly in

L(Q) to the limit function ¢ (x,t) and for which 0 ’ 0 y T TJ'; converge weakly in
L,(QQ to Ux . ﬁt , I’Iﬂ , Gm,respectwelyo In addition,
qS%AEe-A@dQ-»O, &~0. (58)
Q,

Making use of all these limiting relations and taking the limit in integral identity (44) with respect to
the selected subsequence & — 0 , we obtain that the limit function ¥xl) will satisfy the integral
identity (40), i.e., it will be the strong solution of problem (4), (36). Inequality (41) is obtained by a
limiting process for ¢,—0 from estimates (45), (46).

6. We return once again to the problem of the uniqueness of the initial —“boundary-value problems
considered in the present paper. In the theorems on the uniqueness of the generalized solutions,
proved in Secs. 2-4, both in the formulation of the theorems and in the process of their proofs, we
have assumed that these solutions possess the derivatives U (@t €L, (Q) (or T (@ e L, (D ).

In the present section, assuming that (1 is a two-dimentional bounded domain, we prove uniqueness
theorems for a class of generalized solutions, wider than in the Secs. 2-4, for which the existence of
the derivatives U,... is not assumed but on the other hand T, (xtel,(Q) (or T el (Q ).

We define the strong generalized solution of initial —bounda.ry—va.lue problem(3), (7) as a function
0(xt)e J(Q) which admits in Q, bounded derivatives T, , possesses derivatives Ut, UL
and derivatives {,.eL,,(Q) , satisfies the integral identity

«[{2 [ﬁt@wﬁx@ mﬁﬁm'ﬂﬁ @xj
4
(59)
Q_a__ aCD + 94, (D) x (ﬁ%xh $JdQ ﬂ;@‘de o<t<T,

for any q)(:n,t)ej(Q‘),q)\aQ =0, has the same differential properties as Ucl), andsatisfies the

initial “boundary conditionsY (7); let us prove that we have

THEOREM 8. Let (1 be a two-dimensional bounded domain. Then, the strong genera.hzed
solution of initial ~boundary-value problem (3), (7) is unique.
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Indeed, forming the integral identity for the difference AIERD =-§1 -ﬁ, of two possible strong
generalized solutions of problem (3), (7), substituting in it ® =3, and integrating by parts, we obtain
the equality

403} oy =1, LA ﬂ L “’"‘Q*&ﬂ gﬁcv'am . G2 +
© E&)&Q:mﬂ Qo 20 S0 40, ae_ﬂ - ”“x: a""‘)w x (60)

+a" Q&(a“’ + 9 ]JQ =0 , o0<t<T,

and from this equality, making use of the boundedness of 1')'; in QT and applying Holder's inequality,
we shall have:
t
Ity = 4 R Alies et NS TON
}z ﬂ\U!KL,(Q‘j*-&“u)x“*}-z(nf?>50(&’vhU’zfj(w +“~)1}0(—L T%j l‘@x‘xn/_ Q ;
Q, (61)
+ Uzmc[ (ng llu)ﬂiq(mllwxﬂi (de’ o<t &T,
From inequality (61), applying inequality (24), Friedrich's inequality, and the operation of
maximization, we obtain the estimate:
f A
+ T 62
e an '\‘%“L Q)<C(+ J(“ *m(m”waxx“L (QQdT) o«x:t( “Lgtoaﬂw“ ,ma) , octet,  (62)

and from this estimate, selecting t, satisfying the condition

¢ L+ J U A Y t]<d, (63)

we obtain that JS(x1)=0 in Q, with b<l, . After this, the vanishing of &(xt) in the entire
cylinder ( is proved in steps with respect to 1 (see Sec. 4).

A similar uniqueness theorem holds also for the strong generalized solutions of initial “boundary-
value problem (4), (7), for whose definition one has to omit in the left-hand side of the integral identity
(59) the terms -%% oD CDL o

We turn now to stationary problems. By the strong generalized solution of the boundary-value
problem (19), (14) we mean a function T(eM(, which possesses the derivatives U..< /() and

satisfies the integral identity
> a@ aug ot am TR
va 3, UUQMaeaxam( =9)- ae (Bxa:r axax )P Jdx =[ { P da (64)
Q

for any Qxye H(Q) having the same smoothness as ((x) . From Sobolev's embedding theorem it

follows that the strong generalized solution U(X) of problem (19), (14) has in Q) bounded derivatives

-

Ua

With the same arguments as those used for Theorem 8, one proves the following theorem.
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THEOREM 8'. Let (} be a two-dimensional bounded domain. Then the strong generalized solu-
tion of boundary-value problem (19), (14), satisfying

(2+Cﬂ)ma/.x: T, 1+aaC WmHL o<, (65)

is unique.

A similar uniqueness theorem in the small takes place also for the strong generalized solution
of boundary-value problem (13), (14), which is defined as a function G@eH(() , possessing derivatives
34D and satisfying the identity

[1ri0030, o s 0 B B O - [[Bn

for any @eH(m having derivatives (DueL‘i(ﬂ) .

THEOREM 8". Let (1 be a two-dimensional bounded domain. Then the strong generalized
solution of boundary-value problem (13), (14), satisfying the condition

(2 +C)mwxml+?*c IIU <y, 65"

s L )
is unique.

7. Now we turn to the problem of the relationship between the solutions of initial —~boundary-
value problem (4), (36) for 2 -0 and the solutions of problem (5), (36) for the system of Navier —
Stokes equations into which system (4) degenerates for > 0. For system {4), until now nobody has
succeeded in answering this question; it has not been successfully proved that for the weak (and,
moreover, the strong) solution of problem (4), (36) converges strongly in L,(QT) at least to a weak
solution of problem (5), (36). Therefore, instead of system (4) we consider the following simplified
system

g‘{ vmmuxt) -ae%AtU mﬂﬁqwxip Jby, -0, (66)

which for ®=0 becomes Ozin's nonstationary system

at G _yaG+a, ahP +guwtp—g dio =0, a(xbeJ(Q)nC (67)

but for every ®>0 retains the terms which describe the relaxational properties of the fluid. As
before, we shall solve systems (66) and (67) in QT under initial —~boundary conditions (36).

For initial —boundary-value problem (66), (36) one can, in analogy with original problem (4), (36),
determine the weak and strong generalized solutions, which, as before, are determined by integral
identities (37) and (40), respectively, where U T @,K =0, 7 @tk . After this the situation is exactly the
same as in the case of problem ), (36), i.e., by the introduction of a vanishing viscosity one proves

the following existence theorems for the weak and strong solutions of problem (66), (36).

THEOREM 9. Let G@eWnJm, [abel,(Q,). Then problem (66), (36) has at least one

weak solution TU(x,l) and for any such solution we have the estimate:

P maplfahi+maz \(ﬁ;m!ﬁf)dm +v&\ 1a51dQ <C,, (68)
Q, fom 5 (o)

T
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where the constant C, is determined only by the norms 1l and 17 L@ mgxl&(x,t)l .

THEOREM 10. Let 4,(meW,(MNJD, {(xhel Q) . Then problem (66), (36) has at least
one strong solution U!) and for any such solution, in addition to estimate (68), we have the in-
equality

ff w2 -2
Jd[(Ut tay,) dQ SCH , (69)
T

where the constant (,_ depends only on | d. L - “?u/.,((l,) ,maxial C, and does not depend on = »0.

We emphasize that the occurrence of = in inequalities (68), (69) is completely different than
in inequalities (38), (39), (41) for the solutions of problem (4), (36) and this allows us to prove the
following theorem.,

THEOREM 11. Let 0,@eW.(DNIWD, ?,(x,t)eLa(QQ . Thenfor ~  any strong solution
- e
§ @b of problem (66), (36) tends to the unique strong solution (Ladyzhenskaya's solution) of initial —
boundary-value problem (67), (36).

We recall [5, Chap. IV] that the strong solution of problem (67), (36) is defined as a function
FatelQ) for which T, 7, U, <.L(Q) and which satisfies the integral identity

gf(ﬁtq +v5:®,—o,j®zk)d(l=g§®m (70)

for any @(m,t)eWino(QDﬂj(QT) . For the proof of Theorem 11 it is sufficient to note that, by virtue of
inequalities (68), (69), from the totality {G“(x}!) of strong solutions of problem (66), (36) one can
extract a subsequence [32‘} » which for % —0 converges strongly in LI(QT) to the limit function
§@&t) and for which 5:‘ . 5: converge weakly in LQ(QQ to T, , Et , respectively, In addition, by
virtue of inequalities (68) and (69) we have

a’ftsg_ﬁ:&)‘d@"(}, %SS U:‘A_d%d’)xkd/Q -0, %, 0, (11)
Q Q

g

Now, if in the integral identity (40), with Uﬁquﬁ«jqz , we take the limit as = —(Q , we obtain that the
limit function T(x.}) satisfies identity (70), i.e., it is a strong solution of the linearized problem

(67), (36), which, as is known, is unique.

8. We consider one more particular case of the system (4), the system

00 ., 3,y 8 5000 >

Ft VAU -= Gy rquad p<{, dio T =0, (72)
which we shall solve in the cylinder QT under the initial “boundary conditions (36). This system also
has a real physical sense; it describes the flow of a viscous incompressible Newtonian fluid which
requires %— units of time in order to be set in motion under the action of a suddenly applied force.

A model for such a fluid has been suggested by Voigt and is characterized by the following defining

equation:
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T='PE_+ZVU+%%)D. (73)

Inserting this stress tensor into equations of motion (2), we obtain system (72).

For the initial-boundary-value problem (72), (36) we introduce two generalized solutions: a
strong and a weak one, The strong solution of problem (72), (36) is defined as a function B(m,t)ej(Q),
for which §,,5,,9,€.(Q) and which satisfies the integral identity

[ @018, 210030 d0- SW%Q (14)
T
for any $(rire's,ONNQ) while the weak solution of problem (72), (36) is defined as a function
dex, - J(L) for which §, v e /,(Q) and which satisfies the integral identity

-

\\ ~U¢ v ® - -ai B0 *‘\fél‘dx sc\l; ¢
4 : ’ A

CREVE S LY

(75)
&LL 0y 2P, x0)de \\i Od) oct1,
A [

for any %,t»e.‘»%.f,,"'(o,‘:ﬂ.}w . and such that @,ﬁ,i.,-’lﬁf" . As it will be shown below, for any weak, and
moreover also for a strong solution of problem (72), (36), we have the energy inequality

Y’In%\(ught)rn’l})a/x*‘“d (JQ‘(/ (76)

LT
%

{ ¥

' t.\

where the constant C, depends only on [} ATy, and T .

4,4 A

First of all we prove the following theorem.

THEOREM 12. The weak (and therefore, also the strong) solution of probiem (72), (36) is unique~
1y defined.

Indeed, assume that problem (72), (36) has two weak solutions ¥, and ¥, . Then their difference
satisfies the integral identity

'/[Q‘\E@.L * V‘kaﬁ:*&\zzx‘,'q—w 4\;“ i Jr’ J(w(D"%wCD)Ld’L 0 (77)

ten

Wely= g i g Sandt, ol | 550 (78)
t-e

(here we assume without loss of generality that wxi)=0 for t<c ), taking then the limit for ¢ —Q
and making use of estimate (76), we obtain for @:x,ly the equality (see [5, 1st ed., pp. 174-175]):

\(w @h-2d )duv&\w d4Q - &&B‘wkcﬁﬁé(l, ol <T (79)
2 g, G,
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Now we make use of the following well-known inequality [5, Chap. I|:

lul (80)

L <Calu

L

which holds Vuax)ew,(ﬂ) and for any bounded domain () . Then, estimating the right-hand side
of equality (79) which the aid of Holder's inequality and inequality (80) and making use of the a

priori estimate (76), we obtain:

157

| 7wa.dal<cc, 0% DI dG. ®1)
Q * Q
t
Setting Yy =([@.dQ , from (79), (81) we obtain the differential inequality
Qt

24 <C,ydy, 04<T, 40 =0, (82)

from which it follows that yt)=0 , 0<t<T, and therefore, also dah=0, (x,1ye 0.

Proceeding to the proof of the existence theorem for the solutions of the initial “boundary-value
problem (72), (36), we show that system (72) regularizes the Navier —Stokes system of equations (5)
in the following sense: 1) if -g(:n,t) , ?teiz(QQ , imewz(ﬂ)ﬂj;(m, then problem (72), (36) has for
each ®>0 a strong solution T*xt) in the large; 2) under well-defined conditions of smallness on
the given data V', {@t) , T(® of the problem and on the dimensions of the cylinder Q, , for which
the initial ~boundary-value problem (5), (36) for the system of Navier —Stokes equations has a strong
solution Ut (Ladyzhenskaya's solution), the strong solution T7(x.1) of problem (72), (36) goes, for
% =0 , into the strong solution Gt of problem (5), (36) for the system of Navier —Stokes equations;
3) if Jabhel@), T,00eJi(Q), then problem (72), (36) has for each ®>0 a weak solution U (xl) in
the large and for = =0 this solution goes into the weak solution (Hopf's solution) of problem (5), (36)

for the system of Navier —Stokes equations.

At the foundation of all these results are the a priori estimates for the solutions of initial —
boundary-value problem (72), (36). These estimates are derived from the equalities

L d . o3

3 {0, g 2T ) VI =P, 0T, (33)
{d(yz - "

14 thn“m [T tum)wnvtu, o 30 U0 do =(},5), ., 0T (84)

I UtIILi(Q)+a?‘HUmt“LﬂLQ)+ %ddf" “L A0 \ijﬁtdm '—"(g,@,_,(m, OLtST, (85)

which, in turn, are derived with the aid of integration by parts from the equalities

|L3 7\ Tods, \(L ),7,de - \g 3,de,
* : (86)

&L T3dx =\[5dx, L, T=0,-va0+03, ee—+gwdp,0<td‘
a
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In order to obtain these estimates we shall make use, in a substantial manner, of inequality
(80) and of Gronwall's lemma,

LEMMA 1. ¥ U@, satisfies for t€l0T) relation (83), EELL,(QT) and Tx,0) =T@el D ,

then for it we have the iﬁéqua.lities:

T, ~ 2 - 2 -2
! U(xt)ﬂL ) 2|t J (mse[ﬂu.l\ L M0 Loyt gntim]scﬂ, 817)

(HuuL @uenu anm%vnuanm,‘Cw ; L@ %(uunmmuu,:nm; =C,, 0<L<T. (88)

Estimates (87), (88) are obtained from equality (83) with the aid of Holder's inequality and
Gronwall's lemma.

We introduce the following notations: 9ty =17, cx b, < 1\! =17 !! ml@tl\l Fh)=19,)

L )’
0<t<T,
LEMMA 2. ¥ Oxl) satisfies for teloT] relations (83), (84)and if T [eL(Q)
3,(®) eW:(Q)ﬂJ;(Q) , then for any tel0T] and any' =>0 we have the following inequalities:
Te s o,
Yhee™ (W@l o] =0l (39)
b t
2 2 2 [
LAV +’2v8 Faodt ng(az)g C,dr + Y (o)+ ﬂ | L@y’ (90)

'/a
where C () =2max{l; J—C—}

Indeed, from equality (84), applying Holder's and Cauchy's inequalities and making use of in-
equalities (87), (88), we obtain the inequality:

d 2y, 1 d =
‘ﬂ-{wa(bs-%-d—ulxtu[ o =HT o) +¥ 1T L,(m'@t "Om\ U0, 3, dve

A1, iy 0, Bl < £ (00T * 180 9) 1)

t
C, .
+C 5 I\muv,il\“m <3 ML o z(llvtlll(m%ae ﬂlmdll @) ¢ “gmm %Cw(&)wx(t), o<t <T,

and from this inequality, applying Gronwall's lemma, we obtain estimate (89).

Then, inequality (91) can be rewritten in the following manner:

4 tp (t)+QvF(t)sll§ +C, (ae)w ®, 0<b<T, (92)

dt L

from where, integrating with respectto { from 0 to U<T and making use of estimate (89), we obtain

estimate (90).

LEMMA3. ¥ G}l satisfies for te[0T) relations (83) and (85) and if {e/(Q), Tej (),
then for any t€[0T] and for any ®>0 we have the inequality
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W [ ¥ wdicC, @), (93)

C

where the constant (, depends only on ﬂ-fll , 1 0

L) W’
Indeed, integrating equality (85) with respect to from 0 to {<T and making use of the Hdlder

;and 2 and ( (@~ for = -0 .

and Cauchy inequalities, we obtain:

t 2

9 2 »? T TR - X ) 3 {{ 4

qumdz i< %\v@dw N EI s o o (94)
0 a2 Qt Qt Qt Qt

From here, estimating the last integral in the right-hand side with the aid of inequality (80) and

making use of the already proved estimate (87), we obtain estimate (93).

Now we prove some estimates which generalize the estimates obtained by Ladyzhenskaya for
the strong solutions of the Navier —Stokes equations [5, Chap. VI|. Unlike estimates (89), (90), and
(93), they hold uniformly with respect to ®<[0,11 and are proved basically in the same way as the

analogous estimates for the solutions of the Navier —Stokes equations.

LEMMA 4. Assume that the function T(x!) satisfies for te[0T] relations (83), (84),
el Q). [eL,(Q) s T@eW NI, and assume that

* e
v -Co\& (/7 C, €)= 150, (95)
where ( is the constant from estimate (87) and (,=¥,(0)+ Il:it“ L@ Cﬁ =mag 1§ by L@ Then
YteloT] we have, uniformly with respect to 2e[0,1] , the inequalities
~ Y Y
oh<|% (0, )], (96)
Yt <C,, (97)
12 b 2 9
LUAGRYA XF(’E)&I <26, U (0) (98)
Indeed, from equality (84), with the aid of inequality (91), we obtain
? 3 2 e
3 % w:(t) +Hy-CaIF ctjswm(t) ﬂﬁtll L (99)
On the other hand, from equality (83) and estimate (87) we have
vOITE (15, 0L )+ @ITE gl o <
(100)
e -
<Co (T YOI
and therefore
¢ .
ety <[ Tv.Mc) (ao1)

At the initial moment (=0 , by virtue of (95) and (101) we have
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2 2
V-G 9 >¥>0. (102)
Then, as in the case of the Navier —Stokes equations, it is easy to show that also Yie[0T]
2 9
v-C9>0, (103)

and then from inequality (99) it follows at once that

t
YDy ©r S 151, ,db<C,. (104)

°

After this, from inequality (101) we obtain estimate (96) and the inequality
2
y-C dty>y, ost<T, (105)
Finally, from inequality (99), making use of estimate (104) and inequality (105), we obtain estimate

(98).

Remark. From (72) it follows that

ﬁt(m,o)-Aﬁt(m,O)fﬂmdP(m,o):Q@o)+VAE(x)-Qk(m)ﬁcx§m)EF(su), xel. (108)

- . . e - . .
¥ J@oel @, d@weW, N, , then Fawel, () . Then @o-@0 and guwdpo)

are obtained as the projections of F(X) onto the subspaces J(Q) and ((Q) , respectively. Finally,

solving the elliptic boundary-value problem

@ 0-F@o=Pe; F, xen, d@o|, -0, (107)

we find Bt(x,o) , ﬁm@c,m , andtherefore also V|{(v) , whichoccur in estimates (96)-(98).

We mention one more variant of the conditions under which for the solutions of the initial —
boundary-value problem (72), (36) one can obtain estimates of the type (96)~(98), uniform with respect
to ze[0,] (see [5, Chap. VI]).

LEMMA 5. Assume that the function d«xl) satisfies the same conditions as in Lemma 4 and

let p and k be positive numbers such that

2 2.1
—v- = 108)
Y=V [P(“”“HL,<nu*k7] >0. (
Assume further that
C i Couyray
RH(P):LTJE+ 3 (3) (@)P ' (109)
2 2 2
) (oMZC“C,qCumpg—%gﬁ +2Cuax?c—‘1vg“i-n (110)

where C, , C; » C. are the constants from Lemmas 1 and 4. Then for all te (0,71 , where
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i

ny
> —0:7 (111)

we have, uniformly with respect to 2 €[0,1], the inequalities:

k]

9t s[% Q@ C, emp 272 Co Car C’“ *LAJ} , (112)
()< C emp Saln, (113)

2 k g
UNGESA! S F(ndt <Cy. (114)

Finally, we show that if all the given data of the initial —~boundary-value problem (72), (36) and its
solution U(x!) do not depend onone of the spatial variables (e.g., on x, ), then, as in the case of the
Navier —Stokes equations, the functions @ty , Y (1) , S:F’(I) dt can be estimated uniformly with
respect to =e[0,41 without any restrictions on the smallness of the given data. Namely, we have the

following lemma.

LEMMA 6. Assume that Uy satisfies for tel0T] relations (83), (84), assume that <=ty |
Jcxty, and T, do not depend on =z, , and let Je/,@) , 43,;;%.((1,7 , T@eW NI . Then
Yt €[0.T] we have, uniformly with respect to 2=<[0,1], the inequalities:

Y, (1) <Cpemp L] (115)
ijaLr <$pl1420aphra Beap L] =C,. (116)

indeed, making use of the fact that T by depends only on two spatial variables, we estimate
the integral in equality (84) with the aid of the following inequality [5, Chap, 1]:

‘1
ul o ‘Qmum b =“L,<n>' (117)

e d
valid for any function w@e W, () and any two-dimensional domain:

)03, < o, B0, T < FF 0 I 20D (118)
Then from equality (84) we obtain the inequality
A\V d+vFibe QUM)W Mt ug Y, 0<t<T, (119)

t L,<m

from which, making use of Gronwall's lemma and estimate (88), we obtain estimates (115) and (116).

With the aid of the a priori estimates, obtained in Lemmas 1-6, one proves by the Galerkin
method the following existence theorems for the strong solution of problem (72), (36).
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- N ) i
THEOREM 13. Let [, §<L(Q), o,(m)ew,(mﬂl () . Thenthe initial “boundary-~value problem
(72), (36) has for every 2>0 a unique strong solution and for this solution the estimates of Lemmas
1 and 2 hold.

THEOREM 14, Let Jwbel,(Q), §,€L,(Q), T@meW@N5Q and assume that the initial
data of problem (72), (36) satisfy one of the smallness conditions formulated in Lemmas 4, 5. Then
problem (72), (36) has for each 2>0 a unique strong solution T @) , the estimates of Lemmas
1, 4 or 1, 5, respectively, hold for it, and for * — ( the solution [ACAD! converges to the unique

strong solution Uty of problem (5), (36) for the Navier ~Stokes equations.

For the proof of the last assertion of Theorem 14, we note that, as it follows from the a priori
estimates (96)-(98) or (112)-(114) for the solutions T (x> of problem (72), (36), from {7} one can
extract a subsequence {U } which for 20 converges strongly in £,(Q) to the limit function
Tty and for which 0 . %' T converge weakly in L@ to U, , U, .U, ,respectively.
Finally, from the a priori estimate (97) or (113) it follows that we have, uniformly with respect to
zel0) and tel0.T7,

-2 2
21 UM“L,(D) &G, (120)
and from here it follows at once that 2 \5-® dQ~0,2,-0 VOeJ(Q) Taking the limit in
integral identity (74) for ®,-0 , we obtain that the limit function Tty will satisfy the integral
identity
iy - - -2 rg 1,

SS (ut®+vum®;uku®:gd(l=S&§®dQ, ¥eeg ), (121)

Q, Oy
i.e., it will be a strong solution of problem (5), (36) for the Navier —Stokes equations [5, Chap. VI].
Since the strong solution of problem (5), (36) is unique, it follows that also the entire totality (J°] of
solutions of problem (72), (36) converges for ® —(Q to T@l) .

THEOREM 15. Assume that none of the given data of problem (72), (36) depends on the Cartesian
coordinate X, , assume that { is a two-dimensional bounded domain and assume that Jcx.b eL,(Q),
gté‘« Lz,,(QQ , 0. eW:(Q)ﬂj;(fD . Then problem (72), (36) has for each #>0 a unique strong solu-
tion "L'Iﬂ(at,t) , the estimates of Lemmas 1 and 6 hold for this solution and for %—~0 these solutions

¥*  converge to the unique strong solution T of problem (5), (36) for the system of Navier —

Stokes equations, and also for the difference U*-UsQ one has the estimate:

13f, = max | Babds + {3 d0-0@, =0, (122)
& om
T Y qQ,

In order to prove estimate (122), first of all we note that for &ty we have the equality
%\E{)’dwvg\(ﬁ:dﬁ -=\g T de -fedEde oder (123)
Q Qt l t t

Applying, for the estimates of the integrals in the right-hand side of (123), the Holder and
Cauchy inequalities and also inequality (117), we obtain from (123) the inequality
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2 (a2 ey Ny
e L A 4 R (e (124)
L
o)

and from this inequality, making use of the estimate (116} of Lemma 6, we obtain the inequality

-2 2 it =2 “"/’2 2 -
1Bl =Ca(1.C.)% Cum(\y\wg a6} 1, ot eT. (125)
&
By virtue of estimate (88) of Lemma 1, for sufficiently small {<f: C ( 3%( Q\ ;? therefore for
0<t<t, we have Q
- 2 2
lletg 2,%. (126)

After this estimate one can prove (122) on the entire interval [0, T] by successive steps with
respect to 1 (see [5, Chap. VI, Sec. 2]; see also [9]).

The generalized solutions of the initial —boundary-value problem (72), (36), whose existence has
been proved in Theorems 13-15, possess better properties than are required by definition from the
strong solution of problem (72), (36), since they have for each 1 €l0T] derivatives T, , U,el(D .
Correspondingly, the conditions on {(x!) are overstated (one needs the existence of the derivative
g from £,(Q)) or LM(QT )). Therefore, the following theorem presents interest, being proved, as

before, by the Galerkin method with the use of the a priori estimates given by Lemmas 1 and 3.

- - 2 a4
THEOREM 16. Let [@iel,(Q), TeeWNJ,(Q. Then problem (72), (36) has for each

2>0 a unigque strong solution and for this solution the estimates of Lemmas 1 and 3 hold.

Now we proceed to the investigation of the weak solutions of problem (72), (36). Here the
following theorem is fundamental,

- - 24
THEOREM 17, Let l(zbyel, @), U.@eJ,(Q) . Then problem (72), (36) has for each >0
a unique weak solution U7(zl) and for this solution we have the following estimates:

mas El[(ﬁzﬁ 2(0) ldx +V§§(§i)&@ <C,,, (127)
T
and for sufficiently small T>0 , under the condition that d(le c?
T
N naj“li( sals T ot <C,T, (128)

where Aﬁaaﬁa@,tﬂ)-ﬁﬂcx,t) while the constants C, , C, and the exponent ¥<3%; depend only on
“ﬂlzm , Eiuwg(ﬂ) , T, 3eC” and do not depend on 230 .

The existence of the weak solution of problem (72), (36) is proved by the Galerkin method. The
a priori estimate (127) [or, which is the same, (76)] is proved by the limiting process for n - from
the similar estimates for the Galerkin approximations U («!) for the solutions of problem (72), (36),
which, in turn, is proved in the same way as the estimates of Lemma 1, Finally, a priori estimate
(128) is proved with the aid of estimate (127), basically in the same way as the similar estimate for
the weak solutions U (&,1) of problem (5), (36) for the Navier —Stokes equations [10].
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The a priori estimates (127) and (128) are uniform with respect to = >0 and the well-known
compactness criteria in LZ(QQ allow us to prove:

“» - H ,Ln -
THEOREM 18. Let (</(Q), Twel,(Q), 30eC”. Then from the totality |U ] of the weak
solutions of problem (72), (36) one can extract a subsequence {52”} which converges for = —0 to
the weak solution U(x,{) of problem (5), (36) for the Navier —Stokes equations.

In the two-dimensional case every totality {U*} of weak solutions of problem (72), (36) con-
verges to the unique weak solution ¢ of problem (5), (36).

In [11], the existence theorem for the weak solution of problem (72), (36), under the same con-
ditions on 3’ and U, as in Theorem 17, is proved by the method of finite differences. Also there it is
proved that from the totality {3:} of the multilinear solutions of the finite-difference problems,
approximating problem (72), (36), one can extract a subsequence which for A} , ax=h , 2—0
converges to the weak solution U@y of problem (5), (36) for the system of Navier —Stokes equations.

9. We investigate the problem of the limiting process for 2 -0 in the case of the stationary

problems. The stationary system, corresponding to (), is

= 30 g 7 -
-vm+uk5;k~awk5;k+gwdp-gm, dw 7 =0. (129)

We shall solve system (129) in the bounded domain under the boundary condition Q
Tlag =0 (130)

In [6] one has introduced for problem (129), (130) the generalized solution Ux) from the space
W:(Q) NJ(Q) , which is defined as that function from the indicated space which satisfies the integral
identity

V&Gﬂidm~SUKE®¢K+QSU‘A§5lem =S§édm (131)
Q

Q a I

for any Q@eH®, and one has proved that if gmeﬁz(ﬂ) , then problem (129), (130) has at least one
generalized solution ﬁ(m)eW: N3 and for any such solution the following energy inequality
holds:

vgﬁidwvwgmm’dxscw(v,ﬂ,\@\\L’@). (132)
Q Q

Inequality (132), whose right-hand side does not depend on 230 , allows us to prove the follow-
ing theorem.

THEOREM 19, Let {@el(()) . Thenfor ®-0 the generalized solution T (X of problem
(129), (130) from W:(Q)HJ(Q) tends to the generalized solution from H(Q)(Ladyzhenskaya's solution)

of the first boundary-value problem for the stationary Navier —Stokes system

- 3 > \ - - 133
~VAU+ Uk%%rquﬂp#tx), dw U=0, xell, U]m:O, (133)
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We recall [5, Chap, V] that the generalized solution from HD) of the boundary-value problem
(133) is defined as a function (@< H(() which satisfies the integral identity

W\ 30,0z &UG \ d, Ve, (134)
{

a a
It is proved in [5] that the generalized solution from H(()) of problem (133) exists for any ?:f\m)e;lﬂ,(ﬂ) .

Theorem 19 is an immediate consequence of inequality (132). Indeed, by virtue of (132), from
totality {0} of the generalized solutions of problem (129), (130) one can select a subsequence {3“}.
which for % —0 converges Weakly in H(D and strongly in Z,(()) to the limiting function S@eHW.

From here it follows that )U Q. a:o—>§U u@ o, V%obl-‘(ﬁ) Then, by virtue of (132),
D.

2\ 4370, dn 0, 2.0, Ve He. (135)
a
Taking in the integral identity (131) the limit when #,~»0 we obtain that the limiting function
e H(D) satisfies the integral identity (134), i.e., it is a generalized solution from H(() of prob-
lem (133).

10. Let () be a three-dimensional unbounded domain, situated outside a smooth surface 9(]
We consider in () the stationary system (129) and we shall solve for it the flow problem with zero

boundary conditions at infinity:

¥),,=0; T@=0, ial - . (136)
a0
We define the generalized solution of the problem (129), (136) from the class i = W ni*
as a function from this space which satisfies the integral identity (131) for any @(:L)ej (D (see [5,
Chap. V]) and we prove that we have the following theorem.

THEOREM 20. Let JwyeLl, (DNL(Q. Then flow problem (129), (136) has at least one

generalized solution Etx)efilw(ﬂ) and for any such solution we have the estimate:

f 0, dw + aeJ!AU <Gy, (137)
a Q

where the constant C, depends only on the norms l\’;"\\Lé/ﬁ(m and 1]l andon v.

For % —0 the generalized solution U (X) of problem (129), (136) from the class H) tends
to the generalized solution from H(() (Ladyzhenskaya's solution) of flow problem (133), (136) for the
stationary system of Navier —Stokes equations.

In order to prove the theorem we consider the sequence of extending domains {1, with exterior
boundaries J(,, n=12, . , exhausting inthe limit the entire domain {1 and in each of them we approximate
the system (129) by the following system with a small parameter &>0 ( (6] ):

e

*Qbviously, H (Q)) is the closure of the set j(ﬂ) of the smooth, finite, solenoidal vectors in Q,
in the norm induced by the inner product

-

00,0 = | B B Bode
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2> - 8 > - 7;’ i} i -
eAT~vaT+0, gz (T-200)+ quadp =, dia J =0, (138)

which will be solved in the domain (), under the following boundary conditions:

=O Iy 6{ =AE

=0.
30, (139)

aQ,

Gl <Al
0%

For each of problems (138), (139), n=1,2,... , we define, following [6], a generalized solution
F@ from W.(DNIQD) as a function of this space which satisfies the integral identity

-

—a&Aﬁin(Dx do +v38f;“¢l do +% o (a ™" 6"”)@@ =8 1Qdx (140)

a, e 9Q, Q

12

for any q)(x)ejiﬂ,}__ (or, which for the bounded domain (), is the same, for any Q(x)e W:(Qw)ﬂj n.

03 2
For the generalized solutions of problem (138), (139) from Wa(ﬂ)ﬂj(ﬂ) we have the inequality

0 2 2 »en —-gn 2
v \ﬁ;‘" dmm&llﬁi \dwa\lAu 1adx~e,ae\\wt | da <C,,, (141)
Q ﬁn Qa Q,

n

in which the constant CM depends only on V and on the norms Ilgll L’ |\§l\ and depends neither
5

L4

on the dimensijons of the domain (1, ,nor on & ®>0 . Inorder to prove inequality (141) it is suf-
TEEn Ten

ficient to take in the integral identity (140) d)@)=mu -0 and then to estimate the right-hand side
with the aid of the Hlder and Cauchy inequalities and of the well-known inequality [5, Chap. I]

>t Yo —en
137 gy <0 1T, g, (142)

valid in any three-dimensional domain, including the unbounded ones too.

On the basis of a priori estimate (141) one proves (see [6]) that problem (138), (139) has for
each n=12,.. and &>0 at least one generalized solution (X from W:((Dﬂj(ﬂ) and that for
each fixed N=1,2, one can extract from the totality [T*®) of such solutions a sequence [J" ()
which for & -»0 converges weakly in H“(Q,) and strongly in L,(() and in £,((,) to the limiting
function 0°@eR) . I addition,

eﬂ% 33" 0dx -0, ¢~0, YPwedca), (143)
a

Taking now the limit in integral identity (140) as € —0 , we obtain that the function U"x) satisfies
the integral identity

-

S & O.dx + SU:(aaAE"- P, de =S :N)dm (144)

n QPL ﬂﬂ/

"

for any C_l,)(oc)ej(ﬂﬁcj(ﬂ) . In addition, for any U (X) we have the inequality
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vS U dac + vae& 145" da <C,. (145)
o} q,

n

where the constant CM does not depend on n=1,%,.. and on the dimensions of the domain (1, .

We extend each of the functions ﬁw (x) outside the domain Qw by assigning the value zero there
—-n o (2
and preserving the same notation for the extended function. It is easy to see that U (meH (D,
n=1%. , and |U]

W 7-:-}6"|Hmm). Then from inequality (145) there follows the inequality
vgﬁ;‘dmva&mﬁ"l’dx <C,, n=i2, . (146)
hl Q

From inequality (146) it follows that from the totality of extended functions {3(x)] one can
extract a subsequence {U™(x)} » which converges weakly in K and strongly in [ (lzI<Consl) and
in £,(Jxl «Const) to the limiting function F@e (). Then, assuming that in integral identity (144)
we have Qej() and taking the limit as % ~-o , we obtain that the limiting function T(x) satisfies

the integral identity

v& 7.0, de + S 0, @87 -1, d =S {Odx (147)
a 2 2
for any CD(m)ej(ﬂ), i.e., it is the desired generalized solution of problem (129), (130) from K7D .
Inequality (137) is obtained by the limiting process as n -0 in inequality (146),

The second part of Theorem 20 is proved in the same way as Theorem 19 in the case of a bounded
domain and it is a consequence of the fact that the constant C54 in inequality (137) does not depend on
®3»0 . We mention only that a generalized solution of the flow problem (133}, (136) for the Navier —
Stokes system from H(Q) is defined as a function {OeH() which satisfies the integral identity

e

% Qdm—&ﬁj@kdmgg@dm (148)

x

Ji] 0 Q

for any Qe ), and that, as proved in [5, Chaps. II and V], such a solution exists for any
f(sc)e[_%(ﬂ) . From Sobolev's embedding theorem with a limiting exponent, from Leray's inequality
[5, Chap. I]

S u—(g—;%, dee <44 ISlu;cim , Vid e(l, (149)

12
a

valid for any domain (¢ E3 and any smooth, finite function u(x) in (), and from inequality (137)
there follows that for a generalized solution U(x) of flow problem (129), (136) from the class H (()
we also have the inequality:

-

S(§‘+ 0.y dw +S l%;%adxscn(c 2), VHEQ. (150)

3
Qa Q

Inequalities (137) and (150) show in what sense the solution U(x) of flow problem (129), (136) from
the class HX{) and also its derivative U, tend to zero as {axj--co.
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11, Some simple cases of initial ~boundary-value problems for Eqs. (3) and (4), describing the
motion of aqueous solutions of polymers, admit, just as the case of the Navier —Stokes equations, con-
siderable simplifications and can be solved in a closed form. One of these problems is the problem
of the nonstationary motion of an aqueous solution of a polymer in the half-space -oo<y %<0 , %50,
caused by the harmonic oscillations of its bounding plane. For the Navier —Stokes equations this
problem has been solved, e.g., in [12, Sec. 24].

Namely, we assume that an agueous solution of a polymer, whose motion is described by Egs.
(3), is in contact with the plane -oo <y,% < oo which performs a simple harmonic oscillation with
frequency w in the direction of the y axis. Then the problem consists in solving in the half-space

-o0<y,2<00,% >0 System (3) with EEO and under the boundary conditions

U =0

x* ]

0,=0,U,=ue” for x=0. (151)

The symmetry conditions of problem (3), {(151) induce the same simplifications as in the case
of the similar problem of Navier ~Stokes equations [12] and we arrive to the solving of the following

simple problem for the unique nonzero component Ulj =U(x}) of the velocity:

2

. E)U Vau
i 2R o

" %50; u‘ 46", —ooct e (152)
X =
We shall seek a solution of problem (152), periodic with respect to x and U, of the form
0t =1, e“““” . Inserting this solution into (152), we obtain K = 19—, whence k@) =:la@®» @],

where

0@ = \f—%— “--+ M( &m) Q—

(153)
ie (@'w Vi+(&2) ,/-__, ,,7(3:«»
Then
b@r el
saby=u, e . (154)

As in the case of the Navier —Stokes equations, solution (154) represents a transverse wave, whose
wave vector is perpendicular to the direction of motion of the bounding plane, and whose amplitude

fades away exponentially with increasing x>0 .

The friction force acting on a unit area performing a harmonic oscillation along the Y axis, is
directed along the y axis and is computed according to (2). The unique nonzero component of the

stress tensor turns out to be

t, ,(® (v FE *&amat)‘ R (155)
Inserting (154) into (155), assuming U, real and separating the real part, we obtain

b @ =i Ae |29 s l-Ge) - Conce -4+ (156)
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where

o L e as)
Vi+(EeF g (e

For ==0.the obtained solution.coincides with the.solution of the similar problem for the

Navier —Stokes equations {12], for which

b, (0 =V U, Cos (b + 5. (158)

I 22 is sufficiently small, then we have the asymptotic equality

vA@(1+ %) 2w (1 Z2). (159)

Since the cosines in (156) are in opposite phase, it follows from (156) and (159) that the friction
resistance of a weakly concentrated solution of polymer can be in absolute value either smaller or

greater than the friction resistance computed from (158) for the "usual" viscous fluid.

12, Investigated system (4) and its corresponding stationary system (129) represent a special
case of system (3), which from the point of view of the quasilinear equations, because of the presence
of the convective terms of the second order '*Qzﬁﬂ%z:%z) , is a system with a strong nonlinearity and
difficult to investigate, Desiring nevertheless to take into account the effect of these terms, we
linearize them, replacing Uix.‘ by s, , where i(xl) is a given solenoidal vector, equal to zero on BQT
and having bounded first and second derivatives with respect to the = 's and we also set

maa 12,0l =C,, . (160)

T

We shall solve the partially linearized system

Uy VAU, + U, Uy - RN O )Rk, (Ui +Uig )= ={.,

K LT,

i=1...n, diw (=0, (161)

in Q ; under initial ~boundary conditions (36). For problem (161), (36), as well as for problem (4),
{36), one can introduce weak and strong generalized solution, whose definitions differ from the defini-
tions of the corresponding generalized solutions of problem (4), (36) only in the fact that in the left-
hand side of integral identities (3'7) and (41) one adds the integral

&Sé‘r‘('j:“(uezf v )P, dQ, (162)

linear with respect to ¥ . Therefore, in analogy with Theorem 7 and Theorem 1 of [6], one proves:

THEOREM 21. Let T@eW.(ONXQ), and JatreLy,(Q) . Then problem (161), (36) has at least
one weak solution Ucxt) and for any such solution estimates (38), (39) hold, where C, and (, depend
on C,from (160).

Let ﬁo(gc)eW:(Q)ﬂj(Q),Y(ﬁc,‘c)el_z((lb . Then problem (161), (36) admits at least one strong solution
G(x} and for any such solution estimate (41) holds, where C;also dpends on C,,
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Moreover, for systems obtained from systems (66) and (72) by the addition of the linear terms
‘&&Jmkw‘x)xk tUes 2 ), Where Ity possesses the above-enumerated properties, all the results which have
been proved for systems (66) and (72) are preserved.

The first boundary-value problem for the stationary system corresponding to (161) has at least
one generalized solution 'ﬁmeW:(Q)ﬂ J(Q) satisfying for any Fx)cH(Q) the integral identity

VS Trx q)z dx -S v, k'ﬁ@xkdm + a@& U, AT (Dx kdm + aaxatjmk(uix: uu;%&v&l?@dm
0 Q 2

(163)
Q Q
T@eL Q) and we have the condition
C,=v-= max (4, =0, (164)
which arises at the estimation of the integral
&X"Ldaak@mj Uk:o>( 0" &AUJ:% dn (165)
Q

and ensures for the solutions of the stationary problem under consideration an estimate of the type
(132) in which the constant C, depends also on the constant C,.

13. A series of non-Newtonian fluids (see, e.g., [13]) are described by the following defining
equation, more general than (1),

N
T=-pE +2v D@ +L7_se Qd%{l» (166)
=
where eec,ﬂ =l,. N are given nonnegative constants (the relaxation viscosity coefficients of different

orders). Inserting the stress tensor (166) into the equation of motion (2) and neglecting in the first
approximation, as well as in the derivation of system (4), the terms containing the products of the

derivatives of U with respect to the & 's and 1, we obtain the system of equations

(i aAU FLY] T o=
il VA + Uk Z Y atu&%gwdp{y dw T =0. (167)

We shall solve system (167) in the cylinder Qr under the following initial “houndary conditions

Tl o= = ooy "1, gl = .
i U@, e, m=04,... - Ulaa 0 (168)

7

The initial “boundary problem (167) admits a unique classical solution. In order to prove this
uniqueness theorem it is sufficient to multiply the equation for the difference d@ly of two possible
solutions of problem (167), (168) by %ti}‘.“% , to integrate the obtained equality with respect to
Q - 0<t <T, to perform the integration by parts in the same manner as we have done it in the proof
of Theorem 1, and to make use of the H6lder inequality and of Gronwall's lemma.

The solvability of problem (167), (168) can be investigated by introducing the vanishing viscosity
&N T , in a similar way as the solvability of problem (4), (36) has been studied; however, problem
(167), (168) has for N>2 one significant distinction: because of the presence of the nonlinear terms
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subsequent paper.

In conclusion, I wish to express may thanks to O. A. Ladyzhenskaya and V. A. Solonnikov for

useful discussions of the results of this paper.
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