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THE CATEGORY OF FINITE SETS AND CARTESIAN CLOSED CATEGORIES 

S. V. SolovTev UDC 510.64+512.58 

Applying methods of the proof theory, it is shown that two canonical morphisms are 
equal in all Cartesian closed categories if and only if some of their realizations 
in the category of finite sets are equal. All realizations of formal combinations 
of objects using the functors x and hom are isomorphic in all Cartesian closed cate- 
gories if and only if some of their realizations in the category of finite sets are 
isomorphic. On the base of these results, a purely syntactic decision algorithm 
for (extensional) isomorphism of formal combinations of objects and a new decision 
algorithm for equality of canonical morphisms are obtained. 

Introduction 

The present work studies some "universal" properties of the category of finite sets and 
maps with respect to Cartesian closed categories. To this end, we use the proof theory tech- 
nique that has been applied by many authors to solve different problems of category theory 
(e.g., [I-8]). 

Two questions are considered -- on isomorphism of objects and on equality of canonical 
morphisms in Cartesian closed categories. Also, algorithmic problems associated with these 
questions are studied. 

Explicitly, only two Cartesian closed categories are studied: the category of finite 
sets M and the HCC system (the Hilbert system for Cartesian closed categories). In HCC, for- 
mulas serve as objects and equivalence classes of proofs by some (decidable) equivalence re- 
lation E play the role of morphisms. 

It turns out that f ~ g if and only if I(f) = I(g) for some functor I: HCC + M (only 
cardinalities of sets assigned by the functor I to variables of HCC depend on f and g), On 
the base of this fact one can obtain a new decision algorithm for~ . 

A similar result is obtained for isomorphism of formulas of HCC, but in this case it is 
possible to find a purely syntactic decision algorithm; to prove its correctness, the cate- 
gory of finite sets is used. 

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo 
Institute im. V. A. Steklova AN SSSR, Vol. 105, pp. 174-194, 1981. Original article submitted 
November 13, 1979; revision submitted January 22, 1980. 
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In a certain sense, the category HCC is free in the class of Cartesian closed categories 
(cf. [3]), which allows us to derive conclusions related to other Cartesian closed categories 

(see Lemma I, Sec. I). 

These results can be extended (with some exception s ) to other categories which are close 
to Cartesian closed in some respect, for instance, the category of indexed sets ([9]). 

Information necessary for understanding this article is given in Sec. I, questions re- 
lated to isomorphism are considered in Sec. 2, and systems associated with equality of canoni- 

cal morphisms are considered in Sec. 3. 

I. We introduce necessary concepts. In this section, except for the part related to 
the connection of HCC to the category of finite sets, we follow [6]. A similar-in-form defi- 
tion of a Cartesian closed category and the deductive system used for study of Cartesian 

closed categories is given in [3]. 

A Cartesian closed category 

< 

is defined by the following data: (DI) a category D0 ; (D2) an object T~gb~0 ; (D3) binary 

operations & and = on ~b~ 0 in ~b~0 ; (D4) families of morphisms 

O=OA: A--,-T i 'A&B-'-B i 

(D5) a binary operation < > assigning to each pair of morphisms A ~ B, A ~ C a morphism 
f 

<f, g>: A * B & C; (D6) a unary operation + assigning to each morphism A & B + C a morphism 

f+: A § B ~ C. 

These data must satisfy the following conditions: 

At. fl A = |B f for f:A § B (the identity law). 

h g f 
A2. f(gh) = (fg)h for A § B § C + D (associativity of composition). 

A3. O A = f for f:A § T (T is terminal). 

f g 
A4. /B,C<f, g> = f; rB,c<f, g> = g for A § B, A § C. 

f 
A5. </f, rf> = f for f:A § B & C. 

g 
A6. a<g+/AB, rAB> = g for A & B § C. 

+ 
A7. (E<hlAB , rAB>) =h for h:A * B ~ C. 

Fulfillment of the first two conditions means that ~0 is a category. 

This definition of a Cartesian closed category is slightly unusual but it is equivalent 

to the standard one (cf. [3]). 

The HCC system (the Hilbert system for Cartesian closed categories): 

The atomic formulas are the constant T and propositional variables al,...,an,... �9 For- 
mulas are constructed from the variables and T using binary connectives & and ~ . The se- 
quents of the HCC system are expressions of the form A + B where A and B are formulas. Proofs 

f 
and deductible sequents are defined inductively. We will write A § B or f:A § B instead of 
"f is a proof of the segment A + B." We will list axioms and rules of inference (proofs are 

written in the treelike form). 

Bz-C 
HT : A-'- A i A C 

OA: k-,-T. 
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cLA c-L  
aa gA,B' A &B----A ; "Ca,s'. A &B-,-B; 

H4 EA,B:CA=B) LA-.--B; A.+_L.S=C 

An equivalence relation between proofs is defined by the relations obtained from AI-A7 when 
= is replaced by -. Taking the quotient of the set of proofs of HCC by this equivalence re- 
lation makes HCC into a Cartesian closed category. 

Objects A and B of a category ~ are said to be isomorphic (written A ~- B) if there 
exist morphisms f:A -~ B and g:B § A such that gf = ~B and gf = I A. We prefer the term "iso- 
morphism" to the term "equivalence" adopted in category theory in order to avoid confusion 
with the equivalence of proofs in HCC. 

Canonical morphisms in Cartesian closed categories are those that can be obtained from 
I, O, l, r, c using < >, +, and the composition. Two canonical morphisms (viewed as formal 
combinations of the symbols I, O, l, etc.) are considered equal if their realizations in each 
Cartesian closed category are equal. 

The following lemma holds (cf. Lemma 2.] in [6]): 

LEMMA I. (a) Canonical morphisms f and g are equa] if and only if f - g. If A and B 
are formulas of HCC, then A~ --~ Bg for any permutation ~ of objects of an arbitrary Cartesian 
closed category as variables if and only if A ~- B in HCC. 

For study of proofs in HCC, deductive terms are used. To each term, some formula is 
assigned as a type. The notation t E A means that t is a term of type A. Sometimes, in- 
stead of writing t s A we will write the superscript A at t. We give the definition of de- 
ductive terms. 

(I) For each formula A there is a list of variables of type A, denoted x A, yA,.~ (per- 
haps with subscripts). There is also a constant ~ of type T. The variables and 
the constant ~ are terms. 

If ~s , seA , then ({~)s [actually, ({AoB sA)g~ ]. (2) 

(3) l.~Ae s~(AOD. 

(4) ~t A&'~ eA, ~A~B. 

(5) <t4A,t#> ~ A~B. 
Variables in terms are divided in a usual way into tied (by the symbol A) and free vari- 

ables. Below, _ denotes graphic equality of syntactic expressions and txA[sA ] denotes the 

result of substituting s A for all free occurrences of the variable x A in t with simultaneous 
renc~mfng of tied occurrences of variables to avoid collisions. 

To each proof f in HCC, a deductive term, denoted by T(f), is assigned in the following 
way : 

.f : 

Here, xA is some previously fixed variable of type A. 

In ~(f), where f:A § B (B .~ T), only the variable x A occurs freely. The deductive term 

with free variables x AI An ,...,x n can be considered as a code of some multimorphism AI,...,A n § 
B. (The notion of a multicategory is considered in [2, 5, and 8].) 

Equivalence of terms (which will also be denoted by -) is defined by the following rela- 
tions : 

~ ~ .~(~ ,~A)  . where -~gA=B and ~ is a new variable 
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(AzAt~,S ^) -= ~A[s A] i 

t~ e t2, if tl and t2 are congruent (they may only differ in choice of tied variables); 

Two proofs fl and f2 in HCC of the same sequent A § B are equivalent if and only if their 
deductive terms are equivalent. The equivalence of deductive terms is effectively recogniz- 
able. Consider the following conversions: 

(1) ~; ~ ~JcA(~,~ A) 

(2) t ~- < ~t ~ ~ > 
(3) ( ~xAt,s 'A) ~- ~x. [ sA] 
(4) 5'<~e,~>~-~ ~ 
(s) .~,r }._,. @ 

subject to an additional condition: A substituted occurrence of t as a subterm in a larger 
term is not caused by an occurrence of the form~ in (I) or It, rt in (2). 

A term t is normal (or is in the normal form) if no conversion is applicable to it or 
its subterms. It is proved in [6] that each term t has a unique (up to a congruence) normal 
form (we will denote it by ~) and each sufficiently long sequence of conversions stops at this 
normal form. Terms tl and t2 are equivalent if and only if ~i and ~2 are congruent. 

In the conclusion of this section, we introduce several notions pertinent to the con- 
nection between HCC and the category M of finite sets. 

By an interpretation I:HCC § M willbe meant an arbitrary functor preserving the struc- 
ture of a Cartesian closed category, i.e., such that I(A & B) = I(A) • I(B), I(A ~ B) = 
I(B)I(A) (for the category M we will use the standard notation of the product and the Hom- 
functor), I(T) = {,} (the standard one-element set), and such that lAB , tAB are mapped to 
the corresponding projections of the product, gAB to the operation of evaluating a function 
at its argument, and the operation + to the usual h-abstraction. Of course, if f z g in HCC, 
then I(f) = I(g) in M for each I. It is readily seen that the following holds: 

LEMMA 2. Each map of the set {al,..., an,...} of propositional variables into M is 

uniquely extended to an interpretation. 

If an interpretation I is given and t B is a deductive term with free variables Xl,...,Xn, 
then the expression hXl...%xntB can be viewed as a record of some map with values in I(B) de- 
pending on n arguments; in particular, the record of the map I(f), where f:A § B, will be 
hxAT(f). For each formula A the variable xA can be viewed as the variable for element~ of 

the set I(A); ~ as *; < > as the operation of forming ordered pairs; ( ) as the operation 
of evaluating a function at its argument; 1 and r as projections; and h as the symbol of the 
usual h-abstraction. Interpreting the symbols in this way, the term t itself can be viewed 
as a parametric definition of values of the corresponding map. Sometimes, when a possibility 
of confusion arises, we will use the notation I(t) to emphasize that the symbols occurring in 

t should be read in the manner just described. 

2. Let ~+ denote the set of positive integers. In this section, we will consider 
numerical terms (n-terms for short) which are constructed from variables Pl,...,Pn assuming 

values in ~+, and natural numbers, using the operations of multiplication and raising to a 

power. 

To be precise, Pi is an n-term ~oo) ; CeN + is an n-term; if P and Q are n-terms, 
then (P.Q) and (PQ) are n-terms. We will omit parentheses where it does not lead to confu- 

sion. 

~Something is apparently missing in Russian original -- Translator. 
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We will use the letters P, Q, and R (with or without subscripts) to denote n-terms. 

The expression P ~ Q will be used as an abbreviation for VPi,...,Pn (P = Q), where P and 
Q contain only variables from the list P~,'-',Pn' 

Definition I. We assign to each formula in HCC some n-term. Namely, to the formula oi 

is assigned the n-term Pi; to the formula T the n-term 4s ," if n-terms P and Q are assigned 
to formulas A and B, then the n-term (P-Q) corresponds to the formula A & B and the n-term 
(QP) to the formula A D B. 

PA denotes the n-term assigned to the formula A. 

n-term P and any c ~...s let the expression P + Pl,.--,Pm denote the re- For each 
' Cl,...,C m 

sult of substituting c~ for all occurrences of p~;...;c m for all occurrences of Pm- 

Let I be some interpretation 

S u p p o s e  t h a t  a l l  v a r i a b l e s  a p p e a r i n g  i n  a f o r m u l a  A a r e  c o n t a i n e d  among ~ k , . . . ,  LEMMA 1. 
am. Then 

,-,-~ P 4 j ' , ' , ~ ' ~  
,~zd(ICA)) =~A){c~ ' ,c~ 

This lem~a is proved by induction on the construction of A. 
passage uses the equalities 

The proof of the induction 

The notation A ~ B means that formulas A and B are isomorphic in HCC. 

LE~MA 2. If A ~ B, then PA ~ PB" 

Proof. If ~:A § B is an isomorphism, then for each interpretation the map I(a) is an 
isomorphism in M. Two sets are isomorphic in M if and only if their cardinalities coincide. 

Let m be such that all variables appearing in A or B are contained among al,...,a m. If Card x 

(I(A)) = Card (I(B)) then, by Lemma I i(PA ) + Pz,-..,Pm = (PB) ~ Pl,...,Pm Since under all 
, ~ Cl,...~c m Cl,...~C m" 

interpretations cl,...,Cm can assume any values (see the appropriate lemma in Sec. I), the 
lemma is proved. 

Since HCC is a Cartesian closed category, the following holds: 

LEM~LA 3. For arbitrary formulas A, B, and C 

(~) A&B- -B&A 

(s) A $.T .-" A 
(?~ ApT ---T 

(2) A A(B g.C) --- (A$B)&C 
(4) A --, (B & C)--- (A=B)&(A o C) 
(6) T&A--A 
(8) T= A --A 

LEMZA 4 (on replacement). Let r be an arbitrary formula in HCC, v some occurrence of 
the formula A in ~ as a subformula. If A ~ B, then ~ ~ ~', where ~v is obtained by re- 
placing A by B in v. 

The pPoof is done by induction on the depth of the occurrence v. O 

We will now describe how, for each formula A, a formula isomorphic to it can be con- 
structed (it will be called the reduced form of A, denoted by A) such that A ~ B if and only 
if A~B. 

Transformations of formulas studied below are reduced to consecutive replacements of some 
of their subformulas by other subformulas isomorphic to them. By Lemma 4, formulas obtained 
as a result of these transformations are isomorphic to the original ones. We will not state 
it every time. 

1391 



The construction of A from A is done in several steps. First, using conditions (5)-(8) 
of Lemma 3, we consecutively replace the extreme left occurrences of subformulas of the suit- 
able form containing T by occurrences of shorter subformulas. As a result, we obtain either 
T or a formula not containing T; we denote the obtained formula by A ~ 

A formula will be called quasireduced if it does not contain the constant T and logical 
connectives do not occur in the conclusion of an implication. Obviously, the conclusions 
of all implications in a quasireduced formula are variables. Subformulas of a quasireduced 
formula are quasireduced formulas. 

Let e(A) denote the number of occurrences of the variables and of T in a formula A and 
~(A) the number of occurrences of logical connectives belonging to the conclusion of at least 
one implication in A. 

For each formula A not containing the constant T, a quasireduced formula isomorphic to 
it can be constructed which we denote by A + (the quasireduced form of A). A + is defined by 
induction on O(A) + ~(A). 

If A is a variable, then A + . A; 

§ + 

(A4 (AzgA3)) + (A4 AJ a A3) +, 

LEMMA 5. e(A +) ~< 2 e(A). 

The proof is done by induction on e(A) + $(A) taking into account that 0 grows only at 
the passage from a formula of the form (Al ~ (A2 & A3)) to a formula of the form (Al ~ A2) & 
(At ~ A~). O 

By the associativity of conjunction [condition (2) of Lemma 3], we will write multiple 
conjunctions without parentheses until the end of this section. As usual, by the multiplicity 
of a conjunction A0& ... &A k is meant k. Expanding conjunctions in the antecedents of impli- 
cations in a quasireduced formula into multiple implications, using condition (3) of Lemma 3, 
one can, starting with any quasireduced formula B, pass to a formula of the form B' _ B0&... 
&Bm, where Bi, 0 ~< i ~< m, do not contain conjunction and T. This implies a lemma which we 
will need in Sec. 3. 

LEMMA 6. Each formula A not isomorphic to T is isomorphic to the multiple conjunction 
of formulas not containing conjunction and T. 

Proof. If A ~ T, then A ~ .~ T. Pass from A to the quasireduced formula (A~ + and ex- 
pand conjunctions in the antecedents of implications. 

In the work of the decision algorithm for isomorphism, the quasireduced form of formulas 
will be used, while the reduced form will only be needed to show its correctness. 

The reduced form is obtained from the quasireduced one by ordering the conjunction terms. 

By the implicative depth /(v) of an occurrence v of a subformula is meant the number of 
antecedents of implications in which v appears. By the implicative depth /(A) of a formula A 
is meant the maximum of implicative depths of occurrences of its subformulas. 

Let U be a set well-ordered by some relation >. Let >n denote the lexicographic order 
relation on the set of finite sequences of elements of U; then >n will also be a relation of 

well-ordering. 

We will define the reduced form for quasireduced formulas and the relation > of well- 
ordering on the set of reduced forms of quasireduced formulas by induction on /(A) and max • 

(/(A), /(B)), respectively. 

(I) Let /(A) = O. Then A ~ ai0& ... &ai n for some n, where aik , 0 ~< k ~< n, are variables. 

Put ~-~o~...~i~ , where o is a permutation of the numbers 0,...,n such that [~(0)~ ">b~(~) . 

a i > aj if and only if i > j. A > B, where A=fL~o~...~a~g~ B=~gj0~'"'g~jm, g0~ >~g~j0>~, ~j~ 
if and only if ~[~.,.~ ~i~"'~J~" 
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(2) Suppose the relation > and the reduced form have been defined for all quasireduced 
formulas A and B such that 0 ~ l(A), l(B) < k. Let l(B) ~ l(A) = k. First, we define the 
reduced form and the relation > for those formulas whose outermost connective is an implica- 

tion. If A ~ (A~ ~ Hi) , then put A = (AI ~ ui) o If A = Az ~ ai, B ~ B I ~ aj are reduced 

formulas, then put A > B if and only if A~, a i >n B~, aj. Now let the outermost connective 

of A be a conjunction. Then A = A0& ... &A n for some n, where A0,...,A n are quasireduced for- 

mulas whose outermost connective is implication. Put A~A~...~Ao~ , where o is a permuta- 

tion such that ~e~ ''" ~e~e} If A Ao&. , B§ �9 are reduced formulas and 

max(l(A), l(B)) = k, then put A > B if and only if A0,...~A~ ~.--;~ �9 

Let A be an arbitrary formula. If A ~ ~ T, then put A § T, otherwise put A = ((~0)+). 
A formula A is said to be reduced if A ~ A. To the definition of >, we add this condition: 
A > T for each reduced formula A other than T. 

Note that we pass from a quasireduced formula to a reduced one using only conditions (I) 
and (2) of Lemma 3. 

Note also that each subformula of a reduced formula is again a reduced formula. 

Let A and B be reduced formulas and let n be such that all variables appearing in A or 
B are contained among a~,...,an. Let k denote that maximal multiplicity of conjunction in B. 

LEMMA 7. If A > B, then for each constant 6 > 0 there exists a number p such that if 

8s and c > p, then 

(.) (%)1 6~, , ,~  > ~'k BI~C~...,C~ 

where f~r C~G~ . j  6~-~6 ~-{ , . .  ~ b > K + 2 , .  

Considering L fixed, we introduce the notation 

Pi-[] Pt P ' "  ,h 

Proof. It suffices to prove the lemma for the case when either A ~ a i or A = (A ~O~b) for 

some i. Indeed, if A-AoL..<A~,B-B0a . gB s , then we can assume that Ap .~ Bq for any p and q 

(0 ~< p ~< r, 0 ~< q ( s);. otherwise, in both parts of the inequality (*) common factors can be 
cancelled, producing an equivalent inequality with PA' and PB', where A' and B' are obtained 
from A and B by removing common conjunctive terms. If A and B have no common conjunctive 
terms, then A > B implies A0 > B. The inequality (,) for Ao and B is obviously no weaker 
than the original one. 

The proof of this case will be conducted by induction on I = max(l(A), l(B)). 

Basis: If I = 0 then A _ ai, and B ~ T or B _ aj0& ... aj In the latter case, i > 
' S ~ 

J0 >7... I> Js; k /> s. In both cases, it is enough to take c > 6. The first case is obvious; 

in the second we have: .~g/C]=~(~-~' ~ bU0-0,~ 

Induction passage: Let I > O. First, let ~-~'m6~j for some j > 0. Since A>5 ~A-A/o 

ai, and either A' > B' or A' ~ B' but i > j. Suppose A' > B' By the induction hypothesis~ 
there exists p such that for c > p0 

PA' > (].,d- % Ps' [c ] 

Now, whenever c > p = max(6, P0, 1) we have: 
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If A' - B' but i > j, then whenever c > max(~, I), we have: 

Now let B = B0& ... &Bs, K i> S > O. Since B is a reduced formula B0 ->- ... >-- B s and the exter- 
nal connective of B0,...,B s is an implication. As has just been proved, there exist constants 

01,'-',Ps such that for c > Oq, I ~< q ~< s, we have PB0[~] ~> PBq[$]- Let B ~ B' > Gj for 

some j > 0. If A' > B', then let 00 be a number such that for C>~0)PAI[~]>(S+~)~ (j-4)" PB~[~] ' 
Then for C>p-=~t~(~a)...,~5)~) we have: 

= c J - ' )  

_S+,).bcj.O.p~,EE] : .  ,- S+~ ) 

If A' ~ B' but i > j, then one can take max(6, 01,...,Os, I) as O. For c > O 

p^_,._ ~ ~'~-(!pA,C~] cs+z).~ q-q P^,[~] ~s+o.t, cj-O.&,[~] 
LCJ=C ~ -- C . r  > 

>O.q =O.(P~.[C,,J) )-O'F)s[C.]. D 

From Lemmas 2 and 7, taking into account that A = A, it follows that: 

THEOREM. A = B if and only if A ~ B. 

COROLLARY I. If A and B are quasireduced formulas, then A = B if and only if one can 
pass from A to B as a result of replacing subformulas by isomorphic subformulas, using only 
conditions (I) and (2) of Lemma 3 (commutativity and associativity of conjunction). 

Proof. Only these conditions are used in the passage from the quasireduced to the re- 
duced form. Q 

COROLLARY 2. If A and B are conjunctions of variables, then A = B if and only if A and 
B contain the same variables the same number of times. If A~AI~ ~ , where A' is a conjunc- 

tion of variables, then A = B if and only if m ~B~gj , B' is a conjunction of variables, 
B' ~ A', and i = j. 

In conclusion, we will describe a recognition algorithm for isomorphism of formulas in 
HCC, which does not use the complex passage to the reduced form. To this end, we will need 
one lemma. 

I 
Let A, B, and C be quasireduced formulas, C ~ C ~  �9 Let A* and B* denote the result of 

replacement of all occurrences of subformulas isomorphic to C in A and B by an occurrence of a 
variable G k not appearing in A and B (obviously, A* and B* are quasireduced formulas, too). 

LEMMA'8. A* ~ B* if and only if A = B. 

The proof is based on Corollary I and uses the fact that permutations of conjunctive 
terms and rearrangement of parentheses in conjunctions either appear within an occurrence of 

a subformula whose outermost connective is an implication or do not change the form of this 

subformula. D 

Let A and B be arbitrary formulas. We will describe the steps of work of the algorithm. 

(I) Pass to A ~ and B ~ If A ~ ~ T or B ~ ~ T, then A = B if and only if A ~ ~ T = B. If 

A ~ ~ T and B ~ ~ T, then pass to the next step. 

(2) Pass to (A~ + and (B~ +. If l((A~ +) and l((B~ +) ~ I, then check whether they are 

isomorphic (see Corollary 2). Otherwise, pass to the next step. 

(3) Find the extreme left occurrence v of a variable for which l(v) = ~(A) ~ I. This 
occurrence is generated by an occurrence of a subformula C of the form CIDgL, where C' con- 

tains no implications (v is contained in C'). Write all subformulas Cz,...,Cn of the formula 
A and B containing one implication. Choose among them those isomorphic to C (on the basis of 

1394 



Corollary 2). Pass to Step (2) with formulas ((A~ * and ((B~ *. 

The algorithm will complete its work, since 

+ + ) O(@,~ 
Some estimates: 

For each formula A, 0(A ~ ~ 9(A); G((A~ +) ( 29(A) (see Lemma 5). Actually, when one 

passes from A ~ to (A~ +, G can grow exponentially. This happens, e.g., in formulas of the 

form 

t i m ~  

In recognizing isomorphism of quasireduced formulas A and B, the main operation is com- 

paring symbols. If l(A), ~(B) % I, then, to recognize isomorphism, 

comparisons of symbols would suffice. It is possible to prove by induction on 0(A) + e(B) 
that in the course of recognizing isomorphism of quasireduced formulas by the above algorithm 
no more than (G(A) + O(B))2(9(A) + G(B) + i) comparisons of symbols are used. 

3. In this section, symbols ~, b may denote each of the propositional variables ~i,..., 

~k, . . . .  

The notation l(tl) ~ l(te) means that l(tl) is equal to l(t2) for all values of free 
variables; tz ~ t2 means that l(tl) - l(t2) for all interpretations I. If f and g are mor- 
phisms of HCC, then l(~(f)) ~ l(T(g)) if and only if l(f) = l(g) in M. l(tl) z l(t2) if and 
only if I(~i) ~ I(~2) since the normalization of a term does not change the corresponding map 
in M. The relation ~ is transitive, symmetric, and reflexive. 

Let ~oA, where F~A4, ,A~ is a list of formulas, denote the formula A~fA~= (A~= 
A) ; A4~.. ~Ag, the formula 6 (A~AD)~Ae ; for a list A ~ sl...s n of deductive terms and 

a term t of suitable types, let the expression (t, ~) be the abbreviation for (...(t, sl),..., 
Sn) and <A> the abbreviation for <...<sl, s2>,...Sn>; let %{t, where { = x0,...,x n is a list 
of variables of any types, be the abbreviation for lxl,..lxnt; finally, let I~ denote the 
usual combination of 7 and r representing the notation of the projection onto the k-th factor 
of the Cartesian product of n objects. 

Henceforth, whenever lists are used in the notation of formulas and terms we assume that 
the list cannot be extended, i.e., expressions of the form ~o(~a~); ~s should not arise. 

Definition I. (I) By a u-formula is meant a formula not containing conjunctions and T; 
(2) by a u-variable is meant a variable whose type is a u-formula; (3) by u-terms are meant 
deductive terms defined by induction as follows: (a) a u-variable is a u-term; (b) if x is 
a u-variable and s is a list of u-terms of suitable types, then (x, A) is a u-term; (c) if 
A is a list of u-terms none of which has the form <Z> for some list of terms Z, then <A> is 

a u-term; (d) l~t is a u-term if < is a list of u-variables and t a u-term which does not 
have the form <A> for some list of terms A. 

Remark I. Obviously, each subterm of a u-term is a u-term. The type of each u-term 
is a conjunction of u-formulas; if t does not have the form <A>, then the type of t is a u- 
formula. Note also that each u-formula which is not a propositional variable has the form 
F ~ ~, where F is a list of u-formulas. 

Let X(t) denote the number of occurrences of symbols in t; let Xl(tl, t2) = max(x(t~) , 
• 

THEOREM I. For any two morphisms f, g:A + B in HCC, where B ~ T, there exist noonal 
u-terms t~ and t2 such that for each interpretation I 

The proof of this theorem will be given after the proof of the main theorems 2 and 3. 

Let t be a normal u-term. Let v be an arbitrary occurrence of some u-variable in t. By 
the ~om~n o~ ~o~o~ of the occurrence v is meant the occurrence of the smallest subterm �9 of 
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the term t having a propositional variable as its type and containing v. If v is an occur- 

rence of ~m . (~%A) where A S~ ~ An , where F ~ A~,. .,An, then ~ ~ , = ,...,S n 

By the degree of an occurrence v of a variable x in t is meant the number of occurrences 
of x in t, other than V, in whose domain of action v lies. By the degree of a variable x in t 
is meant the maximum of degrees of its occurrences in t. By the degree of a term t [we de- 
note it by d(t)] is meant the sum of the degrees of variables occurring in this term. 

d(t) does not exceed the number of occurrences of variables in t; afortiori, d(t) 
• d(t) does not decrease in the passage to a superterm. 

Let ~K~ {~ ~I be two-element sets (~) , ~ j = ~  (K~j) �9 For any set ~ let 

t imes 

THEOREM 2. If t ! and t2 are normal u-terms and t I ~ t2, then I(tl) ~ l(t2) for some 

interpretation I:ak § (~k)ik (k ~ I), where i k (d(tl) + d(t2) + I. 

Assuming that Theorems I and 2 have already been proved, one can easily obtain the fol- 
lowing main result: 

THEOREM 3. For any two morphisms f, g:A § B in HCC there exists an interpretation I such 
that f ~ g < > I(f) = I(g). 

Proof of Theorem 3. f ~ g implies I(f) ~ l(g) for all interpretations I. It remains 
to show that there exists an interpretation I for which I(f) = I(g) implies f - g. If B ~ T, 
then apply theorems 1 and 2. []If B = T, then there exists a unique morphism from A to B and, 
therefore, f ~ g. In this case, one can take any interpretation as I. 

Generally, the estimation of cardinality of sets I(a k) (k ~ I) depends on characteristics 
of the normal form of some terms associated with T(f) and ~(g) which, however, does not impede 
obtainin$ a decision algorithm for equivalence f ~ g independent of the usual algorithm [pas- 
sage to T(f) and ~(g) and comparing these terms]. 

Namely, one should consider interpretations of the form I:a k § (ak) ik for all i k starting 
with 0 (gradually increasing them) and for each of them compare I(~(f)) with l(r(g)) for all 
values of free variables. Actually, we are interested in the sets l(a k) only for those ak 
(there are finitely many of them) which appear in both T(f) and T(g). This algorithm is com- 
plimentary to the usual one in the sense that it provides the negation of f z g (if f ~ g) no 
later than when the upper bound for i k is reached, whereas the usual algorithm provides the 
confirmation of f ~ g (if f ~ g) no later than when the normal forms are found. 

The estimate of numbers i k may turn out to be greatly exaggerated. For instance, if 

~=a ~=~ (Z ,z 7...) 

w 

then for each interpretation I for which I(&K)=~k , l<~4)~l(t~ . It is enough to take ~m--~k , 

~--~[~C~), where ~K=~K and ~=~K , in order to negate I(tl) -- I(t2). The same values of 

variables negate I(t~) =- I(t 2) for any two terms which are reduced to tl and t2 as their re- 
spective normal forms, independently of the length of a reduction sequence. 

Proof of Theorem 2. Since t I and t2 are normal terms, t I = t2, one may assume that tl ~ 
t2 even an arbitrary renaming of tied variables. The proof will be conducted by induction on 
• t2). We can assume that tl and t2 have the same type; otherwise, already for the in- 
terpretation I: a k + (~k) (k >~ ]), the values I(tl) and I(t2) lie in distinct sets. 

If x1(tl, t2) = ~ then tl ~ x a ~ t2 ~ ya. One can take I: a k § ak, x a = B, y<~ = 7 (if 

~gK, then B = B k, [~k )" 
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Below, we will consider only interpretations of the form I:~kP~(~k) LK (k>~) . Let xl(tl~ 

t2) = L > I. The following cases are possible: 

I A~ A~ A~ Ar 

~ A~ A~ ~ 
(2) t~ .----<a4> ~ fi~-~<J,~>, A~-Z~ , . , .% ~ A~- S~ ~...,~,. J 

ZCm~ 

Cr A ~ )  , x does n o t  appear in  s and A~, , ~ §  ~ , . . .~  

(5) t~(z ~A~) , ~=(06 ,~A,r ~ , A,i and 32 have the same form as in (4) but x ap- 

pears in Az or A2. 

In all cases, ri and s i (1 ~< i ~< n) are normal u-terms. 

All features of the form of terms in (I)-(5) [e.g., the fact that in the lists ~ and 
~2 in (I) the numbers of variables and the types of xj and yj (I ~< j ~< n) coincide] follow 

from the fact that t~ and t2 are normal u-terms of the same type. 

To justify the induction passage in cases (I)-(4), no change of interpretation is re- 
quired. In cases (I) and (2) it is not even necessary to define new values of free variables. 
In case (3) it suffices to take distinct constant functions as values of x~ and x2. In case 
(4) one has to apply the induction hypothesis to terms in &z and f12 [from tz { t2, it follows 
that r i ~ s i for some i (I ~< i ~< n) and, by the induction hypothesis, I(ri) ~ I(si) for some 
values of free variables] and, using the fact that x does not appear in Az and A2, choose a 

function r separating values of r i and si as a value of x. 

The most difficult is the last remaining case (5). 

Let ~ ~ ~...~ be the list of all free variables of the terms tl and t2 ,  As in case 
(4), let r i - s i. Apply the induction hypothesis. Let I be an interpretation and %, %z,..., 

~=~ "'C~ Z~ respectively, in the sets ~(~m~) I[s .,~ I~$) ~ be values of variables ~ ~ ~.,.~ , , �9 

for which I(r i) ~ I(si). Let ~el(Aa), ,E~elfke), @~eI(AD,, %eIfA~) be the values of the 

terms I(rz),...,I(r n), I(s~),...,I(s n), respectively, for these values of free variables. 

Since we have already chosen the value of x (it is ~), it may happen that [~ll/~:..)~)= 

(~qa .... ~@~]. Consider a new interpretation I', where I'(b) = I(b) if b ~ ~ and Itm)=l(m)• 
{j~,~]. We will try to choose new values of variables x, xs,. ,x7 -- ~'s ),~as 

~'(s respectively, in such a way that among the new values of the terms I(rj) and l(sj) (I ~< 
' , ' ' would still be distinct j ~< n), which we will denote by Pj and ~] respectively, ~i and ~0 i 

; I 
and(~!~,...~) would beequal tO<ql, $>,while (~' ~0 ...,~] would be equal to <he, Y> 

[where ~4=(~,~...~r~)~ifr ~=[~;r 

Definition 2. Let B be an arbitrary u-formula and let 6)~[(]~) and (0~(~) be arbitrary 
constants. We define a binary relation to' lu (to' extends the definition of to) by induction on 
the number of occurrences of propositional variables in B. 

Let B _ b ~ ~7. Then to' Ito if to' = to. 

Let B ~ ~. Then to' !to if ~0~s215 , i.eo, the left component of to' coincides with 
tO. 

Let ~ =P=b, where F - BI,...,Bm. Let b ~. ~. Then to' Ito if for any m4ei(B~), ,~0~eI(~m) 
I I ,f ~ I ,. (0~)=(60~03~ ~0)~) Let b ~ ~. 

Then to'i~ if for any ~z,--.,tom and u~,.o.,to m such that m~im~ ,m~l@r~, (d ' ' 
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LEMMA I. (a) Let C0'~l(~') , 6O0 ,@~afC]~) and C0'J@0~60Jl60~ Then C00=~ (b) Let t0el(B). 

Then there exists Jcl'(B) such that ~0'ICO. (c) If ~-~.m~ (where ~'--~!, .... jB~ ), then ~' 
can be chosen in such a way that the function 

. f I ( 

would be equal to any a priori given function. 

The proof is easily conducted by induction on the number of occurrences of variables in 
B. [] 

BI Bm LEMMA 2. Let t be a normal u-term which is not of the form <8>, x I ,...,x m be its free 

t variables, I and I', interpretations connected in the way described above; O~eI(~),.-. ~0~e 

~); 0)~'(~4)~...~I'(B~)~ &)~It0o..,~ g#~Ic0 ~ . Then ~' I~, where ~0 ~(~)~ 0~J''''~0~,,.~ and 0Y ~--~(~)~iiilt1~ ~ �9 

The proof is done by induction on • [] 

We will complete the proof of Theorem 2. 

By nemma I (c), there exists ~' such that ~'l~,~elfY,=~), ~el(~,=~) and for any ~j and 

~j where ~J[~j and ~.;I~i' (4~j~) ~I~...~)=~>s ~ ~:-.-~) <~.~>~I~)holds. 

Let ~$~...,~ be arbitrary extensions of the definition of old values ~s ~s 

..~%~ of the terms t~ and te [these extensions exist by Lemma I (b)]. of free variables '~f~.__ 

Choose as new values of free variables ~log ~ , ~ , respectively, ~%l'<~,=~)~el'(c~),..., 
Cc ) . 

For these values of free variables, we introduce the notation I~j--~I'(Zj),C~j 
! / " 

By Lemma 2, ~ I~ and ~j;@~ . Then, by the choice of value of the variable ~6 ~== , we have 

Since ~ appears in at least one of the lists 8~ and A2, we have d(t~) + d(t2) >~ 

d(rj) + d(sj) + I for all j (I <~ j ~< n). Therefore, by definition of I', I[g~)=(=L~) g~ and 
I "~ , I  

Lkgc~EZj)+~ES~)+4 implies I(g~)=(d~)~ and L~)+g(~)+4 The proof of Theorem 2 is com- 
plete. ~ 

LEMMA 3. Suppose a term t A is such that: (a) For all subterms of t of the form <~> none 
of the list entries has the form <T>; (b) the term t contains no subterms of the form (X~t, 
F), f<A>, where f is some combination of Z and r; (c) A ~ At& ..~ &Ak, where Az,...,A k are u- 
formulas; (d) the constant ~ does not appear in t and all variables appearing in t are u- 
variables. Then t is a u-term. 

Proof. Note that (c) implies (c'): t does not have the form %~<A> or <...,X~<&>,...>. 
We will prove by induction on X(t) that from (a), (b), (c'), and (d), the assertion of the 
lermna follows. The base (x(t) = I) follows from (d). The conditions (a), (b), and (d) are 
preserved in the passage to a subterm, so, to justify the induction passage, one has only to 
check the fulfillment of (c'). Let • > I. 

The case t - ft', where f is a combination of ~ and r, is impossible if (b) and (d) are 
fulfilled. 

In the case of t - X~t' and t - <st,...,Sn> (n > I), the induction passage is easily 
justified. 

S l i g h t l y  more  c o m p l i c a t e d  i s  t h e  l a s t  c a s e  when JC-~(S " ~I' [We a s s u m e  t h a t  s d o e s  n o t  
h a v e  t h e  f o r m  ( s ~ ,  ~ ) ] .  U s i n g  t h e  i n d u c t i o n  h y p o t h e s i s ,  i t  i s  e a s i l y  shown t h a t  i n  t h i s  e a s e  
s i s  a u - v a r i a b l e .  Then E ~ A i s  a u - f o r m u l a ,  t h e  t y p e s  o f  t e r m s  o f  t h e  l i s t  F a r e  members  
o f  t h e  l i s t  Z a n d ,  t h e r e f o r e ,  u - f o r m u l a s .  T h u s ,  t h e  t e r m s  i n  F s a t i s f y  ( c )  a n d ,  a f o r t i o r i ,  
( c ' ) .  By i n d u c t i o n ,  t h e y  a r e  u - t e r m s .  Then  t i s  a l s o  a u - t e r m .  [] 

LENNA 4 .  L e t  t A b e  a t e r m  and  v be  an  o c c u r r e n c e  o f  i t s  s u b t e r m  "r B s u c h  t h a t  e a c h  s u b -  
t e r m  t~ o f  t h e  t e r m  t c o n t a i n i n g  v ( i n c l u d i n g  t )  h a s  t h e  f o r m  X~t'~ o r  <A> f o r  some l i s t  o f  
terms &. Then B is a subformula of A. 
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The proof is easily obtained by induction on the depth of the occurrence v. 

LEM~ 5. Let t A be a term such that the condition (a)~ (b), and (c) of Lemma 3 are ful- 
filled and also (d'): all ~e~ variables of the term t are u-variables. Then t is a u-term. 

Proof. We will show that (d) follows from (a), (c), and (d'). Then the required con- 

clusion is obtained by Lemma 3. 

Suppose that (d) is not fulfilled, i.e., ~ appears in t or t contains some (tied) vari- 
ables. Let v be the extreme left occurrence in t of a subterm T of the form ~ or ~', 

where ~ V x~ ~ An ,...,x n and at least one of the formulas A~,...,An is not a u-formula. Ob- 
viously, the type T is not a u-formula. 

Consider the largest subterm t~ of the term t containing v and such that each subterm 
of t~ containing v has the form l~t~ or <s By Lemma 4, the type of t~ is not a u-formula, 
so t~ ~ t contradicts (c). Let t2 be the smallest subterm of t containing t~ properly. 

The case t~ ~ ~t~, where 6 ~ ~r, is impossible by (b). Then ~(~z=A ?)o ~$ con- 
tradicts (b); therefore, tL is a member of the list F. The condition (d) is fulfilled for 
the term s by the choice of the occurrence v, and the condition (c) because of (b). There- 
fore, s is a u-term and S m A is a u-formula; the members of the list E are also u-formulas. 
But the type of tL is not a u-formula. The obtained contradiction shows that (d) is fulfilled 
for t. 

LEMMA 6. Let ~,,~ ~2 and t~, t~ be terms such that there exists terms %~,.,,~Z~ ~ and 

~ ~ (where xl~ ,x k do not ~,...,$ ~ and pairwise-distinct variables ~[~...~ and ~..,~ ... 

appear in any of the terms r~,...,r k and y~,...,y~ do not appear in any of the terms sL,..., 
s~) for which 

Then for each interpretation I 

I (~) ~ I(~)~> l(t~) ~ l(~J 

To prove the implication I(mD---I(~)=mI(@4)---I(tz) , it suffices to note that for all values 
of free variables I(rl),...,I(rk) are admissible values of the variables Xl,..~x k, The re- 
verse implication is proved similarly. 

Proof of Theorem I. Let f, z:A-~B be morphisms of HHC, B ~ T. Then, by Lemma 6 from 
Sec. 2, there exist isomorphisms hl:A' § A and h2:B § B', where A' and B' are multiple con- 

junctions of u-formulas. For each interpretation I, l(f) = I(g) ~> I(f') = I(g') , where 
f' = h2(fhl), g' = h2(ghl). Consider the terms T1 ~ ~(f') and ~2 ~ T(Z'). Their type is 

B' and they contain a unique free variable x il. We will show that I({~)-~I($z)~>I({~)~T(@~) 

for some normal u-terms tl and t2. Let A'-A~& ..gA~ (k~4) Since the terms rl and T2 

are normal, each occurrence of the variable %~&"'%~ in them is contained in a subterm of the 

form [~j6 ~&~''IA~ for some q(1 ~< q ~< k). We introduce the notation Z~<~;.. ,~> , where 

Yl,...,Yk are pairwise distinct new variables, S ~  A~&..,&~ (I ~< q ~< k). Let ~(Zg)Z[%] 

(i = l, 2); it is easily shown that t i is obtained from ~i by replacing each of the subterms 
lqx by yq. The term t i is normal and its type is the same as that of ri; therefore, by Lem- 

ma 5, t i is a u-term. Obviously, (~)~, .~[$4~.~,~]-{ ~ By Lemma 6, I(~)~I(~z)~--->l~t~)~ 
l(tZ) . Then also I(~)=l(~)<===>I([4)~ I(6J. [] 

I �9 
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