
It is obvious that the eikonal and transport equations for the quasipotential do not 

differ from the equations presented in Sec. i. The leading term of the short-wave asymp- 

totics of the field of a point source in a small neighborhood of it and the excitation coef- 

ficient also have the form (2.4), (2.10). 

In the case of oceanic flows we deal precisely with small vortices and g~-40 ~. Hence, 

to describe the propagation of sound in an ocean with flows it is ~ossible to use the equation 
1 

for the quasipotential. Moreover, from formulas (2.4), (2.10) it lollows thas in a small 

neighborhood of the source the phase of the wave contains a correction term connected with 

the presence of the flow of order ~ while the amplitude contains a correction of only order 

~ . The excitation coefficient of the wave in the region where it is possible to use the 

ray representation also contains only a correction term of order g~ . 

The author is grateful to V~ S. Buldyrev for useful discussion of the papers. 
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RIGOROUS JUSTIFICATION OF THE FRIEDLANDER-KELLER FORMULAS 

A. B. Zayaev and V. B. Filippov UDC 517.9;535.4 

In the paper an asymptotic expansion (as k-~, k the wave number) is proved 

for the Green function of the problem of diffraction by a smooth convex body in 

two cases: when one of the points of the source or observer lies on the boundary 

while the other is an arbitrary distance from the boundary and also when both 

points lie off the boundary hut not far from it. The two-dimensional Dirichlet 

problem is considered. 

In the present paper we present a rigorous justification of the formal asymptotics in 

the shadow zone for the problem of diffraction hy a smooth convex body. We consider the 

case of the Dirichlet problem in the plane, although the results can easily be carried over 

to the second and third boundary-layer problems~ In [I, 2] the asymptotics was justified 

in the case where one of the points of the source or the observer was located on the bound- 

ary of the domain while the second was near to the boundary. In the present work an analo- 

gous result is obtained for two cases: when one of the points lies on the boundary while 

- Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo 
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the other is located a finite distance from it and also when both points do not belong to 

the boundary but lie in a region near the boundary. 

i. 

Below we use coordinates 

length on F 

The Main Results 

Let q~{.M~) be the Green function of the diffraction problem 

{ -o 

~ - __~ 4~  ( ~ - ~  - ~K q~) O, "~ , - - ' *  ~ ' 

Let q~ (M)~) be the approximate Green function satisfying the conditions 

{ (.~ +)~') ~ (M,,~> == @..(M,,E) 

(m,S) ~ where ~, 

and a l so  the  ray  c o o r d i n a t e s  

is the normal length to F and 

and ~ : 

$ 

( i . i . )  

is arc 

Ikp-tangentto  F ,  d , - S / ~  ~ r  

For ~--~0 ~---0) we have the relations 

+' , .  + 0 

1 @ + o 
where ~(5) =~(5) -I is the radius of curvature of F 

(1 .3)  

To construct the function ~ (P,~) we use the following expressions: fPl is the exact 

solution for the circle of curvature at the point ~ q~t is the creeping wave (see [3, 4]), 

and q~ • is the Friedlander-Keller wave (see [4]) 

q~(p ,~ )  = f (~,'~,'0 e ~'~<~,~ (1.4) 
4~ 

# 

,5 • 

where ~ = I/~($) is the curvature, and zt is the first root of the Airy function. 

It is known (see [4]) that in the region ~_, m -a/a+g the creeping waves go over into 

Friedlander-Keller waves. (The notation ~ ~ ~ means that ~ =0(~) and ~ = 0(~) simul- 

taneously. ) 

Thus, suppose ~(I~,~) is 

+ + 

( ] . . 7 )  

We define the neutralizers realizing the matching in the transition regions as follows: 
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In [2] 

shadow relative to 

proved. 

THEOREM i. If 

#a(&) = {I0 ' 'aI<~* ' 

the asymptotics was justified for 

Fig. i 

Zi,Za ~ m -v~*~/z 

~-~i X K -IA+~/~ 

qD(M,~) when the point 

(1.8) 

M lies in the 

and is not far from the boundary; that is, the following result was 

6 <~/6, then there is the asymptotic expansion 

where the curvature ~(~) is a continuously differentiable function ~%)E CN[O~], ~ is 

N the length of the contour r , Ni=-~- go , ~o is proportional to 5 ~ and ' 

0 

The estimate (ioi0) will now be extended to the shadow zone outside the boundary layer; 

namely, we shall prove the following result. 

THEOREM 2. Suppose 

~tn>r-,o~t K -~§ and ~n>cm~tK -~+e , 

6<~, ; then the following asymptotic estimate holds: 

+ o xo)} 
under the assumption that ~,(~).~_ CN[O,~]. 

In the present work a theorem analogous to Theorem I is also proved for the Green func- 

tion ~MTMo ) with source Mo ~ r. 

suppose ~M,MQ) is the Green function for the problem of diffraction by F : 

I (A+K~)G(,M,M.)-Z(M,Mo) 
G(~ Mo)]~e r : 0  

We introduce the notation 

(1o11) 

(1.z2) 

5 

- ~ , ~  <a~<s)y ~ ~, .  

(1oIB) 

(lol4) 

(io15) 
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Fig. 2 

We shall prove the following result. 

THEOREM 3. Suppose the points M and M= lie in the boundary layer a'd are located in 

the shadow relative to one another: 

(i.16) 

Suppose also that m($) ~ cN.[o,~] Then there is the estimate 

~(M,Mo) =[~[ (M,Mo):+ Q: (M, Mo~.[i +0 (K:"~ 1o 17 ) 
where 

is the formal asymptotics in the shadow, i.e., the creeping wave~ 

The proof of the theorems is carried out by the methods of [i, 2]~ In addition, in [2] 

it was shown how to extend the theorems to a contour r of finite smoothness if they have 

been proved for an analytic contour r 

assume that F is an analytic contour: 

and Ig(S) 

, 

is bounded there: 

Here the situation is analogous~ We therefore 

~) is an analytic function in the strip 

�9 = o 0 )  

Proof of Theorem 2 

As in [2], using Green's formula, we obtain an integral equation for 

qO (M,~)-~)(M,~) =- K{M,3)+ ] Ko O,~)CP (M;~)~ 
F 

where 

and 

The error 

where 

is the exterior of [~. 

~(P,~) in (2~ can be represented in the form 

! i �9 + + + + 

+ • _+ • § , ~- 

+ -* i • ~: + 

i~ 

(i.19) 

(i~ 

(2.1) 

(2.2) 

(2o3) 

(2.4) 

(2~ 

(2.6) 
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Fig .  3 

In correspondence with (2.4), we represent KIM,~) in the form 

K (M,~) = K+(M,~)  + K - (M,~)  (2.7) 

The integrals with the signs • are estimated similarly, and below we therefore 

estimate only K+(M~), omitting the sign "+." 

We first consider KI~M,~): 

K i ( M , ~ )  = T 

By (2.5) we have 

i.e., the integration in (2.9) goes over the boundary-layer region ~-~, located in the shadow 

relative to ~ The integral (2.9) was estimated in [2] with the difference that there 

~VM=0(K -z/3+g) ; it is not hard to carry over the same estimates to the case WM>CO~st K -g/~+g 

We have the estimate 

IK,(.Vl,B)I<{K ~C(.~.,~)+K [i-DC(~.n,I)]}XoiM,B,K) (2.ii) 
~ ( i r l , . t * )  = arm ~<A~ , (2.12) 

For the definition of AotM,~,K) see (i.ii). 

We now consider KziM,~ ) The region of integration is now 

{ '  I~_1 ~eo~,st ~ -Ts+~ } ~PQa~P,~)= ~l , z>~nstd Y~+~ (2.13) 
# 

i.e., .O.r is a region in the shadow relative to ~ but lying outside the boundary layer. 

We shall show how to obtain an estimate for 

Kz(M,~) = ~ ( 2. i4 ) 

Because of the piecewise analyticity of the integrand, we choose a deformation of the 

contour of integration on Y~ in (2.14) into the complex plane as shown in Fig. 3 where 

~I and ~a are lines of discontinuity of the neutralizer ~i(%) On the horizontal seg- 

ments we set 

~.~ z = co.~t K-V~fm K 

i.e., everywher e on the contour 

we integrate on ~ along the real axis. 

(2.15) 

(2.16) 
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We shall estimate the part of (2.14) corresponding to horizontal segments of the contour 

of integration on ~ The integral along the lines of discontinuity ~, and ~z can be 

estimated as in [2]. 

We introduce some useful notation; suppose that for K---~=~ : 

Then ~ is called the exponent of the rapidly varying factor of V (r.v.f. V ). 

We shall find the r.v.f, of the integral in (2.14): 

where 

We set 

Then 

We have 

It is not hard to find that 

and thus 

P=(~,~), R=IMPI, R=MP. 

(2.17 

(2.L8) 

O 

g,,~, R OR 

(2.20)  

(2.21) 

(2.22) 

9R - cos~, 0"~ =c~ = (2.23) 

We shall estimate ~/ 

I) Let ~-~M~i. 

a) Suppose first that ~<~M - Since ~>~o (see Fig. 4), we have ~>~s% , i.e., 

l-~>~st , and hence from (2.23), (2.20), and (2.15) we obtain 

~< lFM-e~ . s t  i< ~ .  (2.24)  

Es t imate  (2 .24)  shows t h a t  the  reg ion  1) a) makes an e x p o n e n t i a l l y  small  c o n t r i b u t i o n  to 
. 

b) Suppose that Q">~M ; we then immediately obtain from (2.20) 

~y < ~M - ~t K%. (2.25) 

The region of integration i) b) again gives an exponentially small contribution (as compared 

with e ~.,p Su M ). 

2) Suppose ~-~M=~ 

a) If ~<~M and ~M-K>Co~K-~/~K , then for ~-~M=o(~) , we have 
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From (2.20), ( 2 . 2 3 ) ,  

We have 

Then 

Fig. 4 

(2.15) we thus obtain 

and hence e~< e ~F. . K - t  

(2.1~). 

b) Suppose L>~M and ~-~M > ~B~K-~[~ ~' 

From (2.20) we obtain 

~<~M-B~+K , where c is any number. 

We again obtain power smallness. 

Thus, the essential contribution to the integral Kg(~}~) 

borhood of the ray 

such that 

(2 .26)  

(2 .27)  

- m (2 .28)  

for all C~0, i.e., the region 2) a) makes a small contribution to 

is given by a narrow neigh- 

Integration over this neighborhood refines only the power part of the estimate. 

(2 .29)  

(2.3o) 

By carrying 

out similar but involved computations, it is possible to obtain the following estimate: 

I K~(M,B)I< {#$ JIM,Z) + K-"'[,-$ [IM,z~)]} Xo (M,~,~). 

The estimates (2.11), (2.31) for Kj(MI~ ) 

asymptotics of ~P(M,~) just as in [2]. 

3. Proof of Theorem 3 

Suppose the conditions of Theorem 3 

We construct a quasi-Green function 

(2.31) 

and Ka(M,~ ) make it possible to justify the 

Theorem 2 has thus been proved. 

hold. 

~(N~No) as f o l l o w s :  

(M, M~) = G, (M,Mo),~.I~)}~ (B) ~CTI (M, No)?(*9 [i-~ (s)] + G ~ (M, Mo)}& (~} [l -}~ (B)], ( 3. i ) 

where 61(M,Mo) is the exact Green function for the circle of curvature at the point ~ , 

~IF,~(,,M.) are creeping waves (see (i.18)), ~i(~) realizes a cut-off with respect to 

in the boundary-layer region, 

,~,{~,,}=J't , ~ , ~ l q ,  ~,~,~,~,~, K -~/s*~" (3 .2 )  

[o ~ l ' ; ~ ' a  ~ ~ a - ~ i  X K -~/~.6 
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and ~<$) realizes the matching in the transition regions: 

We denote the characteristic exponential factor by }~M, Mo~K) : 

SM 

I 

Using Green's formula, it is not hard to obtain for I and G the relation 

iOl,Mo)- C'(M, Mo)=-=(M,Mo)* 1~{,~,1%) ~<t~,M,)]-~t) 
F 

where 

We note that 

(3.3) 

{3~ 

(3 . s )  

K(.M, Mo)=-~ IS H~)(,KI PMO Q'~-P~ Yt~ t P  (3.6 

~-9-~ Q(S,M) = ~ in,s). (3.7 
estimates have already been obtained for the entire shadow and for the function q~(M/5) 

region (Theorems i and 2}. 

Thus, if we obtain an exponentially sharp estimate for ~iM~ •o) then, just as 

in [2J using the uniqueness lemma (see [4]) for the formyl asymptotics and also 

Theorem i~ it is not hard to prove that G(M~Mo) gives the a,s~ptotics :~f ~(M~N~) in the 

shadow zone~ 

The following estimate can be proved for the integral K(M~Mo) : 

i K CM,M.o)i < co~o~l { K~$ (.SM, # )  + K-~ [I-I(SM,S")] XoiM,. Mo,~) o (3. g ) 

where S ~ = ~o~. ~ ~ + ~/~ 

As before, the estimate for F,(M,M0) is obtained by choosing a suitable deformation of 

the contours of integration on $ and ~ into the complex domain and estimates on the contours 

of the r.v.f, of the integrand in (3~176 

We use the notation 

~.~.f. ~~176 =%(M, Ho) 
,,m~_= (3 9) 

r .  ~ . f  . ,~, ,.= I PMI)  O_ (p ,  Mo) = ~y i M,P, Mo). 

We shall determine the form of ~I I (M,I~Mo) o We have 

where 

Qy(p. - +_ + +. + 
+ M~)=I ,~W(G, -G=)Vyo i+~G-GEJJ~=A#E =-+- - • *- . . . .  =,, +<~+~)%P=0 l~=)*zO-l=)voGl=*%O?.l)A>~. (~.12) 

in correspondence with (3oi0) ~,e write 

K (M,Mo) - K~iM,Mo) * K~ iM, M.) + K~ (3i, Mo). (3 .13 )  

We shall estimate Ki (il,Mo) By the construction of ~ we obtain from (3.11) 
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Let 

For Gi (P, Mo) 

~-%>~0~t E '/~'~, ~- ~Mo>~st ~ z/~+g. 

we have (see [3]) 

~-=' "~, '~' '~-H:"(KY('~ L ' -e '~"~ '  J '  

where ~ ~ are roots of the equation 

(0 H p ( ~ ( o ) ) = O ,  

~,q~ are the polar coordinates of the point P (at the point 

(3.i5) 

(3.16 

Mo:~=%~=O ), and the pole 

of the polar coordinate systems is the center of the circle of curvature for the point 

Since ~0=~(O)=0 , for ~ it is possible to take 

Fit) ~(t .~tL_~T)_(~f~d ' R=IPMI . (3.17 

Formula (3.17) is obtained by considering the form of the asymptotics of the Hankel functions 

contained in (3.16). 

We remark that ~(MjP~M~ has the same form as the r.v.f, estimated in [2]. By choosing 

the same deformation of the contour for ~ and leaving the contour of integration on $ un- 

changed, we find similarly 

I~ <~]~-co~st K ~ (3.18) 

The estimate (3.18) shows that an estimate holds for KI~M,I~o) which is exponentially small 

as compared with (3.8). 

We shall estimate K z • <IJ, Mo) The estimates are similar for the signs -+ , and we 

therefore omit these indices. 

From (3.12) we obtain 

Q~(~ su~p 

i.e., Qz is nonzero only in the zone of deep shadow and there G(~) can be expressed in 

terms of the creeping waves G~ ; therefore, for the region of integration (3.19) we can 

take the following r.v.f: 

It is evident that ~I J differs from the r.v.f, used in [2] in estimating K~MI~ ) only by 

the constant term ~ReiZI-gM0) ~/z Therefore, by using the same contours of integration, 

we obtain an estimate for K(M,Mo) which differs from the estimate for KiM,9) by the 

factor e~o{~Reizi-gSo) ~/z} , i.e., the estimate (3.8) which was required. From this we 

immediately obtain (1.17). 
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SPACE-TIME RAY METHOD FOR WAVES OF SMALL DEFORMATION IN A 

NONLINEAR ELASTIC MEDIUM 

A. P. Kachalov UDC 534.22.222~ 

Space-time ray solutions for longitudinal waves of small deformation in a non- 

linear elastic medium are constructed. 

We consider the system of equations of a nonlinear elastic medium in a Lagrangian co- 

ordinate system 

~ 9 (~3~) (i) 

where ~{ are Cartesian coordinates, ~ is time, Z~ is the displacement vector, Z~=~ 

~o ~- J~o (~<) is the initial density of the medium, ~=3~(I~,I~, l~),zK) is the free-energy 

density of the medium ( Po and ~ are smooth functions of their arguments)~ !{, I~, I~ are 

the invariants of the deformation tensor 

=~- ('1~,,~ +~,K,~+~s,~ �9 ~ , ~ ) ,  (2)  

Equations (i) are the Euler equations for the Lagrangian equal to the difference of the dens- 

ity of kinetic and free-energy of the medium: 

X=~ 2~ f sK~ htkg~) ~< If' If' IS) (4) 

Before proceeding to the construction of space-time ray (STR) solutions, we must clarify 

the question of scales. In describing wave processes in a nonlinear elastic medium there 

are three characteristic scales of length ~, ~, ~ , where ~ is the magnitude of displace- 

ment of particles of the medium, A is the wavelength, and i is a characteristic param- 

eter of variation of properties of the medium. As is known, for ray solutions it is neces- 

sary that the relation A<</. be satisfied and that 6=~ be a small parameter of the prob- 

lem. Moreover, for a nonlinear elastic medium, in contrast to a linear medium, there is 

still another characteristic dimensionless parameter ~&= ~/A = 0(4) . This parameter char- 

acterizes the magnitude of the deformation tensor. The study of the short-wave wave fields 

for the case 2<<~ (waves of small deformation) and ~4 (waves of large deformation) 

is completely different. The case of waves of large deformation present greater difficulties 

for investigation. 
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