INVERSE PROBLEM OF QUANTUM SCATTERING

THEORY. II.

L. D, Faddeev UDC 517.9:530,1

INTRODUCTION

The current survey summarizes the comparatively quiescent development of what is called the inverse
problem of quantum scattering theory over the past 15 years. The preceding decade, during which this
problem was formulated and subsequently intensively developed, was dealt with in my survey [25]. Its
entire 25-yrhistorydemonstrates that it is one of the most intriguing and instructive branches of mathema-
tical physics and reveals in its development new and unexpected aspects, and that it is far from being ex-
hausted.

There exists somewhat self-consistent methods for presenting the formalism of the inverse problem.
An elementary approach is based on the study of the properties of solutions of differential and integral
equations characteristic for it by methods of classical analysis. The monograph of Z, S. Agranoviech and
V. A, Marchenko [1] is an example of this presentation, In the current survey, as in [25], we follow a dif-
ferent approach, using wherever possible an operator-theoretic approach, The origin of this method of
describing the inverse problem was set forth by Kay and Moses [38, 39]. In this approach the inverse
problem of scattering theory does not appear isolated, but finds a natural place within the framework of
general scattering theory.

Let us recall the general statements of scattering theory for the Schrbedinger operator, with which
we will deal henceforth., It is a matter of comparing the spectral properties of two operators H and H,
defined in the Hilbert space $=L,(R") by the formal differential equations

He=—A+tv(x); Hy=—A.
Here A is the Laplace operator
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and v(x) is a real function sufficiently continuous and rapidly decreasing as |x| — «, The operators H and
Hy defined in $ on the dense domain D=W3 (R™, define self-adjoint operators, which we will denote by
these letters. The operator H; has absolutely continious spectrum. Its diagonal representation is re-
alized by means of the Fourier transformation

$(x)=Top=v2 (k) Hep(x)—~ k2 (k).

Here

n

¢ (k)= (2%)? S e'* g (x) dx.

The assertion that the operator H has the same absolutely continuous spectrum as Hy is the fundamental
result of scattering theory. More precisely, there exists an invariant decomposition relative to H of the
space 9 in the direct orthogonal sum
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of natural subspaces corresponding to the discontinuous and absolutely continuous spectrum of this opera~
tor. Here the restriction of H to $,.. is unitarily equivalent to H,.

There exist among the operators isometric in § that realize this equivalence two operators vt gis-
tinguished in terms of their physical origin. They are called wave operators and are defined by

U(:) =1lim eiHle—iHQt,

t~>too

where the limit is understood in the sense of a strong operator topology., There exists a broad literature
that deals with the conditions on v(x) under which these limits exist. Our problem does not include the
presentation of this "direct" problem of scattering theory, although several results relative to the exis-
tence of operators U<*) will also be mentioned in the text. Details on this question may be found, for ex-
ample, in the monograph of Kato [36]. We note that the fact that the operator V = H— H, is a function~-mul-
tiplication operator plays no role in general discussions in scattering theory,

The operators U(*) are isometric:
U@ =]; USUS* =[P,

Here P is a projector on the subspace 4, which, as a rule, is finite~-dimensional. The second relation is
said to be a completeness condition. The unitary equivalence spoken of above is realized by the equation

HU® = U®H,,

The physical meaning of wave operators is based on the following concepts. In quantum mechanics
the operator

U(t) =eiHt
deseribes the evolution of a system, which in our case, consists of a particle in the field of a potential
center, Over a long period of time a particle with positive energy exits far from the center, becoming
sensitive to its influence, and as a result its development over the course of time as [{|- is actually
described by the operator
Up(t) =e~itlot,

corresponding to free motion,

More precisely we may correlate to every single-parameter family of vectors ¥_{f), describing
free motion (wave packet)

b (By=emttioty_
a solution of the Schrdedinger equation
§(O) =ity
such that
) —o_(O1|~0

as f{-» —oo. The precise equation defining such a solution and following from the existence of wave opera-
tors, has the form

b=UNg
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Every solution of the Schrdedinger equation ¥(t) from the given class as t — = again reduces to a wave
packet, in general differing from ¥_(t):

9@ —$.@[->0
as t — «, where

b ()=~ g, Uy,

The last equation is justified since the operators UM and U() have a common range of values.

The passage from the wave packet ¥_(t) describing the initial state of a particle, to the wave packet
¢ +(t) describing its final state is also the process by which a particle is scattered by the center. All in-
formation on this process is contained in the operator S, which relates both wave packets by the formula

by =S¢
Comparing the equations expressing ¥ in terms of ¢_ and ¢ , in terms of ¥, we see that
S=UH"UE),
where it follows from the properties of U and U™ that S is unitary and commutes with Hy,
S*§=88*=1I; [§, H]=0.

These relations reflect conservation of particle and energy flux in the course of scattering.

The operator S is said to be the scattering operator, Its representation

$=T,ST;
in a diagonal realization of H, is defined by the equation
8o (k)=9 (k) —2xi Sf(k, D3(R2—1) o (hdl,

where &, the integrand, explicitly takes into account the fact that S and H, commute. The function f(k, I)
defined for | k| =[] is called the scaftering amplitude,

There exists an alternative approach to the scattering theory, called the stationary approach, based
on the study of the asymptotics of the eigenfunctions of H as |x| — =, The scattering amplitude f(k, ) here
explicitly occurs in the description of these asymptotics. Such an approach and its relation to the nonsta-
tionary approach will be illustrated in the text.

The problem of reconstructing the potential v(x) relative to the seattering amplitude f(k, I) is said
to be the inverse problem of scattering theory. This problem is not definedif the perturbation V = H— Hy
is an arbitrary operator, since an entire set of operators V can easily be selected with respect to an ar-
bitrary unitary operator of the form §, such that the corresponding operator S is a scattering operator for
the pair H, and Hy + V. It becomes meaningful only under a further condition, to which V is a function-
multiplication operator. Henceforth, this condition will be said to be the locality of the potential,

Over the past 50 years the inverse problem has been solved for the case most interesting for physi-~
cal applications of a shperically symmetric potential, viz., when n = 3, and

v(x) =v(lx]) =v(r), 0<r< o,

In this case the scattering amplitude f(k, I} depends only on the lengths of the vector k and I, which are
equal by the condition, and on the angle between them so that it is actually a function f(|k|, cos 8) of two
variables. The partial scattering amplitudes fj ((k|) arise in decomposing f(|k|, cos ¢) in Legendre poly-
nomials

F k], cos®) = — 5z 1@+ 1) f1 (| £]) Py (cos6)
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so characteristic for spherically symmetric problems. The unitarity condition on an operator S can be
explicitly borne in mind by setting

Fi(k)=exp {in, (&)} sinvy, (k]

where ﬂz(!kl) is a real function, called the asymptotic phase because of its role in the stationary formula-
tion of the scattering problem,

The fundamental result obtained by V. A, Marchenko [16] and M. G. Krein [12] states that the poten-
tial v(x) is reconstructed inone of the asymptotic phases n; (k|}, one such phase being an arbitrary real
function satisfying the integrality condition

7 (00) —n, (0)=nm, meZ,

Here m positive numbers associated with the characteristics of a discontinuous spectrum of the radial
Schrsedinger operator

LI+1)

d2
Hi=—gm+—5

+v{r),

whose reconstruction constitutes our problem, must be specified for a unique determination of the poten-
tial as must be the phase 7;.

It is precisely this result that was dealt with in the survey [25]. The subsequent development of the
inverse problem, about which we shall speak in the current article, is associated with the Schredinger
operator in the general case without spherical symmetry type assumptions, Here, two cases are distin-
guished, theoretically differing in terms of technical difficulties: n=1 and n = 2. In the first case, tools
developed for the radial Schrdedinger operator with I = 0 turned out to be applicable. The chief role is
played by the existence of a fundamental system of solutions for the corresponding one-dimensional dif-
ferential equation. In the multidimensional case, when we must deal with a partial differential equation
in addition to ordinary differential equations, the concepts of a fundamental system vanishes. It may be
that it is precisely this circumstance that constituted the hindrance that has extended the study of the multi-
dimensional inverse problem over such a long period of time,

In spite of this circumstance, which constitutes a technical distinction, it furned out that the one-di-
mensional and multidimensional inverse problems are to some degree analogous in many ways. This
analogy can be particularly seen in an operator-theoretic language, which we have chosen for our presenta-
tion for precisely this reason. It is of interest that all these assertions on analogy refer to the one-di-
mensional, but not radial Schréedinger operator. In this sense the one~-dimensional case plays a fortunate
role as an intermediate link between the radial Schréedinger operator and the multidimensional operator,
being technically close to the former and conceptually anticipatory of the fundamental outlines of the latter.

We will now indicate the principal distinction between the inverse problem considered in this survey
and the case of the radial Schrddinger operator. It consists in the overdeterminacy of this problem, In
the radial case we must construct a function v(r) decreasing to infinity of a variable r that varies on the
half-axis, in terms of a function w;(lkl) of a variable |k| also on the half-axis and also satisfying an asymp-
totic condition as |kl— . It is therefore not remarkable that the function n:(1kl) can be chosen arbitrarily,
A similar simple calculation of parameters demonstrates that the scattering amplitude for more complex
problems cannot be arbitrarily selected,

Let us first consider the Schrdedinger operator for n =1, An arbitrary unitary scattering amplitude
f(k, 1), where k,! € R! can be parametricized by four real functions of the variable [k|, running through the
half-axis. A symmetry condition, which follows from the realness of the potential and which will be pre-
sented in the text, decreases this number down to three. At the same time the potential v(X) can be con-
sidered only as two real functions defined on the half-axis, Indeterminacy is present since it is difficult
to imagine the physical origin of the problem in which the nondegenerate correspondence of sets of two
and three arbitrary functions would be established, In other words these heuristic arguments demonstrate
that the scattering amplitude f(k, I) will satisfy the necessary condition and so can be expressed in terms
of two real functions of the half-axis, Such a condition in fact arises and is derived in the text,
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When n = 2 this indeterminacy is significantly aggravated. The scattering amplitude here is a func-
tion of 2n— 1 variables, while the property of being unitary reduces to this function being real, At the
same time the potential is a real function of n variables. As a result of such indeterminacy the problem
of determining necessary conditions on the scattering amplitude that follow from the localization condi-
tion on the potential, arises and becomes of great importance, It was previously unclear that such condi-
tions can in general be expressed in terms of the scattering amplitude in sufficiently explicit form. Never-
theless, as will be explained in the text, such conditions ¢an be described.

We will now formulate the fundamental statements of the formalism of the inverse problem. We will
assume for the sake of definiteness that the operator H has one simple eigenvalue, so that the projector P
under an isometricity condition is a projector on the one-dimensional subspace the eorresponding eigen-
vector u spans, The choice of the transformation operator U, i.e., the choice of the solution of the equa-
tion

HU=UH,,

which differs from wave operators, is the basis of this approach., Every transformation operator is ob-
tained from the wave operators U() by multiplication on the right by a normalizing operator factor N
that commutes with Hy,

U=USHNE), [N, Hy|=0.

In particular the scattering operator S is a normalizing factor for U) with respect U(+),

U =/H)8,

Comparing these two formulas we can see that a factorization of the scattering operator

S=NHN-T 1)

corrresponds to every choice of the transformation operator U,

We now assume that U is invertible in the sense that there exists a vector y not belonging to the
space %, such that

a=Uy.
Then the completeness condition expressed in terms of U will be
UWU* =1, @)
where
W =N NGO L x®Xx.

The operator W will be called a weight operator,

Equations (1) and (2) constitute the basis for solving the inverse problem., We must find a success-
ful determination of U, such that Eq. (2) uniquely determines it in terms of the weight operator W and that
the corresponding factors NG&) s uniquely determined by the factorization condition of Eq. (1) in terms of
a given operator S, It turns out that similar transformationoperators exist and are distinguished by a
Volterra property.

Let us clarify in detail what we understand by a Volterra properiy. In the one-dimensional case this
concept is formulated in the most classical fashion. The kernel A(x, y), where %, yE€R! is said to be trian-
gular if A(x, y) = 0 when X<y or A(x, y) = 0 when x >y. An integral operator with triangular kernel is said
to be a triangular operator. Finally an operator of the form "identity element plus triangular operator"
is said to be a Volterra operator, We have two possibilities for a Volterra operator in the one-dimensional
case:
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Ur () =4 () +{ A1 (x, ) $ () ays

Ut 0)=4 () + 4 (2, 5) 9 9) dy.

—C0

Both formulas may be described uniquely if a direction vy is introduced, i.e., actually a variable taking
two values y =+ 1

Up@=9@+ | A )40)dy.

(y—x)¥>0

In this form the calculation of the Volterra operator is naturally carried over to the case n=2. The
variable v in this case is a unit vector and runs through, unlike the one-dimensional case, a connected set,

namely the sphere SP=!, An operator of the form

Ug@=4@+ | Ayxneay

(g—2.9)>0

is said to be a Volterra operator with direction y of Volterra property.

We will now prove that the Volterra property of a transformation operator U, reduces the complete-
ness equation (2) to a linear integral equation for the kernel A.y (X, y) occurring in its definition, Suppose
y is some direction and let U, be a Volterra transformation operator with direction y of Volterra proper-
ty. We consider the operator

Uy'=1+A4,.
This operator has direction of Volterra property opposite to that of the operator v, so that
Ay (x, 3, =0, (x—y,7) >0 Ay(x,y)=0, (x—y,7)<O.

Suppose Wy is a weight operator for U.),, and we set

Equation (2) with the notation introduced, can be rewritten in the form
Ay + 2y + AR, =A,

or. in more detail, in terms of the kernels Ay(x, v), Q.y(x, y), and Ky (X, y) in the form

A +2,000+ | A 20 @ N dz= A, (x, ).

(z—£19)>0

The right side here vanishes when (y — x, y)> 0. If this condition holds, we obtain the linear integral equa-
tion

Ay N+, N+ § Ay, D20, y)dz=0

{z=x,y)>0

(y_x’ T)>O9

which can be used to find the kernel A_ (X, y) in terms of the known kernel Q~(x, y}. This equation consti-
tutes a general formulation of the Gel'fand—Levitan equation introduced in {8] for the actual example of a
Sturm— Liouville operator on the half-axis,

Thus we will see how to reconstruct the Volterra transformation operator U, if the corresponding
weight operator W, is known. To construct the operator Wy in terms of a known operator S it is neces-
sary to solve one more problem in the factorization of Eq. (1) to determine the normalizing factors of Uy
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It is still not entirely understood whether this problem for Volterra U, also reduces to a linear equation
nor whether it is even solved explicitly in the one~dimensional case. It turns out that normalizing factors
for Volterra transformation operators themselves turn out in some sense to be Volterra. We will not
clarify this circumstance in more detail here and refer the reader to precise formulations in the text,

Thus, the procedure for solving the inverse problem solving for given scattering amplitude a set of
factorization problems (1) to determine the normalizing factors N{*). A weight operator Wy, is constructed
in terms of these data and characteristics of the discontinuous spectrum, if such exists, and then using the
Gel'fand— Levitan equation, the transformation operators U, are reconstructed, All the stages, in general,
" can be conceptualized for an arbitrary initial operator 8. Moreover if S is unitary, each of the operators

Hy=UHUT

will be self-adjoint. Additional necessary conditions, about which we spoke above, begin to play a role at
the next stage, when it is clarified that the operators Hy in fact are independent of v, This important state-
ment simultaneously serves for investigating the properties for the reconstructed operator H and for prov-
ing that the initial operator S is in fact the scattering operator for the pair H and H,., The tools for proving
the independence of Hy from y differ for n =1 and n =2, because of the difference between the range of
values of the variable y. When n=2, i.e,, when this set is connected, we can use differentiation with re-
spect to the parameter y. In the one-dimensional case it is necessary to use more artificial means,

We conclude this description of the tools for solving the inverse problem, since further detail re-
guires a more formal presentation, which will be presented in the text. We note only that, in our opinion,
abstract scattering theory can be further developed so that Volterra transformation operators and the
existence of separated factorizations of the form (1) of the scattering operator find a natural place within
its framework. Apparently the formulation of scattering theory due to Lax and Phillips [45] is the most
successful starting point for such a generalization, and a given causality condition will in a reasonable way
be the appropriate language.

Let us now indicate on the structure of the survey. Differences in the technique and elaboration of
the cases n =1 and n = 2 forced us to treat them separately. We will finally emphasize the analogies be~
tween the corresponding discussions and equations wherever possible,

The one~dimensional case is discussed in Chap, 1. A significant technical simplification for study-
ing the one-dimensional Schrdedinger operator lies in the existence of selected fundamental systems of
solutions of the correspondinding differential equation, All operator equations are suitably introduced and
justified proceeding on the basis of the well~known properties of these solutions. The description of these
properties is discussed in Sec, 1, which plays an auxiliary role. In Sec. 2 the fundamental statements of
scattering theory for a given concrete example are formulated and proved. Volterra transformation opera-
tors are introduced in Sec. 3 and the normalizing factors corresponding to them are obtained in Sec, 4,
Gel'fand— Levitan-type equations are formulated in the latter section, Section 5 treats the solvability of
these equation, A relation is analyzed there between transformation operators for y =1 and v =—1, The
general investigation of the inverse problem concludes here. The last Sec. 6 contains a description of an
explicit solution of the Gel'fand— Levitan equation for the particular case when the scattering amplitude is
a rational function of a parameter k.

Chapter 2 also treats one-dimensional problems, Here a generalization of the formalism developed
in Chap. 1 to the case of potentials v(x) having nonzero asymptotic as X ——« (Sec. 1) or to the case of an
operator of the form

H=(_10) 2+ (50 —5 )

which is a direct generalization of the Schriedinger operator (Sec. 2), is analyzed at an elementary level.
In the last section we will describe so-called trace identities, which relate certain functionals of the poten-
tial and scattering amplitude. These identities, through not a means for the direct solution of the inverse
problem, can indirectly lead to information on the potential according to known properties of the scatter-
ing amplitude, and conversely. Section4 describes anapplication of the inverse problem of scattering theory
to the solution of one-dimensional nonlinear evolutionary equations. The starting point of this application
was set forth in the important work of Kruskal et al. [42]. Then P. Lax [44], V. E. Zakharov and A. B.
Shabat [11], V. E. Zakharov and the author {10], and others further developed this subject. The inverse
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problem method of scattering theory for solving nonlinear equations currently draws ever greater aftention
and is rapidly developing. The region of its applicability is still far from clarified and we will consider in
the present survey only two characteristic examples,

In Chap. 3 we return to our fundamental theme and consider the inverse problem for the multidimen-
sional Schriedinger operator, For the sake of definiteness we will deal with the physically interesting
case n = 3, although all the discussions are trivially carried over to arbitrary n = 2. In the multidimen~
sional case no fundamental system of solutions nor proof procedure is available due to the far greater
eumbersomeness, The scope of the present survey does not allow us o present somewhat instructive
estimates needed to make all the constructions of Chap, 3 rigorous. We will therefore limit ourselves to
a presentation of only the formal scheme of these constructions. We leave it to the reader to complete the
algebraic framework of this scheme by appropriate analytic arguments,

In See, 1 we set forth the fundamentals of scattering theory for the three-dimensional Schrdedinger
operator., General concepts that are of assistance in research on Volterra transformation operators U,y
are described in Sec, 2. The construction of normed factors and the weight operator Wy arediscussed in
Secs.3and4. The description of the Gel'fand— Levitan operator and a scheme for studying the inverse prob-
lem are presented in Sec. 5, with which Chap. 3 concludes.

No special knowledge is required to read this survey. In particular. it can be read independently of
the preceding survey [25], since all the necessary informationon the Schridinger operator are enumerated
here once again, We hope that for some mathematicians this survey can serve as an introduction to scat~
tering theory, a branch of functional analysis and mathematical physics which is constantly expanding the
domain of its applications.

In concluding this introduction we note trends associated with the inverse problem of scattering the-
ory that are not indicated in this survey. These include: 1. works of B. M. Levitan and M, G. Gasymov,
M. G. Krein, and his students on canonical systems and Dirac-type systems on the semi-axis, These works
in terms of the formulation of the problem and methods relate to the problems associated with the radial
Schréedinger operator. We refer the reader to new studies [7, 18] for references to the literature given
there,

2. Works on inverse problems in terms of scattering data for fixed energy. By this problem is under-
stood the reconstruction of the potential v(r) in terms of a known set of asymptotic phases ny(|k|) for all
1=0,1, 2.... and fixed |k|. An operator-theoretic formulation of this problem is not at all evident and the
results obtained have yet to reach, in terms of elegance and completeness, the level attained in the spec-
tral formulation of the inverse problem. The most detailed presentation of well-known facts on this proh-
lem can be found in Loeffel [47].

3. Works of V. A. Marchenko and his students on the stability of the inverse problem, primarily for
the example of the radial Schrbedinger equation, The recent monograph of V. A, Marchenko [17] discusses
this subject,

We will use no unusual notation, Constants appearing in the limits are denoted by C. An explicit de-
pendence of these constants on parameters is indicated only if this is important. In numbered equations
the first digit indicates the number of the section and the second, the number of the equation. The number-
ing of the sections begins anew within each chapter. A reference toc an equation of a different chapter will
use a number made of three digits of the type (I1.3.14), whose meaning is self-evident,

CHAPTER 1
ONE-DIMENSIONAL SCHROEDINGER OPERATOR

In this chapter we will consider the Schréedinger operator

dz
H= -—'E + v (.x),
where the potential v(x) is assumed to be a real measureable function satisfying the condition

oo

§ (1) o (x)] dix < oo, (P)

-0
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Here the operator H defined on the dense set D=W?Z(R) inthe Hilbert space $=L,(R) is a self-adjoint
operator. We will introduce and characterize the scattering data corresponding to this operator and de-
scribe the proeedure for solving the inverse problem for reconstructing the potential v(x) in terms of
these data.

1. Fundamental System of Solutions of Schrdedinger Equation

This section is auxiliary. Here we will describe two fundamental systems of solutions of the Schrée-
dinger equation

Hy= — - 4(x) + 0 () § (x)= k29 (). @1

Henceforth k, as a rule, will be a real number, but sometimes we will assume it to be a complex number,
particularly when specified.

Condition (P) means that v(x) effectively vanishes as |[x|— o0, so that we may naturally assume that
every solution of Eg. (1.1) coincides at infinity with some seolution of the equation

d!
Hop= — 7 ¢ (x) =k (x),
i.e., a linear combination of exponents
folx, R)y=e'5 folx, —k)=g ik,

More rigorously, we may prove that there exist solutions f;(x, k) and f,(x, k) of Eq. (1.1) which have the
asymptotic

J1(x% Ry=Ffo(x, B)+o(l), x-> o0, (1.2)

folx, BY=fo(x, —E)+o(l), x—>—o0. 1.3)

The proof is based on the fact that the differential equation (1,1) with the boundary conditions (1.2)
and (1.3) is equivalent to the equations

Frlx, By=eitx 4 LGI (x—y, &) 0(y) f1(y, k) dy; .4)
Falx, B)=emins 4 _LGz (x—Y, k) v (y) /2 (3, B) dy; (1.5)

where

sin kx

Gy (x, B)=—0(— ) Gy (x, k)=0(x) 2%

k

and 6(x) is the Heaviside function

B(x)=1, x>0; 68(x)=0, x<0.

These equations are Volterra-type integral equations, so that the method of successive approxima-
tions always converges for them. Here the parameter k can have complex values from the upper half-
plane. As a result of analyzing the successive approximations we will prove that the solutions f(x, k) and
f,(x, k) exist and for fixed x are analytic functions of k when Im k> 0 and are continuous when Im k = 0,
Here we have the bounds for them

e—lm

Rx @
11, ) — e < € S S 1+ IyDlo (s (L.6)
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o, B)—e™ < S (L+IyDlo (9)dy- wn

Such assertions were first obtained by Levinson [46].

1t follows from the bound of Eq. (1.6) on the basis of the Jordan lemma that we have for the solution
f,(x, k) the integral representation

filx, Ry=ei 4 { A (x, y) et dy, 1.8)

where the kernel A,(x, y) is quadratically integrable with respect to y for any fixed x, Similarly f(x, k)
can be represented in the form

(%, k)=e‘ik*+_S& Ay (x, y)e™dy, (1.9)

where the kernel A,(x, y) also is quadratically integrable with respect to y. Such integral representations
for solving the Schriedinger equation were introduced by B. Ya. Levin [15].

The detailed properties of the kernels Aj(x, y) can be obtained on the basis of an investigation into
integral equations equivalent to the corresponding equations (1.4) and (1.5) for the solutions f;(x, k} and
f(x, k)

o » T
A =5 (v@dz— { at { devit—2) At~ t+2x (1.10)
2 2
ity x+y
2 2 0
Ay(x, y)=-;— g v(2)dz— g dt S dzo(t—2) Ay (t—2, t+2). (1.11)
— - i
T

Such equations were first derived by Z. S. Agranovich and V. A, Marchenko [1], Agranovich and
Marchenko proved the convergence of the method of successive approximations for these equations and
obtained bounds on the solutions, To write the bounds it is suitable to introduce the monotone functions

) =[loldy; &)= § ooy

Bounds on the kernels A;(x, y) and A,(x, y) have the form

A I <Ch (S5 e, v < Ca(55Y). (1.12)

Further it is possible to prove using these equations the existence of the first derivatives of A (x, y)
and A,(x, y) and to obtain bounds on them. For example,

2+ do(0)<cn i (52)
I s (5, ) — 5 v (S| < Cra ) 1 (254

i 5} 9
and similar bounds hold for % Ai{x, y) and % Ay (x, ¥).

Finally, it is evident from the equations that

1

A 9=5lomay A =5 (2may,

L 1

.
-0
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so that
24 A (x, x)=v(x)=2 2
—2 A 1% X)=v(x)=2 3, Ay (x, x).

The pairs fi(x, k), f1(x, —k)=/F1(x, k) and f,(x, k), fo(x, —k)=Fs(x, k) for real k = 0 are fundamen-
tal systems of solutions of the fundamental equation (1.1). In fact, since the Wronskian {f,, 7i}=f1f1— fi /i
is independent of x, it coincides with its values as x— «, which may be caleulated using the asymptotic for
the solution f;(x, k) and its derivative. It can be proved that as x — «

fi(x, B)=ike™* +o(1),
so that

106, B, So(w, — RN =lm (1 (x, ), fi(x, —R) =
— ikelksg ibr _ pitx (_ jB) ¢ iRF =2k, (1.13)
We will see that when k= 0, the Wronskian is nonzero and the solutions f(x, k) and f,(x, —k) are linearly
independent, Similarly
(o, B), folx, —R)y=—2ik, (1.14)
so that f,(x, k) and £,(x, —k) are also linearly independent when k = 0.
Any solution of Eq. {1.1) can be represented in the form of a linear combination of the solutions f;(x,

k) and f;{x, ~k) or {,(x, k) and f,(x, —k). In partieular, we have

Falx, B)=71(x, B)en k) + F16x, —R)an (R), (1.15)
Fi(xs BY=folx, R)en (B)+ flx, — k) o (B). (1.16)

Substituting Eq. (1.15) for I,(x, k) in Eq. (1.16) and performing the same operation with f;(x, k) we find that
the following equations must hold in Eqgs, (1.15) and (1.16) are to be consistent:

C11 (R) Cog (R) + €10 (— &) Cg1 () =Coq (&) €11 (R) + €1 (— &) C1o(B) =1,

13 (k) €2 () + 1y (— k) e () =31 (6) €11 (£) -+ Caa (— B) crafle) =0, (.1n

We may express the coefficients cij(k), i, j =1, 2 in terms of the Wronskians of the solutions f;(x, k)
and f,(x, k), In view of Egs. (1.13) and (1.14) and also in view of the self-evident equations

U1(xs &), fr(x, RY=1{f2(x, k), fa(x, k)}=0,

we find
Ciz (k) = (k) =g L1 (% ), fol, B)N: L.18)
o (B)= gy (2%, &), f1(x, — ) (1.19)
e th) =g (f2 (2, —B), fi(x, B)). (1.20)

Comparing Eqs. (1.19) and (1.20) we find that
Cry k)= —0C9 (— k),

which, incidentally also follows from Eq. (1.17) since cyy(k) = cyy(k). These equations imply also that

o1z (R)? =1+ lens (R)>= 1+ [ens (R
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We will see that the four coefficients cjj(k) are in fact expressed in terms of two complex-valued
functions

a(k)=c1 (R); b (R)=cn(k),
satisfying the condition
la (k)2 =1+ b (k). (1.21)
Here
ey (B)=a(k); (k)= —b(—E).

We will henceforth refer to these functions as conversion factors.

To derive further properties of the functions a(k) and b(k) we express them in terms of the kernel
Ay(x, y). For this purpose we note that Eq. (1.5) implies that f,(x, k) as x— « has the asymptotic

Salx, By=eTtret oo e § o (y) £y, R)dy~

1o
—op € S e®v(y) f2(y, k)dy+o(l).
Comparing this equation with the equation

So(x, ky=e®*b (k)4 e *gq (k) -+ o(l),

which follows from Eq. (1.15) if we take into account definition (1,2) of the solutions fi(x, k} we obtain for
a(k) and b(k) the equations

i ¢ -
atky=1—g \ e**v(x) fo(x, k)dx, (1.22)

b(k)=gy § €0 (x) £ (%0 B)dx. (1.23)

We now replace f,(x, k) by the kernel A,(x, y) using Eq. (1.9). We find

1 v 1 o
a(ky=1—5 S fo(x)dx_—mg 1L, (x) e24+d x,
S 3

where
0, (x)=2 _civ(Y) Ay (¥, y—2x)dy
and
b (k) =g °§ I, (x) e 2iexd x,
where

o]

1L (x) = (x) + 2 0() Ay (y, 22— y)dy.

X
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Bounds on II;(x) and I,(x) follow from the bounds on A,(x, y):

s <c(s ()4 (5)
I ()| < o ()] + C&y (%) &5 (%),

which imply that the function Il,(x) is absolutely integrable on the semi-axis 0<x < oo, while Il;(x) is ab-
solutely integrable on the entire axis, Thus, we have found for the conversion factors a(k) and b(k) an ex-
pression in the form of a Fourier transform of absolutely integrable functions. In particular, it follows
from the obtained representations that for large k we have for these coefficients the asymptotic

ow=o(3)

a()=1+5% +o(g) 9= {vmax (1.24)

-0

Moreover, we see that a(k) is the limiting value on the real axis of a function analytic and bounded
in the half-plane Im k> 0 and that the asymptotic of Eqs. (1.24) holds for all k with Im k = 0,

We will eonsider the decomposition of the zeroes of a(k) on the complex plane. Because of Egs,
(1.21), a(k) does not vanish on the real axis, Further, it follows from the asymptotic of Eq. (1.24) that
a(k) is also nonzero for sufficiently large |ki. I therefore follows that a(k) can have only afinite number
of zeroes, It follows from the representation of Eq. (1.18) for a(k) by means of the Wrongkian of the solu-
tions fi(x, k) and f,(x, k) that if a(k;) = 0, these solutions are linearly dependent for k =k, i.e.,

Jilx, ko)=cfy(x, k). (1.25)

We note that when Imk >0 the solution f;(x, k) exponentially decreases as X — « while the solutien f,(x, k)
behaves likewise as x— «©. When k = ky we may conclude on the basis of Eq. (1.25) that Eq. (1.I) has a
solution that is quadratically integrable on the entire axis, The formal self-conjugacy of the equation im-
plies that this is possible only for real ki, i.e,, for purely imaginary k.

We have thus found that e(k) can have only a finite number of purely imaginary zeroes. We will
prove that these zeroes are simple. For this purpose we obtzin an expression for a(k,) = (d/dk)a (k) k=kg-
We will proceed on the basis of Eq. (1.1) for {,(x, k) and f,(x, k) and the equation

b =0 () §—2k0

for f'l(x, k) and fg(x, k). We obtain by the standard method the identities

1
Fi(x, k) fa4x, k) dx,

A

U165 0), falx, 0D, =2k

lemiy

) (1.26)
U (5 ), fa (%, B o= — 26\ 100, B) Fo b, R) dx.
On the other hand, using Eq. (1.18) we find
& Qika (k) =2ia (k) + 2ika (k) =
.27

={fy (%, k), fa(x, R} + Uf1(x, &), fa(x, B)).

Suppose now that k coincides with one of the zeroes of a(k}, which we again denote by k;. When k = kg, the
Wronskians in Egs. (1,26) taken for x = + A vanish and the integrals in the right sides of these equations
converge in limif as A — ., Comparing Egs. (1.26) and (1.27) and recalling that a(k,) = 0, we find

oo

ia (k)= f1(x, ko) fa (x, o) dx. (L.28)

-0
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The solutions f,(x, k) and f,(x, k) for imaginary k are real. The integral in the right side of Eq. (1.28) does
not vanish because of Eq. (1.25), so that a(ky) = 0 and, consequently the zeroes of a(k) are simple, These
zeroes will henceforth be denoted by in;,where I =1,..., N. With this we conclude the study of the prop-
erties of the conversion factors a(k) and b(k).

In concluding this section we present an expression for Green's fun*ction of Eq. (1.1), Suppose A is
a complex parameter and let us select a branch for V% , such that ImV'X > 0. The kernel

R(X,)’; l)=_—2.l—]7x_;(ﬁ)—‘fl (st}T)f2(ys -I/X)’ )’<x:
R(x, y; )=R(y, x; 1)

for fixed x and y is an analytic function of A on the plane with section on the positive part of the real axis
and with simple poles at the points A =—n§. If A does not coincide with these points and if X = 0, we have
this kernel the bounds

IR(-’C, v )‘)J <Ce—]m Vi lx-yl.
Here R{x, y; A), as follows from Eq. (1.18), is a solution of the equation
d!
— @ RE N+ V()R (x,y; H—IR (x, y; =3 (x—y).

We may prove using these facts that the integral operator R(\) with kernel R(x, y; 1) is the resolvent (H—
AD)~! of the self-adjoint operator H. Moreover, we may use the properties of this kernel to define the
operator H itself, which incidentally we have not done.

Let us now turn our attention to the fact that the function a (V1) is in the denominator of the resolvent
R(x, y; A) and has zeroes at the eigenvalues of H, In this it reminds us of the characteristic determinant
det(H — AI). We may verify that such an interpretation of it is in fact justified. For example, we have the
equation

na (VL) = —Tr (R () — Ry (),

where Ry(\) is the resolvent of the operator Hy. Subtraction by Ry(\) plays the role of a required regular-
ization for the definition of det(H — A ).

2., Scattering Theory

Knowledge of the fundamental system of solutions for the Schrdedinger equation (1,1) allows us to il-
lustrate in a simple way, using the operator H as an example, the general statements of scattering theory
described in the introduction. We will prove how the wave operators U for the pair of operators H and
H, defined in $=L,(R} by the equation

dl
W!

dl
H= —zat v (x); Hy=—

can be expressed in terms of appropriate solutions of the stationary Schriedinger equation (1.1). All the
properties of the wave operators are subsequently obtained as simple corollaries of this relation,

We begin with a deseription of the diagonal representation for Hy. We consider the space %, con-
sisting of pairs of functions

o) — (#1V)
<0 =(5 )
quadratically integrable on the semi-axis 0< X< oo and having the scalar product

(@, ‘?,)o=g (o1 (k)m + 9, (X)cm)iﬂ—

p 2V

A diagonal representation for Hy can be realized in $,. The corresponding isomorphism $-»$, is pro-
vided by the Fourier transformation

P(x)>Tp=2 (M),
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where

P ()‘)——‘75—-8 *{J(x)e—thxdx,?z(l) —V.-:— S qa(x)e”/ﬂdx.

The operator T, is unitary:
ToTo=1I; TTo=I,

The operator Hy under the isomorphism T, is carried over into an operator for multiplication by the in-
dependent variable A,

Hop ()22 Q).

We now consider two sets of solutions of the Schréedinger equation:
1
uf® (x, B) = s (e, B 0P (x, k)—-a(k) — f1 (%, B); @.1)

= (x, k) =u§D (x, )y ud” (x, B)=4P (%, ). (2.2)

For the sake of definiteness, k>0 everywhere, The table of the asymptoties of these solutions as |x| - o
has the form

ufP (x, B)=sy (k) €= f-0 (1) ==¢ 7+ 15, (R)etr= 1o (1),
aE®) (5, R) =3 (R) €714 + €145 4-0 (1) = 3 (8) 40 (1)
1§ (x, B)=e5 4 51z (B) €% + 0 (1) =, (k) e"1%5 4 0 (1),
uf (5, B)= 5 (8) 685 4 0 1) =5, (8) 05 e85 40 (1)

The left eolumn here being referred to x— — o0, and the right column to x— co. The coeffiecients 8ij k)
and su(k) occurring in this table are expressed in the following way in terms of the conversion factors
a(k) and b(k):

1 b ik _b(—h)
s11 (B)= 7oy Slz(k)=£§ Sy (k)= (a(k)’ Sz (k) = a(k)

$11 (B) =53 (B); Stz (k)=531 (R); Syi(k)= 513 (R): S, (k)="S1,(k).

These properties follow from relationships of the form of Eqs. (1.15) and (1.16) and the asymptotics of Egs.
(1.2) and (1.3) for the solutions f;(x, k) and f,(x, k).

The functions s4(k) and s;,(k) have meaning for all k = 0, since a(k) does not vanish on the real axis.
We will prove that if |2 (0)]==o00, the coefficients of s;; and s, equally have meaning up to k = 0. In this
case, evidently, s4;(0) = 0 and only s,,(k) is to be considered. If is evident from Egq, (1.22) that |a (k)] oo,
if

lim 2i%a (k) =f=— S 2 (x) f5 (%, 0) dx 0.

—

Here, as is evident from Eq. (1.23),

bR —1lim 2ikb (R}

a(k)” 4.9 M Sta ) —1

hm Si2 (k)—llm

—=b
B

so that sy,(k) is defined by continuity up to k = 0 and 8,,(0) =—1, We may similarly prove that in this case
8,1(0) =—1 and s,,(0) = 0. For larger |k,

S11 (R) =S3, () =1+ O\/l_;l); s12 (k) =0 (é), Sa1 (k)=0(|l'k_1)‘
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We can naturally continue sjj(k) to the semi-axis k<0 by the equation

s {—k)=s;; (k).
We may easily verify based on the property of Eq. (1.21) that the matrices
S (k)=ls;; (k); 7 (&) =]ls;, (k)|
are inverses of each other, as is indicated by the notation, and are unit matrices, so that for example
S* (k) S (B)=S8 (k) S* (k)=/,
or, in more detail,

[$11[2 + | a2 = 1 = 5f2 + [$15[2,
S11 (k) So1 (— )+ $12 () S29 (— B) =0 (2.3)

we will see, in particular, that for all k=0,

Is1z (B)| < 15 [sr €R) < 1 : (2.4)

and we recall that if {s(,(0)] =1, then
S12 (0 =355 (O)=—1. (2.5)

Finally, a comparison of the asymptotics of the set of solutions u§+)(x, k) and u%')(x, k) implies the linear
relation

2 (x, B)y=S8 (k) ul=) (x, k), (2.6)

where natural vector notation is used.

We note that the set of solutions u?)(x, k) are naturally interpreted in their asymptotic in terms of a

radiation principle. However. we will not use this fact anywhere below.

+
The solutions u§ )(x, k) constitute a complete orthonormalized set of eigenfunctions of the continuous
spectrum of the operator H, We may verify this fact by calculating the jumps inthe resolvent R{x, y; 2}
through a seetion in the positive part of the real axis, which corresponds to the continuous spectrum of H.

We have the equation

R(x, yi k24+i0)—R(x, y; B2—i0)=
— o G D (v, B+ HD (x5, DDy, £),

which quite simply verifies the direct substitution of Egs. (2.1) and {2.2) for the solutions «{¥ {(x, £} and
u{*) (x, k) in terms of f;(x, k) and f,(X, k) in the right side. The completeness equation which thereby fol~
lows has the form

1 by S S —
Q—S (@@, RYuf) (v, b+ 2D G, Ryuf® (v, k) db +

N
+ 2 2, (X) 1y () =3 (x— ).

I=1
Here the u;(x), I =1,..., N are orthonormalized eigenfunctions of the discontinuous spectrum of H. The
orthogonality relation

1 —_—
o § a® (x, BAD 0, Ddx=3p(x—y)

—00
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can be derived using the identity

F(x B) (5 D= o= U (5, ) F (5, D)),

which is true for arbitrary solutions ofthe Schréedinger Eq. (1.1), the asymptotic as |x|— co of the solu-
tions u{*)(x, k), and the unitary condition on S(k).

We construct using the solutions #{® (x, &) two maps T, :9—> £, using the equations

P> Tag=ot 0 ¢ W)=z § 904 (x, V) ax.

The completeness and orthogonality relations are written in terms of these operators as follows:
T\T ,=I—P; T.Ty =/,

Here P is a projector into § on the proper subspace of H spanned by its eigenvectors uy, I =1,..., N,

We will now prove that the wave vectors can be introduced by the equations
U =TT 2.7)
For the proof it is sufficient to demonstrate that for any vector ¢(A\)gH, in a dense set the vector
()=~ T —e TGy
vanishes in norm in § as £-» + oo0. This is in turn easy to verify.A In faet, recalling the definition of the

operators T, and Ty, we can write the functions x®¥ (x, £} representing the vectors yx(t}(¢), in the form

oo

1 e e e
% (x, t)=7—2'g;0 for (k) (D Gy B — e%¥) +

+ 0 (%) (FD (&, R)— e7i#9)] e,

The functions ¢,(k? and ¢,(k% can be considered as continuous and finite. By the Riemann— Lebesgue lem-
ma the contribution to the integral

oo

I @lp=§ [ (e, Ddx

—00

from an arbitrary finite interval |x|<A can be arbitrarily small for sufficiently large |t|. Further, the
contribution to the integral within the interval — oo < x< —A and A< x < 0 from terms of type o(1) in the
asymptotic as |[X| — = of the functions u§i>(x, k) can be carried out for sufficiently large A uniformly in ar-
bitrarily small t. For this purpose we need only use bounds of the type of Egs. (1.6) and (1.7). The remain~
ing integrals have the form

o |B 2
72 0=\ NG ®) e ™ ¥ ar| ax
Al
and
—A{p 2
752 0= § N6 @ e ™ e ™ar) dx,
—_C 1O

where [«, 8] is a finite interval on the semi~axis 0 < k < « and G(k) is a continuous function that vanishes
at its endpoints, The assertion according to which
JB I 50, t> 00y ST, I 50, f> — 0
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whose proof we leave to the reader, concludes the proof with

I () =0, £~ 4 o0,

In fact, we have not only proved the coinciding of Eq. (2.7), but have also given an independent proof
for the existence of wave operators ul), Asymptotic completeness, i.e., the relation

UBR @ _p, (2.8)

for which there exists in the abstract theory a complex proof, in our case immediately follows from the
completeness condition on the functions al (X, k). The isometricity condition

7N U(:t)=[,

which is trivially proved inthe abstract theory is equivalent to the orthogonality of the functions e (x, k)
and can be used for deriving it.

Equation (2.6) can now be written in the form
U = ) S,
where the operator S is defined by the equation
8§=T38T,,

and the operator S is defined in 9, by the matrix S(k),

\

O/P)_ =\ 7Ps (A)
S(5)=S VR[5
Evidently, S commutes with Hy,

[S, Hy]=O0.

We have thus obtained an expression for the scattering operator Sinthe given case. The matrix S(k) de-~
fining it, which yields a representation of it in a diagonal realization of H,, is said to be the S-matrix, We
say that sy;(k) and sy,(k) are said to be the left and right reflection coefficients, respectively, and the coef-
ficient s;; = 8,5, the transmission coefficient in accordance with the interpretation of its matrix elements
sij(k) in the spirit of the radiation principle.

These properties of the S-matrix allow us to reconstruct it if and only if the reflection coefficient
is given. In fact, suppose Syy(k) is given. We may determine from the unitarity condition of Eq. (2.3) the
modulus of the transmission coefficient

[s1 (B)] = (1 —]s12 (B)D)"".

The argument of this coefficient (and thus the entire coefficient) is reconstructed in terms of its modulus
based on the analyticity of the coefficient in the upper half-plane. We have the explicit formulas

oo

N
s (k)=exp{2‘%i { e (m) dz} [T tme >0
I=1

k—ivy
—oa

s (B)=limsy, (& +ic), Im k=0, (2.9)

The coefficient s,;(k) can now be constructed on the basis of the unitarity conditions:

sar () = — 22 = 0. (2.10)
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This procedure remains meaningful for any functions s;,(k) that satisfies the conditions of Egs, (2.4) and
(2.5) and which possesses the asymptotic

512 (£)=0 (i) (2.11)

The conditions of Egs. (2.4) and (2.5) for the resulting s,;(k) also hold and for large |k| we have the asymp-~
totic

s"(k)=1+0(l-£—]): sp (k):o(llkl). (2.12)

We note that the analyticity of the transmission coefficient is also the additional necessary condition we
spoke of in the introduction in discussing the overdeterminacy of the inverse problem.

Further properties of the Fourier transform of the coefficients sy (k), s,;(k), and syy(k) will be found
in the next section,

We conclude here with the description of the fundamental objects of scattering theory for the pair of
operators H and H; and pass to the inverse problem, the problem of reconstructing an operator H, i.e., the
potential v(x), in terms of the matrix S(k), i.e., in fact in terms of one of the reflection coefficients,

3. Volterra Transformation Operators

As already noted in the introduction, transformation operators constitute the basis of the technique
for solving the inverse problem, i.e., solution of the equation

HU=UHO,
which have the structure of Volterra operators
U () =4(x) + § A1 (2, 9) 0 (9) dys (3.1)
Uz (x) =4 (x) +§ Az (x, ) ¢ (9)dy- (3.2)

These operators we have in fact already introduced. Indeed we will define operators V;, i =1, 2, operat-
ing from $ into §, by the equations

$>Vig=019 (l)=1712'—;§ $(%) 1 (e, —VX) dx;
1 re —
w0 =775 | #0071 (VD) dx;
b= Vot o =755 | $08) fo G, VT) dxs
1 . —
w0=75 | 400 fo (6, —VD)dx.

Then the operators
UI=V:T0, i'=11 29 (3.3)

are defined by Egs. (3.1) and (3.2), where the kernels A;j(x, y) are defined in Sec. 1 by Eqs. (1.8) and (1.9),

Let us discuss how the completeness condition of Eq. {2.8) appears in terms of the operators U; and
U,. For this purpose we first calculate the normalizing factors, i.e., the operators N§i), i=1, 2, realizing
the equation
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U=UBNP, i=1,2. 3.4
As a consequence of the commutivity condition

[HO’ Ni(i)] -"=O,

which these operators must satisfy, they can be defined by the matrices Nf:)(k), similar to how the opera-
tor S is defined by the matrix S(k), The definition of Egs. (2.1) and (2.2) imply that

Fi=MP (R)a'; =M (k) 4, (3.5)
*
where f, £, u ( are the collzn}ns of the solutions fj(x, —k), fi(x, k), L(x, k), §,(x, k), ug ), uéi), respec-
tively, while the matrices M; (k) have the form

M(+)(k) (1 —b(k)\ Mf—)(k) ( a{—k) )

a (k)i B(—k) 1 (3.6)
) a(k) Oy, (=) 15k :
M (k)‘"( —B) 1)’ Mz (k)“_"(o a(-la))'

it therefore follows from the definitions of Egs. (2.7), (3.3), and (3.4) that the normalizing factors Ni(i) are
expressed by the equations

N =TNIT,,
where the operators ﬁ?) operate in §,as matrix-multiplication operators:
NI (By=M[* (k)*.
Comparing Eqgs. (2.8) and (3.5), we also see that the matrices Mgi)(k) and Mz(i)(k) factor the matrix S(k):
S (R)=MP " (&) M7 (k)= M) M5 (k). (3.7)

The factorization condition and the triagonal structure of the matrices M(i)(k), apparent in the explicit
equations (3.6),yields a unique determination of them in terms of a given matrix S(k). In fact, if the first
equation of Eqs. (3.7) is rewritten in the form

1 Mya\fS15 S12\__ {5y O

(0 m22)(521 522)_“(17121 1)’
we obtain a linear system of equations for determining the coefficients my;, my,, m,;, and m,, of the ma~-
trices Mi( *) and M( ) which yields a unique solution, The second equation of Egs. (3.7) may be similarly
treated. Equatlons (3.6) yield the desired result. In other words a priori data on the structure of the

normalizing factors corresponding to the transformation operators U; and U, uniquely determines them in
terms of a given scattering operator S.

The operators Uj, i =1, 2, like the wave operators U(i), have the proper subspace H corresponding
to its absolutely continuous spectrum as range of values, We will show how to expand the domain of defini~
tion of the operators by leaving the space $, so that their range of values subsequently coincides with §.
The discussion is based on the fact that the eigenfunctions of the discontinuous spectrum u;{x) of H generat-
ing the defect subspace for the operators U are proportional to the solution fj(x, k) when k = iw;, Thus,

(=1 (9)-+ [ Ar (e, 9020 () dy= U (3.8)

() =x® () + S Ay (%, )12 ) dy=Upx?, (3.9)

where

O]

1 (m(l))llz —HLE, @ __ (m[(z))x/a emx

I
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and then méi) are normalizing factors,

oo -1
mf"==(f(f¢(x, zx,»wx) . i=12 (3.10)

We note that Eq, (1.28) implies that

i
a (ing)

mPmP =1 1= =i Res Sygle—i,r (3.11)

We now consider the spaces

$,=90%, 3.12)

where the finite-dimensional spaces %, are spanned by the function xﬁi). The scalar product in B, is in-
duced by the equation

(e—,‘lx, e_uix)1=8”; (e“‘x, euix)z—_—B”.

Equations (3.8) and (3.9) extend the operators U; and U, to the spaces $; and $, , respectively, their
range of values then coinciding with $.

The completeness equation (2.8) in terms of these extended operators then is
UWYi=I. ' (3.13)

The weight operators Wj operate in the spaces £; and the diecomposition of Eq. (3.12) reduces them, The
operators Wj in the subspaces B, are given in the bases {e u’x} by the diagonal matrices

W/i{%i={m}i>, e, mBy, i=1,2,
The operators W; in the subspace $ are given by the equation
W, = NI NS T30, T,

We use Eq. {3.6) to express these operators in terms of the matrix elements of S(k), We have on the
basis of the unitarity condition,

- - U 5. (R
Wi () =12 ) M =, | @)
and similarly

W, (8)=(ME® (&) A1) = L TP).

Thus, the matrices Wj(k) are expressed in terms of only one of the reflection coefficients, Carrying out
the Fourier transformation necessary for the final calculation of the Wj, we find that they are expressed
in the form

W=l +2, i=1,2,
where the Q; are integral operators with kernels depending on the sum of the arguments

2 (%, )= (x + ),

where

Q (x)=2 mMe ™"+ F(x); Q(x)=2mPe"" + Fy(x), (3.14)
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where

¢ . e i}
Fi(x) =g _SwS” (&) eitsdk,  Fy(x)=ge ~Smsﬂ (k) ek, (3.15)

The properties of Eqs, (2,11) and (2.12) imply that the functions Q,(x) and Q,(x) are quadratically in-
tegrable on the intervals a<x< o0 and — o0 < x< b, respectively, for finite @ and b. More detailed in-
formation on these kernels will be found in the next section,

4, Gel'fand — Levitan Equations

The heuristic considerations presented in the introduction demonstrate that completeness conditions
reduce to linear equations for the kernels A(x, y) and A,(x, y) for the transformation operators U; and U,,

A )+ )+ A )2 4 de=0; x<y, (@.1)
Alx )2 4N+ § (0% @+ dz=0 x>y, (4.2)

-—C0

These equations were first derived by Kay and Moses {40]. They coincide in out-ward appearance with the
equation of V. A, Marchenko [16] from the theory of the radial Schrdedinger operator for I = 0, One change
consists in the range of variation of the variables becoming the entire axis. We will, however, call them
the Gel'fand— Levitan equations, since their operator-theoretic content is similar to that for the equations
introdueed by I. M. Gel'fand and B. M. Levitan in the theory of the inverse Sturm— Liouville inverse spec-
tral problem. To strictly derive these equations we must investigated the operators U*~! operating from
£, into § or replace operator-theoretic concepts by more elementary concepts. One variant of these dis~
cussions conceptually similar to [1] and carried out explicitly in [23, 26] will be set forth below,

We will use the equations
ul (x! k)=S12(k)f1 (x, k)+fl (xy —k)9 (4.3)

ty (0, k) =521 () f2 (%, k) + f2 (X, — ), (4.4)

which constitute a variant of Egs. (1.15) and (1.16), We omit here the index (+) in ui(+)(x, k), since the func-
tions uiH(x, k) will no longer be used.

We know that the functions f(x, k) and f,(x, k) are analytic and bounded in the upper half-plane and
are bounded there

fila et =140( 5k Fale R =1+0(i), (4.5)

where O( l—llﬂ) in general depends on x. The functions u(x, k) and u,(x, k) are also analytic in the upper

half-plane except at the points k = ing,I=1,..., N, where they have together with 1/a(k) simple poles, The

corresponding residues are simply associated with the values of the functions fi(x, k) and f,(x, k) at these
points, For example

Res u; (%, k) [s=in,;==Res syy (k) 1k-=tx,fz (x,iny) = — fe (2, i%0) =imM f1(x, iv), {4.8)
—i § (o ixg) fa Cxy img) dx

where m?) is defined in Eq. (3.10), Similarly,
Res #y (X, B) fomix, = im™ fy (x, ix;).

At large |k| the functions u;(x, k) have the asymptotic
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2y (x, k) s =1 +O(117|); y (x, ) eibr = 1 +0( a8 ) 4.7)

where O(Wli'!) may also depend on X nonuniformly.

Functions with only a single number occur in each row in Egs. (4.3) and (4.4) and both equations are
completely identical to within the substitutions 1+2 and e?**e¢™*r, In each of them two functions f(x, k) and
u(x, k) possessing definite analytic properties on the complex plane are related on the real axis in ferms of
the function s(k) given only for Imk = 0, It turns out that we can reconstruct on the basis of these equa-
tions both functions f(x, k) and u(x, k) in terms of given s(k).

For this purpose we pass to the Fourier transformation participating in these equations of the func-
tions. The Fourier transformations for f;(x, k), f,(x, k), s45(k), and s,;(k) have already been used many
times above [cf. Eqgs. (1.8), (1.9), and (3.15)]. Suppose

o

w (x, k)=e e+ § By (x,y) ey, (4.8)

Based on the analyticity properties of u;(x, k) described above,

N

By (x, y)=i 2 Res 2y (X, k) |min,e” "t =
i=1

N )
= —-2 m}l)(e""‘x + S A (x, 2) e‘“lzdz) e, x <y, 4.9)

X

By the convolution theorem, Eq. (4.3) takes the form, following a Fourier transformation,

o]

Fis+9) + § Ai(x,2) Fi@+y)dz -+ Ay (x,9)=B; (x, ) (4.10)

—00

and when x <y we arrive at Eq. (4.1) on the basis of Eq. (4.9). Equation (4.2) is similarly derived.

The discussions we have presented on the basis of Egs. (4.3) and (4.4) together with analyticity-type
conditions occurring in them for functions of the form of Eqs. (4.1) and (4.2) can be reversed. More pre-
cisely, suppose A (X, y) is a solution of Eq. (4.1), such that the function f;(x, y) analytic for Im k > 0 con-
structed in terms of it by Eq. (1.8) satisfies the condition of Eq. (4.5). We consider the kernel B(x, y)
defined by Eq. (4.10) and construct using it a function u,(x, k) by Eq. (4.8). Carrying out a Fourier trans-
formation, we find that f;(x, k) and u,(x, k) are related by an equation of the form Eq. (4.3), so that, in par-
ticular uy(x, k) when Imk = 0 satisfies the condition of Eq. (4.7), Equation (4,1) implies that Eq. (4.9) is
ture for By(x, y) when x<y, so that uy(x, k) has an analytic continuation into the upper half-plane Imk> 0
with poles at the points inj, while Eq. (4.6) holds for the corresponding residues. The proof of this equiv-
alence concludes with this fact. In the next section we will study the solvability of the Gel'fand— Levitan
equation and will formulate more precisely the corresponding assertion for the existence and uniqueness
of a pair of functions u(x, k) and f(x, k) that satisfy such analyticity conditions and are related by an equa-
tion of the type of Eq. (4.3).

In concluding this section we will use the Gel'fand— Levitan equation to refine the properties of the
reflection coefficients, that is, we will study more precisely the behavior of the functions Fy(t) and F,(t),
about which we so far only know are quadratically integrable. We consider for the sake of definiteness the
function Fy(f). We rewrite Eq. (4.1), setting x = y:

>

2, (2) + Ay (x, x)+ 2§ A (x, 2y — %) 2, (2y) dy =0, (4.11)

X

and consider this equation as the function for Q(2y). This is a Volterra-type equation and the method of
successive approximations always eonverges for it. We obtain based on the bound of Eq. (1.12) for the
kernel A(x, y) a bound for 2(2x),
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2, (2x) < C (x) & (x)

Here and below we denote by C(x) a monotonically nondecreasing function bounded as x — « and, in general,
increasing as x ——, We conclude as a consequence of the differentiability of A(x, y) that Q(x) is also
differentiable and using Eq. (4.11), we find the bound

d 1 .
|,;91 (2x)_—2—v(x)|<0(x)¢? (x).
We can similarly prove using Eq. (4.2) the differentiability of Q,(x) and find the bounds

12:@AI< D6 | 7,29+ 79| <D ().

Here and below the function D(x) is a monotonically nondecreasing function bounded as x ——« and increas-
ing, in general, as x — o,

The resulting estimates and the properties (P) of the potential imply that

oo

Ja+i| g om|ax<cC@, (4.12)
b
o)) %Qz(a)ldx<D(b). (4.13)

=00

The functions Fy(x) and F,(x) differ from Q,(x) and Q,(x) by a continuous term with decreases as
x —» and x ——=, respectively, Consequently, inequalities of the type of Egs, (4.12) and (4.13) are true
also for Fy(x) and Fy(x).

We will see that the functions (% Fi(x) and E?: F,y(x) behave similar to v{x) as x— o0 and x-— — oo,
respectively., If v(x} is differentiable, it can be proved using Egs. (1.10), (1.11), and (4,11} that this analogy
extends also to the succeeding derivatives of Q,(x) and Q,(x).

5, Investigation of Inverse Problem

In the preceding sections we explained how the scattering matrix S(k) corresponding to a potential
v(x) satisfying property (P) possesses the properties:

1, Unitarity:

Sugm + 321322 =0;
IS0l 8152 = 1 =851 + {53,
$16(0)=385 0)=—1, if s(O)=0.
2, Realness:
s, (—k)y=s,,; (k);
3. Symmetry:
S11 (B) =Sy, (k);
4, Asymptotic behavior:
— 1 - JU— ‘ - — 3 1 .
bumOfk s su=0[8) sum1+04}

and the Fourier transforms F(x) and F,(x) of the coefficients s;,(k) and s,,(k) satisfy the condition

(+be| 5P |ax <C@x (a+ i) | R (0] dx <D ).
a b
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5. Analyticity: the function s,(k) is the limiting value of a function analytic in the half-plane Imk> 0,
1

I’ﬂ) and a finite pumber of poles on the imaginary axis,

having there the asymptotic 1+O(

It is possible that some of these properties are consequences of others, but we will not bother our-
selves about this matter. In the current section we will prove that these necessary properties are also
sufficient conditions under which a potential v(x) satisfying (P} corresponds to such a matrix S(k), Here
we must specify N more positive numbers, where N is the number of poles of sy;(k), for a unique defini-
tion of v(x), in addition to S(k). This result was formulated in [23] and proved in detail in [26].

The proof of this assertion will be found using the investigation of Gel'fand—ILevitan~type equations,
which we now begin to describe.

We begin with an investigation of the solvability of Egs. (4,1) and (4.2). Suppose we are given

1) The function

oo

S19 (k) == S F] (X) e”k‘dx

—00

such that
Sip(—EB)=s1(k); [sn(R)[<1

and

oo

§a+15) 5 Fi(a|ax<C ).

a

2) distinct arbitrary positive numbers »;, I =1,..., N.

3) the same number of positive numbers m(g), I1=1,..., N. We construct using these data the func-
tion 24(x) in terms of Eq. (3.14) and consider the equation

oo

A )+ 29+ A (92 @+ ) de=0,2<y,

X

as the equation for A (x, y). This is an equation in terms of the second independent variable of this func-
tion, where X occurs only as a parameter. Setting

a,(y)=A4A1(x,y); o (N=21(x+y)

oo

2.2()=\2()2 (z+y)dz,

X

we rewrite Eq. (4.1) in the form of the operator equation

a, )+ o, (y)+ 2,a,(y)=0. (5.1)

The free term wx(y) is absolutely integrable and bounded, and, consequently, is also a quadratically
integrable function on the interval x<y< o0, Le., w,(y)€L(x, 00). We will find a solution also from Ly, (x,
«) and prove that it exists and is unique for any X, — o0 <x < o0,

For this purpose we first verify that we are dealing with an equation possessing a completely con-
tinuous operator in Ly(x, «©) and Ly(x, ). Suppose

m (x)=§| £ @ () dy.
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The function n,(x) on the basis of Eq. (4.12) is absolutely integrable on the intervals [a, =) for any a> — oo
and we have the inequalities

(m@ydx<c@; (Q+1x)dx)de<C@.

Using the bound

121 (1) <{| £ & (0 dx <mi ()

we find that

Vay(az12(v+2)p <(Sm<x+y)dy) < oo,

X X

i.e., the operator Q4 is a Hilbert—Schmidt type operator and its norm approaches zero as x —«, The com-
plete continuousness of Q2 in Ly(x, =) is also a well-known corollary of the absolute integrability of 7,(x).

We now note that the operator I + Qx is positively defined for any x. In fact it is obtained by limiting
the positive operator W from Sec. 3 to Ly(x, =). In particular, this implies that the homogeneous equation

By} + 2.4 (y)=0 (5.2)
has no nontrivial solutions in L,(x, »), We now prove that every solution of Eq. (5.2) in L;(x, «) also be~-

longs to Ly(x, «). We have

e i<S12 0 +2) 2@ dz < (x+9)10() | d2

X E4

so that hy(y) is quadratically integrable on the interval [x, ). We conclude that Eq. (5.2) has no nontrivial
solutions in Ly(X, »), so that Eq. (5.1) is uniquely solvable in I,(x, =) for any x, We will now consider how
the bounds for the solution A,(x. y) follow from this fact,

The operator (I + QX)'1 is uniformly bounded for all x from the inferval {a, =), since the norm of Qg
approaches zero as X —«

I +2)7H, <C(a)
so that

o

V14 1dy < C(x).

E3

Substituting this bound in the integral occurring in Eq, (4.1), we find that

[Ai (e, NI <C(x) (x4 9)- (5.3)

Using Eq. (4.1) we may also verify that the solution A {x, y) is singly differentiable, and we may find
bounds on the derivatives. Let us estimate the function 3z A1(x, y). Differentiating Eq. (4.1) with respect

to x, we arrive at the equation for &, (y)=£ Ay (x, y)+‘%91 (x+y) of

by (M) + . (+2,6,(y)=0.

Here the free term

l"'x(y)=A (x, )2(x+ ¥
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has the bound
ler M < C (X)) 2x) M (% +y).

We therefore find for the solution by(y) that

|25 4168 )+ 5594 (2 4+ 9)| < C () 10 @) (2 + 9).

We may similarly estimate the derivative aiy A;(x, y) and the result is given by

[ A, )+ 3081 (5 + )| K CLR) 1 @) m (6 +9).

The integral equation (4.2) is similarly investigated. If

b

s (—B)=5B% lsm (B <1 § (412D | 55 Fa () dx <D @),
This equation is uniquely solvable and we have for the solution the bounds
|4z (%, W< D (x)ng(x+ )
a d
35 Aa (5, )+ 52 (2 + )| <D () 1y @) ma (x + 9);
|2 42 (5 )+ 35 Q2 e+ )| D) m 25) 7 (5 + ),

where

Ng (X)= § I;f; 2y (y)l dy.

(5.4)

(5.5)

(5.6)
(5.7)

(5.8)

If the functions Fy(x) and F,(x) have more than one derivative, the kernels A (x, y) and Ay(x, y) are
also multiply differentiable. Bounds on the corresponding derivatives are found in a way similar to what

was done for by(y).

Returning to the pair of analytic functions u(x, k) and f(x, k), we verify that if we are given a func-
tion s(k) satisfying the conditions repeatedly formulated for s;,(k) and N unequal positive numbers wy, [ =

1,..., N, and further N positive numbers my, there exists a unique pair of functions u(x, k) and f(x, k),

such that

1) the function f(x, k) and u(x, k) are analytically continued in the upper half-plane Imk = 0, where
f(x, k)e—ikX js bounded for all k, Im k = 0, and u(x, k) has simple poles at the given points k =iny, I =1,

ooy Nj

2) the residues u(x, k) are connected to the values of f(x, k) when k = in; by the equation

Resu (x, k)|k=iul=im,f (x, in)
3) on the real axis by
f(x, By=F(x, —k); u(x, R)=ulx, —k);
4) for large |k| by
fix, k)e’f’”=1+0(-l£-|—); u(x, k)e”‘x=1+0(u171);
5) for real k we have the equation

s(k) f(x, B)+ F(x, —k)=u(x, k).
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We now construct using the solutions for the Gel'fand— Levitan equations A;(X, y) and A,(x, y) found,
operators U; and U, using Egs. (3.1) and (3.2) and consider the operators

H,=UHU, i=1,2. (5.9)
We carry out the investigation of these operators at the formal level, without going too deeply into justifica-

tions. A rigorous justification of the results obtained here can be derived more simply by following the
quite elementary, but laborious discussions of {1].

We first prove that the operators H; are self-adjoint, For the proof we note that the Gel'fand— Levi-
tan equations derived from the completeness equation (3.13) are in fact equivalent to it, i.e., in other words
the operators U; and U, obtained by us satisfy this equation, We consider for the sake of definiteness the
case i =1, Suppose an operator A, has kernel A (%, y), where

0, x<¥
SN0, (x+3)+ [ 4i(x, A2+ )z, x>y,
X

We construct the Volterra operator

Uy=1+A4,.
The Gel'fand— Levitan equation can now be written in the form
UWw, =0,
The operator
U, =UW Ui
is also self-adjoint since Wy is self-adjoint. But it is simultaneously a Volterra operator, since the opera-
tors Uy and U1* are Volterra with identical Volterra direction, These two properties are consistent only
if
O\UT=1,
which implies that Uy satisfies the completeness equation
uWw,Uy=1.
Using this equation we can rewrite the definition of the operator H, in the form
Hy=UH W\ U3,

which implies that H, is self-adjoint since Hy and W, commute, The case i = 2 is similarly considered.

We now prove that the H; are represented in the form
Hl == H0+ Vh
where the Vj are for multiplication by the functions
d d
U (x)=—2 - A (x, x); V2 (x)=2 ;- Az (%, x). (5.10)

For this purpose, assuming again for the sake of definiteness that i =1, we rewrite Eq. (5.9} in the form

H\U,=UH, (5.11)
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and take into account that the operator U; =1 + A, is Volterra, so that

Ay (x, y)=0(y—x) A((x, ),

where 6(x) is the Heaviside funetion, Equation (5.11) is rewritten in the form

~[(F— g A | 06— x) + 2 (x—y) 5 Ay (x, 1)+
+(ViUi)x, y)=0,

where we set V; = H; — Hy and assume V, to be an integral operator whose kernel can be a generalized func-
tion. The resulting equation is consistent with V; being self-adjoint and U; being a Volterra only if

Vi, )= —2(x —) 1o Ay (%, 0) =B (£ — y) vy (x).

Moreover, we will see from this fact that A,(x, y) satisfies the partial differential equation
> A 2 4

el x(x,)’)—gga 1(X, ¥)— 21 (x) Ay (%, y)=0,

which, incidentally, we will not use.

The operator H, is analogously investigated. Our result is that the Hj are differential operators of
the form

H=—2% to,x), i=1,2,

where the functions vi(X) are given by Egs. (5.10).

Equation (5.11) also implies that the functions f,(x, k) and f,(x, k) constructed in terms of the kernels
of Ai(x, y) and A,(x, y) by means of Egs. (1.8) and (1.9) are solutions of the differential equations

Filx, )+ B2f . (x, k)=, (x) [, (x, k), i=1,2,

and have the asymptoties of Egs. (1.2) and (1.3). Finally, the bounds of Eqgs. (5.4), (5.5), (5.7), and (5.8)
demonstrate that v,(x) and v,(x) satisfy bounds of the form

oo

(4120 () dx <Cay

§ (1+] %D oo (x) | dx < D (). (5.12)

-G8
Moreover, if Fy(x) and Fy(x) are n times differentiable, the potentials v((x) and v,¢(x) have n—1 derivatives.
Here v1[m] and ng] as X — «and as x —— «, respectively, behave as F{mﬂ} and Fgm’”‘].

We conelude the study of the inverse problem by proving if Q,(x) and Q,(x) are consistent, i.e., F{(x)
and ¥,(x) are constructed in terms of the given matrix S(k) satisfying the necessary properties given at the
beginning of the section and m?) and m§2) are related by Eq. (3.11), fi¢x, k) and f,(x, k) satisfy the equations

s (R) fo(x, R) =512 (R) f1(x, ) + Fi(x, —E&);
S99 (R) F1(x, B)==52; (R) fo (X, R) +- fa(x, — k). (6.13)

It therefore follows that v,{X) and v,(x) coincide, and we obtain from the bounds of Eqs. (5.12) that

Id

V14| x)v(x)dx< o0

together with the corresporiding refinements on differentiability in the case of the differentiability of F;(x)
and F,(x).
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We have thereby found that the operator H = Hy + V constructed by us belongs to the initial class of
the Schroedinger operators, Further, these equations (5.13) imply that H has the set of eigenfunctions
u§+)(x, k) with asymptotic formulated in the table in Sec. 2, this asymptotic containing as the coefficient
sij(k) the matrix elements of the initial scattering matrix S¢k), The construction of the operator H and
thereby the proof of the sufficiency of the properties of the scattering matrix stated at the beginning of this
section concludes with this fact,

To prove Egs. (5.13) we use the uniqueness theorem obtained above for the pair of functions u(x, k)
and £(x, k), proving that the functions ui(x, k) and fij(x, k) constructed using the Gel'fand— Levitan equations
satisfy the equations

uy (%, R)==s11 (k) fo(x, k),
Uy (X, k)==S$9, (k) f1(x, k).

Equations (5.13) are thereby derived by using Egs. (4.3) and (4.4).

Suppose u,(x, k) and f,(x, k) are obtained using the equation
syt (k) fo (%, B) + fo (X, — k)=, (X, k) (5.14)

and the analyticity properties formulated above.

We multiply Eq. (5.14) by s,;(—k). We obtain
| 521 (R) 22 (%, B) + 501 (— &) fo (%, —R) =501 (—K) 15 (x, &).
The second term in the left side is again replaced on the basis of Eq. (5.14),
— (I—{sa1 (R)P) fo (%, B) + 83 (%, —R)="5,3, (— k), (x, k).

In view of the unitarity condition of Eq. (2.3), the latter equation is rewritten in the form

— So1 (— B g (%, B) + 8y (%, — B)=| 511 (B) 21 (x, ). (5.19)
We introduce the functions

u(x, k)=s11 (k) fo(x, k) f(x,R)=u,(x, k)/sy (k). (5.16)

The function u(x, k) is analytic everywhere in the upper half-plane except for the points k = iy,
where together with s;(k) it has simple poles, The function f(x, k) has no singularities at k = iny, since
the singularities of u,(x, k) and sy;(k) compensate each other. If s{;(0) = 0, f(x, k) thereby lacks a singulari-
ty at k = 0. In fact if 5;1(0) = 0, 845(0) =—1, and using Eq. (5.14) we find that u,(x, 0) = 0, so that the ratio
u,/sy; lacks a singularity at k = 0. Evidently, for real k,
f(x, —R)y=F(x, k) u(x, —k)=u(x,k).
We easily verify that the residues u{x, k) are related to f(x, k) by the equation
Resu (x, &) pmin, = im{" f (x, ix,).
We need only use the condition of Eq. (3.11), Finally, Eq, (5.15) has the form in terms of f(x, k) and u(x, k)
S1o (B) J (x, B) + f (%, —R)=u(x, k).
Based on the uniqueness of this pair of functions as formulated above, we conclude that
S ky=f1(x, k); u(x,k)=u,(x, k),

which implies, by Eq. (5.16), Eq. (5.13).
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We conclude with this fact for the general study ofthe inverse problem for the one-dimensional Schrée-
dinger operator,

6, Particular Cases of the Solution of the Inverse Problem

Here we will consider two examples where the inverse problem has an explicit solution:

1, Absence of reflection, i,e., the coefficients sy,(k) and s,(k) identically vanish and the entire non-
trivial contribution to the Gel'fand— Levitan equation is provided by the discontinuous spectrum of H,

2. Rational reflection coefficient,

Both examples are combined through the common property of the kernel Q(x +y) in the Gel'fand—
Levitan equation; it becomes degenerate and the solution reduces to quadratures. However, we will con-
sider these examples separately. Here we will assume in the second example, in order to simplify the
equations, that the discontinuous spectrum of H is absent. This will be sufficient for the reader himself
to analyze, by combining methods for the first and second examples, how alternations to the equations
arise in the general case. These examples make it possible to solve the inverse problem for a dense set
of scattering data.

Thus, let us consider the Gel'fand~ Levitan equation (4,1) and assume that syy(k) = 0, so that the kernel
Q,(x +y) has the form

N
Q (x + y)= 3 mfDe~ 0,
=1

The solution A,(x, y) in this case is naturally found in the form

N
Ar(x,9)= 2 g (x) e,
I=1
an algebraic system of equations naturally written in vector notation

g(x) + go(x)+ W1 (x) g (x)=0

arising for the function g;(x). Here g(x) is the desired column vector with components g;(x), 7 =1,..., N,
gy(X) is a column of the functions m}"e'“l”, I=1,..., Nand W(x) is a matrix with elements

W(I_) (x)___ mgl) e—(ul—l-ui)x
o TR .

The solvability of the resulting system is guaranteed by the general results of the preceding section
and, solving it, it is possible to find g;(x) and, together with them, the kernel A;(x, y). In particular, it can
be easily verified that an expression is obtained for A,(x, y) which in our netation can be written as fol-
lows:

Ay (0, )=t (LW, (e} ([ + W, (0 ) =2 Indet (/ + Wy (x))
1 ’ = dx 1 ( 1 / T dx 1 .
We thereby find an expression for the desired potential,
o (x)= —2 ;5 Indet (I + Wy (x)). 6.1)
We can similarly consider Eq. (4.2), We obtain for the potential v(x) the equation
(%)= —2 o Indet (/ +W 5 (x)), 6.2)

where W,(x) is a matrix with elements

(2) ’”1(2) e ptmg)e
Wi ) =ygmre 7
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We note that the transmission coefficient in our case has the form

N
i (k)=Hk+ml
=1

k—ix,

s0 that
K-+ K

Ty =i Res $y1 () femin, = — 2%, ]| e
jt

and we recall that the constants m%i) and mf) are related by the equation
mNm® =12,
It follows from the general considerations of Sec, 5 that Eqs. (6.1) and {6.2) for v(x) coincide under these

conditions, Direct verification of this identity constitutes a nontrivial combinatorial problem.

We now pass to the second example, Suppose syy(k} is a rational function of the variable k,

Pm (k)

S12 (k)=r_Q—n_(.k_)’

where Py, (k) and Qu(k) are polynomials of degree m and n, m<n, having the identity element as coefficient
for the highest degree k, and r is a constant. The realness condition

S1p(—R)=s512 (k)
will hold if
r=_3)""r,,

where r; is a real number and the zeroes of the polynomials Pm(k) and Qp(k) are located symmetrically
about the imaginary axis. The constant ry must be sufficiently small in order that

s11 (B)] < L.

For this purpose it is necessary that all the zeroces of Qu(k) have nonvanishing imaginary part, For sim-
plicity we will assume that all these zeroes are simple. The case of multiple zeroes can be considered by
the corresponding passage to the limit,

The procedure described in Sec. 3 for reconstructing the transmission coefficient 841(k) in terms of
s12(k) can be explicitly performed. We recall that we have assumed that the discontinuous spectrurn of H
is absent, so that s;;(k) has no poles in the upper half-plane, The explicit equation for 811(k) has the form

n ny n_
su®)=ILt+8) H (ke +apry 1l (—of), 2,4 1_=n,
I=1 =1 =1
where of) and «{(~) are the zeroes of Qu(k) in the upper and lower half-plane, respectively, and these
are roots of the equation
l=s1 (k) 512 (—&)

in the upper half-plane. There are precisely n such roots, since the equation is invariant relative to the
substitution k ——k. Using Eq. (2.10), we can see that the second reflection coefficient Sy4(k) is also a ra~-
tional function and is represented in the form

Py ()

BYy=r' —F——
sz1 (k) e ®

» m'<n’,
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where the polynomials P 1(k) and an(k) and the constant r' possess properties similar to that for Py,
Qp: and r, We will also assume that all the zeroes of Qn' are simple.

The Fourier transforms F;(x) and F,(x) of the reflection coefficients s;,(k) and s,;(k) are calculated
using the Jordan lemma, In particular,

g +)
F, (x)=2l p,e'“} x>0
o

[

")
Fy(x)= 2 e, k<0,

where the sums are taken over the zeroes of Qu(k) and Qn‘(k) in the upper half-plane, The coefficients Py
and pl coincide to within a factor i with the residues s;,(k) and s,,(k) at the poles located at these zeroes,

We will see that the kernels Fy(x +y) and Fy(x +y) of the Gel'fand— Levitan equations (4.1) and (4.2)
are degenerate when x >0 and x < 0, respectively, We can use a method in these regions for solving them
already mentioned in the investigation of the first example. As a result we find the expression for the
desired potential

v(x)= —2 15 Indet (/ + Z, (x)), x>0; 6.

()= —2 2 Indet ([ +Z,(x)), £<0, (6.4)

where the matrices Z; and Z, have as matrix elements the expressions

ZW e 01 i(a (+)+°=(+))*
P 4l
2@ 0" =t )
ey

The potential must be a continuous function if sy,(k) is to sufficiently decrease as |k|-> co. In par-
ticular, when m <n—2 Egs. (6.3) and (6.4) are continuous and will coincide at x = 0, A direct proof of
this assertion is far from simple. One particular case of the resulting equations, when v(x) =0 at x < 0
was presented in {37].

We now note that the explicit equations obtained by us for v(x) contain a logarithmic derivative of the
determinant of a matrix, It turns out that this fact is not accidental. In can be proved that the potential
v(x) is expressed by the equation

v(x)=—2 5 In Al(x)——~2 s1n A, (x) (6.5)
in terms of the Fredholm determinants A;(x) and A,(x) of the Gel'fand—Levitan equations ¢4.1) and (4.2),
The appearance of the finite-dimensional matrices W(x) and Z(x) in the examples we are considering is

explained by the degeneracy of the corresponding kernels in these equations, We present a brief and formal
derivation of Eq. (6.5). The rigorously justified method is too long to be presented here.

We will prove that
d d
Ai(x x)= T In A (x); Ay(x, x)= —% InA, (x),

after which Eq. (6.3) is implied by Eq. (5.10), Thus, suppose

Ay ()=det (/ +2,),
where /42, was introduced in Sec. 5 and has the form PxW;Py, where Py is a projector into L,(R).

Pp(y)=0(y—x)¢(y)
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We now note that
InA ()=Trin(/ +,)=Trin{/ + P, ),

where Tr is defined on the left in the space L,(x, =), and on the right, in Ly(R). The operator Pylly = Qy
is an integral operator in L,(R) with kernel

Qe (3, 2)=0y—x) 2, (y +2).

The last equation implies that
d d
o A (x)=Tr \/([+I‘x) apxgl)-

Here we have introduced the resolvent I'y of the operator Qy, i.e., an integral operator whose kernel sat-
isfies the equation

T.(y, Z)+9(y——x)[91(y‘rz)+spx(3’= £) 2, (t+2) dt]=0-

X
Comparing this equation to the Gel'fand— Levitan equation (4.1} we may verify that
T, (x, x)=A,(x, x).

The trace desired by us in this notation is expressed by

Zind@=—{ dydze—2)+T. 0, 2) dy— D 2 e+y)=
=TI, (x, x)=A4, (x, x),

which also proves the first equation in Egs. (6.5). The second equation is proved entirely analogously,

CHAPTER 2
SIMPLE GENERALIZATIONS AND APPLICATIONS

The technical apparatus described in the first chapter is carried over without significant variations
to a number of one-dimensional problems in scattering theory. In this section we will consider several
examples, limiting ourselves basically to only the formulation of the results, generalizing or modifying the
assertions stated in Chap. 1. Moreover, we will consider in Sec. 4 an application of developed methods
from scattering theory for solving nonlinear equations in the theory of one~dimensional continuous media.

1. Potentials with Distinct Asymptotics at Infinity

Here we will consider two examples of the Schredinger operator
dz
HYx)=—75 4 (x) + v (x) §(x),

where the potential v(x), x€R, behaves differently as x— —oc versus X-oo:

Example 1.
v{x)>c?, xX->-—o0; V)0, x-—o00

was considered by V. S, Buslaev and V. L. Fomin [6].

Example 2,
Y(X)> 00, x—>—o00; T(X)>0, X=xo0

was studied by P. P. Kulish [14].
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We will not exceed the limits of elementary stationary scattering theory, All the treatments can be
embedded in an abstract scheme of scattering theory, but not very instructively. We will also not present
any proofs, referring instead to the original works.

Let us pass to a description of the first example. We assume that

0
(412D 10— ]de< oo
- (1.1)

§<1+|xr>!~s<x>|dx<oo.

Suppose ky=1 k?—c> is defined so that Im#,;>0 when Imk>0. The solutions f,(x, k) and f,(x, k) of the
Schrdedinger equation

¥ (%) + 22 (x) =10 (x) § {x) 1.2)

are distinguished by the asymptotie conditions

Ji(x, B)y=e!** 4.0 (1), x> o0}
ok, k)y=e"**"+0(1), x> — o0}
and are analytic functions for fixed x of the parameters k and k, in the upper half-plane, We have the in-
tegral representations
Ji(x, R)y=e** 1+ YAy (x, y) e'¥dy,

X
X

folx, Ry=e " 1 § 4, (x, y) e~ ™y,

bounds similar to that presented in Sec. 1 Chap. 1 holding for the kernels A;(x, y) and Ay(X, y). The solu-
tions uy(x, k) and uy(x, k) of Eq. (1.2) are uniquely determined by the radiation principle and have the form

(%, B)=Sy1 (k) fa(x, B)="513 (k) f1 (%, &)+ f1 (%, —k);
£ >0,

Uy (%, B) =S99 (R} f1 (X, R)=Sa1 () fo (%, B) + fo(x, —k);
k>c

The coefficients sij(k) determining the scattering matrix possess the following properties:
1. Unitarity:

f R — —_—

7 S22 (R)S12 (R) + Sa1 (B) 511 (R) =0, & >c;-

s P+ (BP=1 Z{su@®P+[spB)P=1,k>c
[s12(B) =1, 0<k<es
S92 (€)=0=s91 (€)= — 1§
511 (0)=0=5;5 (0)=— 1.
2, Symmetry:
k15‘11 (k)=k322 (k).

3. Analyticity: the coefficient sy (k) is the limiting value of a funetion analytic in the upper half-plane
and having there simple poles on the imaginary axis at the points k = in; with residues
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© -1
Res 511 (£) [keln’= afy Tz=( S S, ing) fo(x, ix) d.x:) .

4, Behavior as |%|- oo: there exist Fourier transformations

Fix)=g { su@yemdrs Fy(n)=g s (VETED) eordr

such that

§I%F1(x)l(l+ixl)dx<0(a):

a

dx

00

b
S d Fy () |(1+1x) dx<C (o).

We shall bear in mind the modification of the unitarity and symmetry conditions.

These properties reconstruct the entire matrix S(k) in terms of the reflection coefficient s,5(k). At
the same time knowledge of s, at k> ¢ is not sufficient for this purpose.

The Gel'fand— Levitan equation for the kernel A,(x, y) is unchanged:

Ay (5, 9)+2, (6 +9) + § A (5, D @+ ) dz=0, x<y.

X

Here
N
et 7214
2 (x)=F; (x)+ 2y mfe ",
d=1

where the function Fy(x) has already been introduced, while

o0 -1
mz‘"=( § i, ix,»wx) .
The Gel'fand— Levitan equation for the kernel A,(x, y),

Ay (6N + x4+ +{ 4, (2,2 24+ ) d2 =0, x>y,

contains a new term

[4

N
9, (X)=F (x) + S e 4 L §dke‘“" T s ().

=1

Here the m§2) are related to the mfi) by the equation

2
a,o@ Vet 2
myny -—-'—"————-—-—%l {1»

An investigation of these equations and a proof for the necessity and sufficiency of these properties
of S(k) corresponding to the potential v(x) satisfying the condition of Eq. (1.1) will be presented analogous
to what was done in Chap. 1. We refer the reader to [6] for details.

Let us now pass to a description of the second example. In this case the Schréedinger equation (1.2)
has a solution u(x, k) which possesses the asymptotic
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u(x,k)=o0(l), x- —o0;
u(x, ky=e*" L g(k)e** L 0(1), x> o0,

where the reflection coefficient s(k) satisfies the unitarity condition |s(k)| =1. Atlarge k, s(k) rapidly
oscillates, The inverse problem consists in reconstructing v{x) in terms of given s(k).

Let us refine the conditions on v(x) for which the results formulated below are true. The nature of
the increase in v(x) as x — —« is difficult to express explicitly in terms of the asymptotic behavior of Ins(k)
as k—, It is, however, possible to expand the class of potentials v(x) so that the necessary and sufficient
properties of the corresponding reflection coefficients can be described, We will assume that for finite a,

§+(x)ox)dr<Ca)

a

and the spectrum of the Sturm— Liouville problem

(W)= (1), — 0 < X< Ty b ()] =0

e xy

for some X, is semi~bounded from below and discontinuous. We will also assume that this operator H lacks
a discontinuous spectrum,

The existence of the solution f(x, k), such that
f(x, B)y=e** 4 0(1), x— o0,

its analytic properties in terms of a parameter k, and, in particular,the integral representation
7 By=e 4+ A(x, y)ewdy

X

have already been proved by methods known to us, The coefficient s(k) is uniquely determined by the fact
that

u(x, k)y=f (x,—k)+s (k) f (x, k)

is integrable in square in a neighborhood of x= —o0. The properties of s(k) are as follows,

1. The Fourier transformation

Fx)=ogs \ s (k) e5dt,

-—08
defined as a generalized function, coincides with an absolutely continuous function, such that

o2

((1+12)| & Fa|ds<Car

a

2. s(k) can be represented in the form

s (£)=s(k)+ 0 (7 )

where |sy(k)]=1 when Imk=0 and s,(k) has meromorphic continuation onto the entire complex plane of
the variable k, while when ImZ >0,

s8] < e
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3. The function u(x, k) = f(x, —k) + £(x, k)s(k) will have an analytic continuation in the upper half-
plane, such that the function p(}) defined by the equation

is the spectral function of the Sturm— Liouville problem on the semi-axis (—=, x;) with boundary coundi~
tion l%c $(x)=0 when x = x,,

We note that the statement of the latter condition includes, in addition to s(k), the solution f(x, k) of
the Schroedinger equation (1.2), so that this property at first glance is not formulated solely in terms of
s(k). In fact. the situation is not that bad. It is possible to solve a Gel'fand— Levitan—Marchenko equation
for every function s(k) satisfying the first and second conditions and also the unitary condition

Al 9)=F (x+3) + | Ale, 9F z + ) dz=0, x<y,

at X = %, and to find the solution f(x, k) and its derivative at x = x;, We next verify the third condition. Re~
construction of the potential v(x) at x < x; must be carried out using the Gel'fand—ILevitan procedure for
solving the inverse Sturm— Liouville problem with discontinuous spectrum, Here we conclude the descrip-
tion of the second example and refer the reader for further details to [14].

2. Canonical System

Many methods developed for the one-dimensional Schriéedinger operator are naturally carried over
(and sometimes even simplified) to the differential operator of a canonical linear system, which we write
in matrix notation

d
H=fa}+Q(x).

Here J is a simplicial matrix and Q is a real symmetric matrix function with zero trace

01

. 0); Q{x)=<l7 (x) q(x}).

jz( g@ —p®

The technical tools for studying the spectral properties of such an operator were developed by M, G.
Krein and his students and also by M. G. Gasymov and B, M. Levitan, Corresponding references can be
found in [13, 7]. In both these works H is considered on the semi-axis 0<x< oo, In this section we will
present the fundamental equations and results of the stationary scattering theory and inverse problem for
an operator I on the entire axis, following the thesis of Takhtadzhyan {20],

We consider the system of differential equations

7 E 40+ Q)P (R)=kp(x), — o0 <x< oo, @.1)

which plays in our case the role of the Schrdedinger equation. The system (2.1) has solutions f,(x, k) and
f,(x, k) which are column vectors and have the asymptotic

File, B)=(1)e* +0(1), x> o0,

falx, k):( 1')6"”‘"4— o(l), x— — oo,

To prove the existence of these solutions it is sufficient to assume that the coefficients p{x) and g(x) of
Q(x) are absolutely integrable functions,

o 0

Clpldx<oos §1g(o)da< . 2.2)

-—~0a —0c
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The components ffi)(x, k) and ffZ)(x, k) of f(x, k) and f,(x, k) for fixed x have an analytie continuation
in the upper half-plane of the parameter k. For large k

Fr(x By e =({)+ 0 (1) folx, B)em=("1) 40 (1),

For real k the pairs of solutions f;(x, k), f;(x, k) and f)(x, k), f,(x, k) form two fundamental systems
of solutions of Eq, (2.1). The conversion factors a(k) and b(k) are introduced by the equations

Sa(x, R)=a(k) f1(x, k) + b (k) f1(x, k);
fi(e Y= —b (k) f5(x, k) +a(k) > (x, %).

These coefficients satisfy the identity
L+ b (k) p=|a (k)
and can be expressed in terms of f;(x, k) and {,(x, k) by means of the equation
a (k) =- Uf+ (%, &), fa (x, B).

Here {f, g}, an analog of the Wronskian, is defined as a bilinear form of the matrix

(/) =rig — fO g,
We will see that a(k) has an analytic continuation on the upper half-plane and is bounded there as k— «,

a(k)=1+o(l).

The function a(k) does not have zeroes in the upper half-plane since such zeroes would correspond to com-
plex eigenvalues of the formally self-adjoint system (2.1).

Knowledge of the fundamental system of solutions of the system of equations allows us to introduce
solutions u(x, k) satisfying the radiation principle and to develop scattering theory similar to what was
done in Sec. 2 Chap. 1 for the example of the Schriedinger equation with decreasing potential, We will
not carry this out here, limiting ourselves to stating that the matrix S(k) is determined by the conversion
factors a(k) and b(k) by means of equations that coincide letier for letter with those presented here. The
sole difference is that the parameter k now runs through the entire real axis. In particular, the entire
matrix S(k) can be reconstructed in terms of one of the reflection coefficients

b (k)

b (k)
S1g (k)=;%; S (R)= oGy

We have for the solutions f;(x, k) and f,(x, k) the integral representations

Fr( k)= Fo(x )+ § Ay (5, ¥) Fo (9, B) dys

X

f2 e B=T0 (5 B+ § A (x, ) T 0, R) dy.
Here the column vector fj(x, k) has the form

Folx, B)=(1) e,
and the kernels A (X, y) and A,(x, y) are real matrix functions absolutely integrable with respect to y for
fixed x.

The kernels A (x, y) and A,(x, y) can be used to construct the Volterra transformation operators and,
in particular, to express in terms of them the completeness condition. We will not carry this out here and
present only equations expressing Q(x) in terms of these kernels
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Q(x)= "*[Al (x, X}, j]={A2 (x, x), jl

and a formulation of one of the Gel'fand— Levitan equations

A, N+ Fix+9)+ Al (x, ) Fy e +9)dz=0, x<y.

Here the matrix function F{x) is introduced by the equation

8

Fy (x)=g 5 e (s ()7 {) et k.

It is possible to prove, based on a study of this equation and its analog for the kernel A,(x, y), that
the properties of S(k), viz., its unitarity and symmetry, the analyticity of the transmission coefficient, and
the absolute integrability of the Fourier transformations F(x) and Fy(x) of the reflection coefficients s,,(k)
and sy(k)

o0 b
VP (ldx < Ca), § IRy (oldx < C#)

a

are necessary and sufficient properties of the scattering matrix for a canonical system with matrix Q(x)
satisfying the condition of Eq. (2.2).

We will now show how the canonical system is a generalization of the Schriedinger equation. If the
matrix Q(x) has the form

QD=(3,3) .3
the system of Eqgs. (2.1) is equivalent to the Schrbedinger equation with operator H of the form
He= (5490 [~ £+ )= —fm+ @0+ (2,
which is evidently positively defined. That the equation
5 (— k)= m,
which also in fact reduces the range of variation of the parameter k to the semi-axis, is real constitutes

a necessary and sufficient condition on the scattering data corresponding to the matrix Q(x) of the form of
Eq. (2.3),

We note in conclusion that the case of the system (2.1), when the matrix Q(x) has the form

Q(x)= (m - p-n?———p)’

where m is a positive constant (system of Dirac equations with mass), was recently considered by L 8.
Frolov [30].

3. Trace Formula

In this section we will derive identities relating the momenta, the function In| a(k)|, where a(k) is one
of the conversion factors, with the integral of polynomials formed by derivatives of the potentials in the
one-dimensional Schréedinger operator or in the operator of the canonical system, These equations first
appeared apparently in {5], which in turn developed a paper by 1. M. Gel'fand and V. M. Levitan [8]. In
these works it was shown why such identities can naturally be called trace formulas. The derivation which
we present will not use general operator-theoretic concepts and is taken from {101,

We first consider the case of the Schriedinger operator. We will assume that the potential v(x} is a
Schwartz~type function, Then the reflection coefficients S15(k) and sy (k) decrease as [kl—-~ more rapidly
than {kl~» for any n >0, The equation
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N
1¢1 k' ’ .
na(t)=z{ HrEl de' + 2 Yparctg ¥,
I=1

which constitutes one variant of Eq. (1.2.9) implies that 1n a(k) has a decomposition in negative degrees of
k,

lna(k)=21:——7,, (3.1)
=
where
' e 2 Y
Cy;=0; Coph="—r3 _S k% 1n|a (k) ]dk——m_l- zzx(ixm“-l'

Even degrees vanish as a consequence of the evenness of the integrand In|a(k)|. Bearing in mind the inter-
pretation of a(VX) as a regularized characteristic determinant of H, we can say that the Cyj+1 Are propor-
2,41
tional to regularized traces of the half-integer degrees H™z  of H, while such traces vanish for inte-
gral degrees.
We now calculate the coefficients ¢, directly in t?rms of v(x). This calculation can be interpreted as

I+
the definition of the matrix trace of the operators H °. Identities which are obtained following the set-

ting equal of the thus obtained expressions for cy are also called the trace formulas. This inferpretation
will not be evident in the elementary calculations following,

We consider the function

X (JC, k)=1ﬂf1 (xs k)—zkx.

It can be proved that this function is analytic in k when Imk > 0 and sufficiently large |k| for any fixed x,
For large |x| it has the asymptotics

%%, B)y=o0(1), x>o00, 2 (X, R)=Ina(k)4o0(1), x> — o0,

so that

o«

na@=— § o(x,p)ax,

~00
where
d
g (x’ k)=ﬂx x, k)
The Schriedinger equation implies that o(x, k) satisfies the Riccati equation
ad; o+ 02— 4 2iks=0,

which can be used to determine the asymptotic decomposition

N 05 (9 ,
°(x’k)=,,§1 T (3.2)
We find for the coefficients o (x) the recursion relations

n—1

0, (X)=— % 91 (X)— 2 Sp_p1 (X) 0(X), #=2,...5 ai{x)=20(x).
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The first few coefficients have the form
0y() = — o 0 (X); 0y ()= — 02 (%) + 5 v ()
0 (8) = — 2 v () + 40 (x) £ 0 (x);
o5 (X)= ;-iii;v ()60 (x) S0 (x)—5 ( 44 (x))’ +20%(x).

We will see that 0,(x) and o,(x) are total derivatives. This property is also preserved for all o (x) for
even n. Returning to In a(k) we will verify that the coefficients cp in the decomposition of Eq. (3.1) are
written in the form

1 \2j+1 <
6;;=0; Cyj1= "“(z‘ S 03541 (X) dx,
-0
so that, for example
L o
Clm= — o S v{x)dx; ¢ -—o S v (x)dx;
! % ) » 43 8 ) *

o

Cy= -——3—127.- S [27}3 (=) + (%w(x))z] dx.

00

We have thus found the set of identites

T — @i, @
Vo (1) dx =80T poi 1na (k) | die — 2 G Do
—00 [ {=1

called the trace formulas. Their interpretation in terms of the traces of the half-integer degrees of H is
carried out in a particularly self-evident way due to the presence in the right side of the sum of half-in-
teger degrees of its discrete eigenvalues,

The differential operator of the canonical system is considered analogously., We will use as the func~
tion (x, k) following [11], the equation

o(x, k)= 1n (élr (FD (x, k) + if® (x, Ie)))—ilz.

It can be proved that

-

na(k)=— § a(x, H)dx.

The canonical system (2.1) for o (%, k) implies the equation

2iks==0? +fw(x)£c(—1— a)—— w2, w==p+ig,

w (x)

which can be used for the asymptotic decomposition of the type of Eq. (3.2). Here the first coefficients
0 n(¥) have the form

o (X)="—|wP o= —ww’; 0,= —ww’+ |
o= —w " + o’ |wp + 4w ww’
As a result an asymptotic decomposition of the form of Eq. (3.1) is obtained for 1n a(k), where all the co-

efficients ¢, are in general nonzero, the two different methods for calculating them leading to the identi-
ties
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§ onmyax=ciy § kmiinja@)ae.
These formulas can be interpreted in terms of regularized traces of the degrees of H of the canonical sys-
tem,

If the condition for infinite differentiability of v(x) or of p(x) and q¢x), which we have used in deriving
the identities, does not hold, the number of true trace formulas is determined by the number of the conti-
uous derivatives, Here the absolute convergence of one integral in these identities guarantees the con-
vergence of the second integral. Thus, the trace formulas are an indirect means for obtaining information
on the bahavior of scattering data in terms of properties of the potential,

Identities similar to those presented here for the radial Schroedinger operators and their relativistic
analogs were also used in a number of works [31-33] by Italian physicists for more meaningful assertions
on the inverse problem.

4, Nonlinear Evolutionary Equations

The work of Kruskal et al, [42] and the succeeding work of Lax [44] opened a new range of applica-
tion of scattering theory. That is, it turned out that it is possible to describe using the scattering prob-
lem the general solution of certain nonlinear evolutionary equations with a single spatial variable, Here
we will describe two characteristic examples of such applications.

1. RKorteweg-de Vries equation

dv(x. t d o
v(axt )—6 (X, 8) 5. 0 (%, O)—55 0 (%, £). (4.1)

2. Nonlinear Schrdedinger equation

0w (x, £) 3% (x, t )
—i wf;: ). _z‘;i: )_2’&!()6, )| wix, £)|% (4.2)
In the first example v = v(x, t) is a real function while w(x, t) in the second example is complex, w(x, t) =

px, t) + iq(x, t). We will assume that they rapidly decrease for large |{x| and fixed t.

We will prove that both functions constitute a motion equation for an infinite-dimensional Hamiltonian
system. We will recall that the definition of such systems includes the simplicial manifold (M, ©), where
M is a differentiable even-dimensional manifold and @ is a closed nondegenerate 2-form on it, and the dis-
tinguished function (Hamiltonian) is h:M—R. The trajectories of the Hamiltonian system are given by the
differential equations

¢ =J (dh () (4.3)

where £ is a point of the manifold, 3;’ is a tangential vector to the trajectory at the point £, and J is the map
of the 1-form in the vector fields defined by the form Q (cf., for example, [2]).
We now note that Eq. (4.1) can be written in the form
ov =2 Sh(c]
O Gxdu(x)’ (4.4)
where the functional h[v] has the form

o0

alol= § [o* )+ ‘T(d‘;f:‘))g]dx.

—00

Comparing Egs, (4.3) and (4.4) we see that the latter equation in fact is of Hamiltonian form, where h[v]
plays the role of the Hamiltonian, while the antisymmetric operator J = 9/ 8x generates a simplicial struc-
ture in the set of functions v(x). The corresponding 2-form, which we write as a bilinear form of the vari-
ations 6;v and 8,v of v(x) is determined by an operator inverse to J and having the form
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o0

2 (30, 3%0)= | dux § dy o (1) 80 (1) — 8,0 (5) 8,0 ()], (4.5)

-—00 -—C0

The similar objecis for Eq. (4.2) have the form

1

b [w] = _S (5, @+ ot ax

and

Q@ bw)=, § (4, (%) 5w () — Gy () (x) )dx,

—0G

correspondingly. We will see that the simplicial strucfure in the space of complex functions w(x) is in-
duced by the natural complex structure of the real space of functions p(x) and q(x), where w = p + iq,

The scattering problem is used to describe substitution of variables in Egs. (4.1) and (4.2}, under
which they become explicitly solvable. We describe the corresponding scheme first for the example of
Korteweg~de Vries equation. We consider the function v(X) as a potential in the Schriedinger operator H
studied in the preceding chapter. Suppose (si2(k), w1, m V) are the corresponding scattering data which in
turn uniquely define v(x). It turns out that the functional h[v] and the form Q cannot be expressed explicitly
in terms of the scattering data and their variations. The corresponding formulas have the form

o N
Rlo]=16§ £8P (k) dk—2 3! p}? (4.6)
il
and
=) N
e={ 3P ®)%Q (K ak + 3} bip g, — (1 2), @.7)
0 L=t
where

P()y=22lo); Qr)=2argb (k)
{4.8)

. d
pr=43; q=21nby by==im{® 5 @ (&) i)

the conversion factors a(k) and b(k) being constructed in terms of the initial scattering data,

We will see that the new variables are explicitly canonical, where P(k), pr, 1 =1,..., N play the
role of canonical momenta, while Q(k), q7, 1 =1,..., N play the role of canonical coordinates., Moreover,
the Hamiltonian h{v] turns out to be a function only of the momenta, so that the Hamiltonians of the equa-
tion in new variables is frivially solved. Turning to the scattering data, the corresponding solution can be
written in the form

3
Stz (ks B)=s15 (R, 0) ¥, 2 (t) =2, (O); mfV (£} ="' m{V (0). (4.9)
These facts also make it possible to solve the Korteweg-de Vries equation using an auxilisry scat-

tering problem. Suppose v(x, 0) = v(x) is a Schwartz-type function defining the Cauchy data for this equa-
tion. The sequence of maps

(%, O (513 (&, O M (), #,(0)) > (513 (&, ), M) (8), %, () v (%, )
defines the corresponding solution, Here the first left arrow denotes the solution of the direct scattering

problem for the Schréedinger equation with potential v(X) = v(X, 0), the next arrow is defined in Eg. (4,9),
and finally, the last arrow constitutes the solution of the inverse problem.
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It is precisely this proposition which is presented in the first work of Kruskal et al, [42]. His Hamil-
tonian interpretation presented here was obtained in [10],

Analogous formulas

-

hlw]=4 § &P (R)ak

~—O0

4.10)
and

2= { [P (£)%,Q (1) —5Q (&) %P (B)] dk, (4.11)

—0

where
P(k)=—+lna(k)y Q(k)=argb @#),

can be found for the nonlinear equation of the second example., Here a(k) and b(k) are the conversion fac-
tors for the canonical system (2.1) consiructed in terms of the functions p(x) = Rew(x) and q(x) = Im w(x).
We note that no factor k was present in the definition of the momentum P(k) and that the range of variation
of the variable k is now the entire axis. These formulas were found inthe thesis of L. A, Takhtadzhyan
[20]. They imply that the general solution of the boundary-value problem for the equation is provided for
by the sequence of maps

w (x, 0)—>(a (k, 0), b(k O)— (@ £), bk t)—>w(k, £),
where
ak )=al(k, Oy b(k, t)=e*"p(k, Q).
The similar equation

. 0 , 1 2 (x, ¢
—i 20 D _TRED e, e (x, B x>0,

(bearing in mind the opposite sign in front of the nonlinearity) was previously considered by V. E. Zakharov
and A, B, Shabat [11]. The corresponding scattering problem is non-self-adjoint and has yet to be mathe-
matically investigated.

Let us now dwell briefly on the derivation of Eq. (4.6), (4.7), (4.10), and (4.11). We consider only
the Korteweg-de Vries equation, since the second example is considered analogously. Equation (4,6) has
already been derived by us in the preceding section and constitutes the identity for the third trace. In fact
the coefficient cg is proportional to the functional h{v]. The right side of Eq. (4.6) arises if we bear in
mind the definition of Eq. (4.8). We note that the preceding results imply that all the funetional Cj+t of
the function v{x) preserve their values for the Korteweg-de Vries equation. In fact the trace identities
demonstrate that all these functionals depend only on momentum-type variables which do not vary with
time. This observation provides a simple and exhaustive approach to the description and completeness
problem of the motion integrals for the Korteweg-de Vries equation, which has been dealt with in a broad
literature. References can be found for example in [43].

To derive Eq. (4,7) for the form Q we note that it is possible to obtain using the Gel'fand— Levitan
equation an expression for the variation of the potential v(x) in terms of the variations of the scattering
data,

\ Bsiq (k) 2 (x, £) de+

30 (x) = o [-‘5

N
+2 3 (A, in)dmf" +2imY f (x, in) f (%, in) a-,.l)].
=1 d
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Here syy(k), £1(X, k), ®j, and m(i) are objects corresponding to the potential v{x) and f;(x, k) is the deriva-
tive of fi(x, k) with respect to k., Calculation of the form § is subsequently found by substituting this ex-
pression into Eq. (4.5) and calculating the infegral with respect to x and y. TFor this purpose the following
equation turns out to be useful

P25, B, F2(0 DY =g e (U (5, B), £, DD

which follows simply from the Schrdedinger equation, Details on the calculations can be found in [10], to
which we refer the reader. By carrying out the calculations presented there, they can be easily carried

over to the second example considered by us and Eq. (4.11) can be obtained., Equation (4.10) constitutes

an identity for the traces No. 3 for the canonical system,

With this we conclude the description of an unexpected application of the formalism of scattering
theory for solving one-dimensional nonlinear equations, The inherent reasons why this scheme works as
well as its range of application has yet to be clarified. One "experimental" approach towards its use is to
consider a one-dimensional differential operator for which the direct and inverse scattering problems are
investigated and to describe the trace identities. We find a simplicial structure on the set of coefficients
of this operator which can be explicitly expressed in terms of the scattering data. Then, the equations
generated by this structure and by some functional of the trace formulas as a Hamiltonian can turn out to
be exactly solvable. Finally, this scheme has not been studied to any great extent, but it must be used for
lack of a better scheme. FEquation (4.2) was found precisely by this method.

Searches for new seattering problems that can be studied are of particular interest. Generalizations
of the Schredinger equation or of the canonical system tothe case of vector functions are obvious candi-
dates. The monograph [1] demonstrated that most results known for scalar equations can be carried over
without any difficulties in the case of vector equations. Equations of higher orders however are more prom-
ising, For example, V, E. Zakharov has recently proved that the third~order differential operator

, at . d . d
Hu=z—d?+2zp(x)—d—£+z ’;fcx)—f-q(x)

{4.12)

generates the nonlinear equation

2 2 , a , 3 . a2 ,
au;f; f_9 u;; t) +2( u(érx t)) +2u(x t)—u()(;: 3] +

1 dulx, B)
Tt

which plays the role of a continuum analog of the nonlinear Fermi~ Pasta~ Ulam problem, The inverse
problem of scattering theory for the operator of Eq. (4.12) has yet to be solved,

CHAPTER 3
THREE-DIMENSIONAL SCHROEDINGER OPERATOR

In this chapter we will consider the Schriedinger operator in a space of functions depending on the
three variables

H=—A+v{x)=Hy+V.

Here x€R3, A is the Laplace operator, and v(x) is a function which we will assume to be real, bounded,
and suffieiently rapidly decreasing at infinity,

Spectral analysis of this operator is significantly more complex than the one-dimensional Schréedin-
ger operator censidered in Chap, 1. This particularly relates to the detailed investigation of such proper-
ties as continuity and the asymptotic behavior of the scattering amplitudes, which must be carried out in
order to discuss sufficient or necessary conditions on this function corresponding to a potential v(x) of a
given class, We will, therefore, in this chapter present only a formal scheme for solving the inverse prob-
lem, not making explicit each time under which conditions on v{x) do the discussions hold, A iraditional
condition on v(x) under which most of the bounds presented below hold asserts that
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[0 )l <C(1+[x])~>=2, ¢ >0.

Under this condition the operator H defined in $=L,(R?) on the dense domain D=WZi(R% is self-adjoint,

We consider a three-dimensional case only for the sake of definiteness. All equations generalize
without difficulty to the case of arbitrary n = 2, In appropriate places we will note analogies or divergences
from the one-dimensional case treated in Chap, 1. The material set forth first appeared in [29].

1, Scattering Theory

The construction of scattering theory for the pair of operators H and Hy in a stationary variant is
based on the existence of a set of solutions u(*)(x, k) of the Schrdedinger equation

A (x) + B2 (x)="0(x) §(x) 1.1)
with the following asymptotic behavior at infinity, i.e., as [x|—«,

=~ VIRE]
) (x, k)=elth D4 T £ (, n)+o(—1—) (1.2)

xl

(radiation principle). Here
kER?, |x|=(x, x)\2, |k|=(k, k)2, n="2.

The solutions u(*)(x, k) are similar to the sets of solutions ugi)(x, k) and ugi)(x, k) of Sec. 2 Chap, 1. The
role of the index i =1, 2 in played by the direction « =%/|k| of the vector k, which runs through the unit
sphere s%.

An existence proof and an investigation of the solutions u(*)(x, k) was carried out by A. Ya., Povzner
[18, 19]. The range of the diseussions presented in Chap. 1 and based on the existence of a fundamental
system of solutions of the Schredinger equation is not carried over to our case. Therefore, it is neces-
sary to study directly the integral equations of scattering theory

u® (1, B)=et® ) +§ G (x—y, k) 0 ) u) (9, &) dy. 1.3)
Here G& (x, |k|) is Green's funection for the Helmholtz equation
AGE) (x, |k])+ B2GE) (x, |R)=0(x),

which can be uniquely defined by the radiation principle. Theexplicit equations

1 e=tEilxl
Tin 1x]

G (x, k)=

well known in the three-dimensional case are obtained from the general equation

PLUEY

G, | k)= ()" | ot (1.4)

after calculation of the integral, In the last equation the well-known generalized function (x + i0)~! occurs.

The investigation of A, Ya. Povzner is based on Fredholm theory for Egs. (1.3). An important role
is played by the Kato theorem [35], which implies that homogeneous equations corresponding to Eq. (1.3)
for real k do not have nontrivial constrained solutions. A, Ya. Povzner proved that the solutions ut®)(x, k)
form a complete orthonormalized system of eigenfunctions of the continuous spectrum of H, which fills
the entire positive semi-axis., This spectrum has uniform infinite multiplicity, so that the eigenfunctions
are numbered in addition to the eigenvalue k® by the point « €S2 Besides a continuous spectrum, H can
have a finite number of nonpositive eigenvalues of finite multiplicity. To simplify the equations we will
assume that the entire discontinuous spectrum of H consists of a single negative eigenvalue, which we denote
by —n?, The corresponding normalized eigenfunction, which can be assumed to be real, is denoted by u(x).
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The completeness and orthogonality conditions on the function ul®) {x, k) are written in the form

(o) $ 2T, ) 0t (3, )+ ()2 () =3 (x — ) .5

() a® (e, ) ED (7 dx =1 (e ). (L.6)

The scattering amplitude f(k, I) is simply related to the function f(+)(k, n) describing the asymptotic
of the solutions u(+)(x, k)

FH (R, n)=—9n2f (B, I); k2=1I% n=%?

and can be expressed in terms of the solution u(+)(x, k) by the equation

(&, l)=<2_1i>3(‘;e_z(l,x) v(x)uP (x, k) dx, (L.7

which is an analog of Eq. (1.1.22) and (1.1.23).

We now present a relation between the functions u(*)(x, k) and the wave operators. For this purpose
we introduce a diagonal representation for H;. Suppose the space £, is formed by the functions ¢(}, a},
defined on R, X 8? and having the scalar product

(# ‘\°')0=S1—/—§—ﬂ Sdacp(k, ayo’ (A, o,

0 S

where do is an element of surface of the sphere $%, We define the isomorphism Ty H~>9, by the formula

§(0) > Tap=p O @) 90, a)=(g)" (e 172024 (x) dix.
The operator T, is unitary,

TiTo=1; TyTi=1I,
and carries H; into a A-multiplication operator,
Hob (x)> 4o (A, 2).
We introduce now two more maps, 7'y :H->9H, and
143 -
9> Tpd=0s3 ox (s “)=(§;‘) Su<i)(x, Via) ¢ (x) dx.

The completeness and orthogonality equations of Egs. (1.5) and (1.6) are written in terms of them as fol-
lows:

T°0,={—P; T, T =1,

Here P is a projector into § on a one-dimensional subspace spanned by the function u(x),

The wave operators U@ are given by

(=) *
U TLT,. 1.8)

This fact can be proved using the scheme presented in Sec, 2 of Chap, 1, Detailed discussions as regards
this proof can be found inthe article of Ikebe [34], which also contains several refinements of works of A,
Ya. Povzner.

Let us now relate the scattering operator S defined by the formula
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U(_)=U(+)S,
to the scattering amplitude f(k, 7). We note for this purpose that the solutions 2" (x, k) and 4 (x, £)are
linearly independent
#® (x, k=" (x, B+ gk D3GR —2)a (x, L, (1.9)
and by comparing their asymptotics we note that the kernel g(k, !) coincides with the scattering amplitude,

gk, )= —2xif (&, 1), (1.10)

whieh in turn muf.t satisfy a unitarity~type relationship. To write the latter it is convenient to introduce on
$, an operators S by the equation

8o 0 a)y=5 (0 )—ix VT {1 Tas ViR ¢ 0, f o,
§?

This operator is also unitary,

A comparison of these definitions demonstrates that the scattering operator can be written in the
form

S=T,3T,,

which also yields the desired relation, We note the analogy of the equations obtained and those in Sec, 2 of
Chap. 1,

Henceforth, we will find it convenient to refer to the space £, simply as L,(R%® using the identity

i

. k
e =0 (k) [k|=V}; 5z =a.
In this case T, is a Fourier transform,
IR
P> Top=2 () 2 (B)=(5x ) (e (x) dx.

The operator S in this notation is given by

S0 ()= (k) —2xi Q f ks D3 (R2—12) 0 ())dl. 1.11)

Let us now return to the solutions u(i)(x, k) and say a few words about their properties. It can be
proved that the functions u{*(x, |k|a) for fixed x and & have an analytic continuation into the upper half-
plane of the parameter s = |k| and have a simple pole at the point s = ix. The principal part in the neigh~
borhood of this pole has the form

Resa™ (x, sa)s—i* =¢(a) 2 (x), (1.12)

where

1
c@)=g; Se—"m“)fa (xX)u(x)dx (1.13)
and u(x) is the already-mentioned eigenfunction. It is necessary to study Eq. (1.3) in the complex domain
s = |k| for the proof, One variant of these discussions can be found in [24], Further, for large [k|, we
have the asymptotic

uP (x, ky=e"“" +0(1), (L.14)

while if v(x) is differentiable, we can replace here o(1) by O(1/]kl). A derivation can be found in [22]. In
particular, these results imply that the scattering amplitude is forward, i.e., the function
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Skl )= (ks k)

for fixed o has an analytic continuation into the upper half-plane of the parameter s = |k|, has a pole when
s = in with principle part

2 \
Res f (s, a){sam=(§£;7 cl@ye(—o (1.15)

and at infinity has the asymptotic

£(s» ®y=g+o(1), q=(2~:t—)3gfo(x)dx.

The proof requires the use of the representation of Eq. (1.7) for the scattering amplitude,

The last property first found by the physicists Wong [48] and Khuri {41] is an analog of the analyticity
condition on the transmission coefficient a(k) of Chap. 1. However, unlike the one~-dimensional case, this
condition far from exhausts all the necessary conditions on the scattering amplitude which follows from
the locality of the potential. In the next section we will find a profound generalization of this property,
formulated in [28].

We will refer to the problem of reconstructing a potential v(x) in terms of given scattering amplitude
f(k, I) as the inverse problem. The results presented imply one important distinction of the multidimen~
sional case from the one-dimensional case considered above; when n= 2 there exists at most one poten-
tial that decides the inverse problem, In fact Eq. (1,14) implies that for large k| = |I],

£k z)=(2%l)a Se“’*—l'”v (x)dx+o(1),

so that, setting k — 7 = m and letting |k| tend to infinity, we can reconstruct the Fourier transformation of

the potential in this limit, This long established and simple assertion found in [3, 21] was for a long time

the only rigorous result on the multidimensional inverse problem, It finally is not of particular interest,

though in every case it implies that, unlike the one-dimensional case, all the characteristics of the discon-
tinuous spectrum necessary for solving the inverse problem are calculated in terms of the scattering am-
plitude itself.

2. Researches on Volterra Transformation Operators

In the one-dimensional case the transformation operators U; and U, distinguished by the Volterra
condition, play an important role. As already noted in the introduction, the set of operators U}, with Vol-
terra direction £S2,

Ug@=¢+ { Aey)o)dy @.1)
{(y—x,v}>0 R ¢

is their natural multidimensional analog, In this section we will demonstrate how to prove the existence
of such operators,

Chapter 1 demonstrates that Volterra transformation operators are generated by a set of solutions of
the Schroedinger equation possessing special analyticity properties, In our case it is necessary to find
solutions f_y(x, k) of Eq, (1.1) that have an analytic continuation into the upper half-plane of the variable
s = ({k, v) for fixed x and k_,_=k——(k,1)7 , such that as | x|~ oo ,

| f, (. Rye ™V < (2.2)

when Ims>0 and has an asymptotic for large s,

ik, ,x)
fole e Ve L o (1),
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In fact if such sets of solutions f.y (X, k) exist, we may verify by introducing maps Ty from $ into
$o by the equation

$(x)—~> Tvq) =2,09) o (0= <2—~1{ )3/2 S £y (. Vha) ¢ (x)dx,

that the operators

U =TT

yo Ty 0 (2.3)
have the form of Eq. (2.1), where the kernel A+ (X, y), being perhaps a generalized function of x;, and Vi
will be a elassical function of the variables (x, v) and (y, v), so that the condition according to which it
vanishes when (x, v) > {y, v), is justified.

We may attempt to find solutions of the type of f.y (X, k) using integral equations of the form
u (x, k)= S Gylx—y. k) v(y)u (y. k) dy (2.4)

for an appropriate choice of Green's function Gy (x, k) of the Helmholtz equation. In the one-dimensional
case the solutions f;(x, k) and f,(x, k) generating Volterra transformation operators have been defined in
precisely this way [ef. (I.1.4)]. To satisfy an analyticity condition on Green's function Gy (%, k) they must
satisfy the requirement that for fixed vy, x, and k; they must have an analytie continuation into the upper
half-plane of the parameter s = (k, y), sueh that

! Gv (x, k) ety l <C r)‘c_l'

Such functions in faet exist. Guiding concepts for searching for them and an analogy to the functions Gy(x,
k) and G,(x, k) of See. 1 Chap. 1 were presented in [27]. Here we will limit ourselves to presenting an ex-
pression for G, in the form of an integral which, unfortunately, cannot be explicitly calculated:

ei(l,.r)

Gt )= (5 | e 2 (2.5)

where (x--i0a)! is understood as (x +i0) for @ >0 and as (x — i0)~! when a <0. It can be easily veri-
fied that G, (x, k) depends of k only in terms of the combinations s=(k, y) and y? =k*— (k, v)2. When
Im s> 0, Eq. (2.5) can be rewritten in the form

143 el (Fhsy.x)
Gy (3 £ =01 (2 0 9)=(55 ) \ g
which imply the analyticity and boundedness-type properties formulated above., We further note that when

Im s = 0, we have the realness condition

Gy(x, k)=0y(x, —k). (2.6)

One important distinction between Gy (%, k) and one-dimensional G;(x, k) and Gy(x, k) is that it is not
Volterra., Therefore, to study Eq. (2.4) we cannot use the method of successive approximations and will
need Fredholm theory. Here we find that the solution u~ (x, k) of this equation exists, is an analytic func-
tion of s = (k, v) when Im s> 0, and satisfies there a boundedness econdition for all s, such that the homo-
geneous equation

Bx)— [ Gy(x—y, 0 ) D) h (y) dy=0 @.7)
has no nontrivial solutions satisfying the condition
|h(x)e " V<C.

Singular s such that these solutions exist are located discontinuously, lack accumulation points when Im s>
0, and are poles of finite order for ., (%, k).
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Such singular s, in general, exist. In fact a comparison of Eqs. (2.5) and (1.4) makes it clear that
when k||y Green's functions G (x, |£) and G,(x, &) coincide. Thereby the solutions u(x, k) and u,, (%,
k) for k| v also coincide. The variable s = (k, y) under this condition is simply |k|. At the end of Sec, 1
we mentioned that u(+)(x, k) for fixed x has an analytic continuation into the upper half-plane of the vari-
able s = |k| and has there a simple pole at s = in, Thus u, (x, k) for k; =0 has a pole when s = in, Asy
varies or, what is the same thing, a nonvanishing k; appears, this pole will move without vanishing. Thus,
we have verified that if an operator H has discontinuous spectrum, the singulsr values s exist,

We cannot prove an analog of the Kato theorem for Eq. (2.4}, i.e., we cannot guarantee that this equa-
tion is solvable for all real k nor that the singular values s do not leave the real axis. We, therefore, must
require that the potential v(x) be given such that these solutions do not exist. We will refer to this require-
ment as condition C, Henceforth, we will be able to formulate an equivalent condition in terms of the scat~
tering amplitude. When this eondition holds, Eq. (2.6) implies that

uy(x, By=0y(x, —&). (2.8)

Thus, the solutions Uy (u, k) cannot be used to determine Volterra transformation operators because
of these singularities. It is, however, easy to refine them. For this purpose we consider the regularized
Fredholm determinant Ay (k) of Eq. (2.4). The formal definition is provided by the equation

InAy (B)=="Tr(In(/ — Gy (&) V)+Gy (k) V), (2.9)
where we use obvious notation Gy (k) for an integral operator with kernel Gy(x—y, k). The trace in the

right side can be understcod in an operator-theoretic sense if the operators under the sign of the trace are
symmetrized by the scheme

V={VIZ VI, GyB)V - V]G, (k) VIV

We will bear in mind that this method can be carried out and henceforth will not refer to it, The function
A,y (k) depends on k only in terms of the variables y and s and By (1, 8) for fixed v and u is analytic with
respect to s in the upper half-plane, there having the asymptotic

By, 5)=1+0(1)

and vanishes at singular s. Here the multiplicity of the corresponding zeroes is sufficient for all the poles
in the product

Fy(x, BYy=uy(x, k) Ay (k) (2.19)

to be annihilated, so that the set of solutions fy (%, k) satisfies all the requirements described at the begin-
ning of this section and can therefore be used to define Volterra {ransformation operators,

With this we conclude the description of research into multidimensional Volterra transformation
operators, which can in fact be far more exciting than can be seen from this presentation, In the nexi sec-
tion we will begin a calculation of the normalizing factor corresponding to these operators.

This section we conclude with a few more remarks on the determinant Ay {k}. The relation we have
noted between the functions G (x, &)} and Gy(x, k) at &[y imply that A, (k) when [y is the Fredholm
determinant A™) (k) of the integral equation of scattering theory

AP (E)=Tr (In(f —GP (&) V) + G (&) V).
We easily obtain from this expression that

A IAPYT) = —Tr (= MY = (Hy =),

o that A®(}/X) is a regularized characteristic determinant of H, In this sense it is analogous to the con-
version factor a(}/}) of Chap. 1, Henceforth, we will require the formula

arg AV )= - Indet S (k2), (2.11)
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where S(k?) is a set of operators in LZ(SZ) naturally generated by the operator §, The derivation of this
relation, which is characteristic for trace formulas, can be found, for example, in [4].

3. Normalizing Factors for the Solution uy(x, k)

Equations (2.10) and (2.3) demonstrate that we can find normalizing factors for the transformation
operators U, if we know the determinant Ay (k) and the operators Qﬁ,i’- by means of which the solutions
uy (X, k) can be expressed as a linear combination of the solutions u(i)(x, k). If we assume this to be an
integral operator whose kernel Q(;,b)(k, I) is a generalized function, the corresponding formula will have
the form

i, (x, &)= QF (8, ) x, Dy dl. 3.1

In this section we will describe the set of such operators dv‘i’. which are in some sense an analog of the
matrices M(*)(k) described in Sec. 3 Chap, 1. An appropriate expression for the Fredhoelm determinant
Ay (k) will be found in the next section.

Let us compare Green's functions G{#)(x, k|) and G., (%, k) oceurring in the integral equations (1.3)
and (2.4). Equations (1.4) and (2.5) imply that

200 ¢
G (5, )=0 Vs [ ]) + g Y (02— k) O [ — o ] L=

=G5, | k) — g § €082 — B2 8 [ (B — 1, )] L. 3.2)

Here 6(t) is the Heaviside function, Using the first of these equations we can rewrite Eq. (2.4) for uy(x, k)
in the form

X 2 o S X
s =" s\ R (2 — R0 — A1) X

X v (9)ay (9, K)dydi+ G P (x—y. [k v (), (3, b) dy.
We consider the first two terms in the right side as a new free term. Setting
C QP (ke y=d (b — 1)+ 2718 (k2 — )8 [(L— b, )] 1, (, ), (3.3)
where

e )= (g7 ) {0 (a0 By, 3.4

we can rewrite them in the form
§ QiPe, netat,

i.e., as a linear combination of free terms in Eq. (1.3) for u(+)(x, k). The integral operator in the resulting
equation also coincides with the operator of Eq. (1.3). We may assert based on the uniqueness theorem for
this equation that Eq. (3.1) holds if the kernel Qg,'*)(k, 1) is given by Eq. (3.3). Analogously we can find that

) (R, 1= (k — ) — 2rid (k2 — 12) 0 [(k — L, )| 2, (&, 1). (3.5)

Equations (3.3) and (3.5) also constitute the desired equations determining the operators Q

erate in $, according to the formula

, Which op~

Q0 (k)= (8) £ 251 1y (5, DO1£E— R, D]B(R—12) 9 () dL.

Concepts by nowquite standard here demonstrate that the operators Q' define a factorization of the scat-
tering operator, €omparing Eqs. (1.9), (1,11), and (3.1) we find that
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5=, (3.6)

We now note that the kernel h (k, 1) that occurs is Egs. (3.3) and (3.4) is the same in these equations, We
thus use Eq. (3.6) to uniquely determine h\/ {k, I) in terms of the scattering amplitude, In fact, we rewrite
it in the form

&5 g
and then substitute Eq. (1.11), (3.3), and (3,5) for 3 and Q{*’. We obtain the equation

By ks D=7 (b, D) +2ni § 1y (B, m)O[(m— k. D] 3(m2— &) £ (m, ) dim, (3.7)

which can be considered as a linear integral equation for determining h,, (k, I} in terms of given f(k, I).

This equation involves only the angular variables of the kernels occurring in it. The length of all equal
vectors occur in it only as parameters. In the next section we will verify that condition C is eguivalent
to a unique solvability condition on this equation,

We now note an important property of the functions hy(k, I) which is implied by analyticity proper-
ties on the solutions uy(x, k). We consider the integral representation of Egq. (3.4) for hy(k, 7} and set (k,
v)={,vy) =s init. As a consequence of a bound of the type of Eq. (2.2), the integrand is absolutely inte-
grable for all nonsingular s in the upper half-plane, It therefore follows that the function hy (k,I) when
(k, v) =(,v) =s and for fixed k;, ; , and v has an analytic continuation into the upper half-plane of the
variable s and poles of finite order at singular s.

We emphasize that the locality of v(x) is highly important for deriving this analyticity property, In
fact the growth of the solution Uy (X, k) with respect to x at Im s > 0 is compensated by decreasing e~il, %)
only because these functions are multiplied within the integral in Eq. (3.4), For nonlocal V, the independent
variables x and y on which these functions will depend in an equation of the type of Eq. (3.4) will differ and
no such eompensation will oceur. Henceforth we will verify in studying the inverse problem that the neces-
sary analyticity condition we have obtained is essentially also a sufficient condition on the scattering am-~
plitude corresponding to a local potential. We should now state that this condition is a generalization of the
analyticity of the foward scattering amplitude noted in Sec. 2. In fact it is evident from Eq. (3.7) that the
amplitudes f(k, 1) andhv(k, I) coincide when k | v. Under this conditionk =17 also if (k, v} = (I, v). Thus,

By Bs Dlyss = =1 ks &)

and the analytieity we have indicated for the function on the left side implies the analyticity of the right side
which was noted above.

We present one more useful equation relating the kernels h, (h, 1) for different v, For this purpose
we use the factorization of Eq. (3.6) and a unitarity condition on 8. Rewriting the equation

P

S*=81
in terms of Eq. (3.6), using different v in the left and right sides, we find

Q" = QPR .8)
We now set v' =—+ and rewrite the resulting equation in the form

Al—) A ._)l A ~ ¥
QPR =g

The operators Q{ are Volterra, which is explicitly evident from the presence of the Heaviside function
in their definition, The Volterra property of the operators in the right and left sides of the last equation
are in opposite directions. It is thus consistent only if each side is separately a unit operator, We have
arrived at the important equation

G =QH (3.9)

387



We also rewrite the general equation (3.8) in more detail in terms of the kernel of the operators occurring
in it,
hy(R, ly—hy (—1, — k)=
=2 § iy (&, m) by (—1, —m)B [(m— £, 1)} —
—0[(l—m, )3 (k2 — m) din. (3.10)

Here we have used also the equation
Chy(—k, —D)=hy(k, 1),

which follows from the property of Eq. (2.8) and from the integral representation of Eq. (3.4). Equation
(3.10) constitutes a generalization of Eq, (3.7).

Because of Eq. (3.9) we must solve integral equations to determine operators inverse to the normaliz-
ing factors Qﬁ,i’, which oceur in the construction of the weight operator Wy

4, Differential Equations With Respect to the Parameter vy

Let us now turn to the transformation operator U.,, The normalizing §actors corresponding to it we
nearly already calculated; they are constructed by means of the operators QY and the Fredholm deter-
minant Av(k). Explicit equations can be written in the form

Mo tey=[ QF ¢, B E, D o () dl, (4.1)
and the operators N!*) acting in $ are deseribed by the equation
NP =TNFTy Uy=UZNE., 4.2)
In this section we will prove that the determinant Ay (k) can be explicitly expressed in terms of the kernel

hy(k, I) and thereby in terms ofthe scattering amplitude,

In order to state the Gel'fand— Levitan-type equation we must obtain, in addition to normalizing fac-
tors, an expression for the generalized element Xy > which is the pre-image of the eigenfunction of the dis-
continuous spectrum u(x) under the map U,. This can easily be carried out on the basis of the already
noted coinciding of the function u,, (x, k) and u(H(x, k) for k|| vy and Eq. (2.10),

We will proceed on the basis of the equation

Fol, B)y—=e®0 1 f Ay (2, ) e * 9y, (4.3)

(y—x,¥)>0

which constitutes a concrete variant of the more abstract definition of Egs. (2.1) and (2.3). We note its
analogy to Eqgs. (1.1.8) and (1.1.9). Setting here k = sy and expressing f,y (X, k) in terms of u(+)(x, k) and
Ay (k), we find

1P (x, 57) AP (5) =StV 4 S Ay (x, y) €50V y.
(g—5.¥)>0

Here we will use the already noted coineiding of A 1(87) and A(+)(s) Under our assumption on the simplicity
of the discontinuous eigenvalue, the determinant A(+)(s) has a simple zero at s = in, s0 that setting s = in
in the last equation and using Eq. (1.12), we find

s =m@ eV § Ay e Vay),

(y—x,y)>0
where

mi=[ 4 AP )| _c0]
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and c(y) was introduced in Eq. (1.13). This equation is also the result we require; we will see that
u=Uyy; xv{(x)=m(y) e~ =V, {4.4)

Thus to express all the variables occurring in the Gel'fand—Levitan equation in terms of the scat-
tering amplitude, it remains for us to find an expression for Ay (k) and c(y). For this purpose differential
equations for the functions Uy x, k), hV (h, I}, Ay k), and c{y) with respect to the parameter v will turn out
to be convenient. This variable runs through the unit sphere and it is therefore convenient for differentia-
tion to use the Lie operator corresponding to the operation of a group of rotations. We will not have to
write explicit equations for these operators, the following single equation being sufficient:

Mefiln 9l=7"10 9l 1X8.

Here (y, a) is the scalar product of v and an arbitrary vector a, £() is an arbitrary function, M; is the
Lie operator corresponding to differentiation in the direction of £, and y x£ is the veetor product of v and ¢,

Differentiating Eq. (3.2) we find

MG, (x, k)=<gin) Swv,g (5, 1) el (4.5)
where

o (ks 1) =2mid (2 — 2)3[([— k, D](I—kr 7XE).
E

This equation leads to a differential equation for all the variables mentioned at the beginning of the section,
We begin with the function uy(x, k). Differentiating Eq. (2.4) we find the equation

Mty (x, B)y={ MGy (x—y, B)o(3)ay(y, k) dy+
+$Gy(x—y, B)o () Merzy (3, 1) dy.

This equation differs from Eq, (2.4) only in a free term, which can be written in the form of a linear com-
bination of plane waves of the form

Ry (k, 1y el (4.6)
where
Ry (b, y=oy g (ks )by (ks D). (4.7)
The expression for @, g(k, 1) includes 5-functions, so that P =% and (I, y) = (k, v) in the integral of Eq,

(4.6). We recall that Green's function Gy (%, k) depends on k only in terms of k* and (k, ). This together
with Eq. (2.4) implies that

My (x, B)=\ Ry (&, D)uy(x, Ddl.
Now using the definition of Eq. (3.4) for the kernel hy (k, !) we have

Mehy (b, D=\ hy (8, myoys (&, m) by (m, 1) dm 4.8)

which is an integrodifferential equation for h,y(k, D).

We now pass to the differential equations for the Fredholm determinant Ay (k). A determination of
this expression is given by Eq. (2.9). Differentiating it with respect to v and using Eq. (4.5}, we find

Meindy (k)= —\[hy (1, )—qloye (& D,
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where the constant

g= (2—::‘—)a S v(x)dx

is the asymptotic of the kernel h, (, 7) for large| !
solved. We consider the function

. The resulting differential equation can be explicitly

g, (k)= —2mi S 2, () —ql0 [ —k, )] 3 (k2 —12)dl.
Differentiating it with respect to v, we find
M, g, (&)= —2xi\ k(1 m) b (m, Dy, , (1, m) 6 (L — & D] X
X3 —1ydi—[n, (1, ) —qlo, , (&, 1) dL.

The first term here vanishes. In fact the function wy,g(l, m) is antisymmetric with respect to I and m,
while the remaining part of the integrand in this term is symmetric, so that we may set (m, y) = (1, v).
Thus, the differential equations for In Ay (k) and gy (k) coincide so that these functions coincide to within

a term independent of y. We however know that when k|| v the determinant A, (k) coincides with the Fred-
holm determinant A()(|k]) of the integral equation of scattering theory [Eq. (1.3)]. At the same time g (k)=
0 when v [ k. We arrive at the equation Y

nA, (£)=InA™(|%[)—2ri S b, (1, D)6 — k. 7)]3 (k2 —12) dL.

We may analogously study the Fredholm determinant Z.), (k) of the integral equation (3.7) in which
an integral operator P"/ (k) with kernel

PT (ks L, m)=2=i0 [(l — &, ]2 — 2 f ({, m)

occurs, In this case we may prove that

1n Ky (A)=Trln(/—P (k))=gv (%),
so that

A (B)=AP(&)DE, (k). (4.9)

On the basis of the Kato theorem we know that A“(£[)+0 for real [k|. Then Eq. (4.9) also demonstrates
the equivalence between the unique solvability problem for Egs. (3.7) and (2.4).

Let us now express the determinant hY (5,0) interms of A& ). For this purpose we recall that
A k}) has an analytic continuation in the upper half-plane of the variable |k| = s, there has a unique zero
at s = ix, and when Ims = 0, Eq. (2.11) holds. Suppose Q{"”((%]) and Q{”’(£]) are operators in L,(s%) de-
fined in terms of O{P and Q™ in the same way as S(|k|) was defined in terms of §,

The factorization of Eq. (3.6) leads to the equation

S(E)=Q T (RN QT kI,

which leads to the equation
indet S (£)=Tr1n S (& )=Tr [lnQ(£)—1n Qs (&1,

which implies that

Indet S(|k|)=—= § h, (L 0)8 (12— k?) di=2i arg AP &), (4.10)
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since all the degrees of the operators Q(i) — 1 in a logarithmic decomposition, other than the first degree,

yield a null contribution to the trace as a consequence of the Volterra property of Q{™ and Q7 . 1f we
know argA‘7(j&)), we can reconstruct this function using the equation

(=4
S—-i%

1 ¢
A ()=exp ln' %lli—l e Ims>0 (4,11)
where
7 (f)=arg AP (#) + 2arctg = (4.12)

Combining Eqs. (4.10), (4.11), and (4.12), we find a explicit expression for A ([&)) in terms of #,(%, &).

We will now demonstrate how to express the function ¢(y) occurring in the construction of the vector
Xy in terms of the scattering amplitude f(k, I) [ef. Eq. (4.4)]. We consider the scattering amplitude f(k, 1)
as a function of the variable y =1/]1| and apply to it the operator M in terms of this variable. Using the
integral representation of Eq. (1.7) and the analyticity properties of the solution u(+)(x, k), we find that

Mef (R, [R]D) |, 1{y=g(lk}.’ 7

like f(k, k) has an analytic continuation into the upper half-plane of the variable s = {k| with pole at s = in,
It can be easily verified using Eq. (1.12) that the corresponding residue has the form

2ix

Res g (S, lsmin=ay ¢ () Mee (=)

Comparing this equation to Eq. (1.15) we find that

__ 80, —v)
Myine =Fo=3 . (4.13)

Solving this equation, assuming that the right side is known, we are able to obtain the equation

c(=b)c(—7)

where b(y) is expressed in terms of integral of this right side. Here multiplying both side by ¢(y} we find
finally

2 () =Res £ (s, Dy_p, T b (1),

so that the square of c(y) is explicitly expressed in terms of the scattering amplitude. It is precisely this
square that occurs in the Gel'fand—Levitan equation. We can now proceed to a direct formulation of this
equation,

5, Investigation of Inverse Problem

By assuming that the potential v(x) satisfies the conditions
a) vix) is a continuous, rapidly decreasing function, and

b) Eq. (2.7) does not have nontrivial restrictive solutions for all real k we have proved that the scat-
tering amplitude f(k, /) possesses the properties:

1, The integral equation (3.7) is uniquely solvable for any 76S8? defining a family of kernels hofk, D,

2. The function Ay (k). constructed in terms of h,, (k, 1) by Egs. (4.9), (4.10), and (4.11), has arestricted
analytic continuation with respect to the variable s = (k, ) into the upper half-plane,

3. The function 4y (k, )) Ay (k) when (k, v) = (I, y) also has such a continuation with respect to s = k,
v) for arbitrary fixed I, and k.

The last property presents a rich collection of necessary conditions that somewhat explicitly de-
crease the parameters in the scattering amplitude. It turns out that it substantially exhausts the necessary
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conditions on the scattering amplitude, about which we spoke in the introduction, That is, we will prove
that if it holds, there exists a local potential v(x), such that f(k, I) is the scattering amplitude. This will
be carried out using the formalism of the inverse problem.

We begin by writing an integral equation for determining the transformation operator Uy. The idea
of the proof of this equation was already set forth in the introduction, The corresponding weight operator
Wy has the kernel

W, (x, y)= (2%)3 S e BN e, 1) "M dRAL + m2 ) e TR (5.1)

where
o~ 1 [ — 1
Wylk, =\ Qs (%, v ({, e
(b =5y (@ b MO T dm

In writing these equations we will use an abstraet definition of the weight operator given in the introduc-
tion, a concrete form of the normalizing factors N(i) from Eq. (4.1), and Eq. (3.9).

The Gel'fand— Levitan equation has the form

A N+ N+ [ Ayx 29 (2, y)dz—0,
{z2—x,y)>0 (5.2)
nN<o, 1),

where

2y (x, 9)=W,(x, 3)—3(x—y).
The kernel Q. (x, y) is completely reeonstructed in terms of the scattering amplitude f(k, 1), as was dem-
onstrated in the preceding section.

Equation (5.2) is an equation for AY (x, y) as a function of the variable y, while x and v play the role
of parameters. The kernel of this equation is evidently positive, which ensures its unique solvability.
Thus, we will find it possible to reconstruct the transformation operator U, in terms of the scattering
amplitude,

We construct using the transformation operators we have found a family of operators
Hy=UH U7 (5.3)

We intend to prove that if the properties formulated at the beginning of this section hold, the operator H
is independent of y and the corresponding operator V, = Hy — H, is an operator for multiplication by the
real function v(x), where the initial function f(k, 1) is the scattering amplitude for this potential.

The formal proof scheme is significantly simplified if we assume that no discontinuous spectrum
exists, We will limit ourselves here to a presentation of only this case, so that we will assume that the
second ferm in Eq. (5.1) is absent.

The investigation begins according to a scheme entirely analogous to the one~dimensional case of
Sec. 5 Chap. 1. 1t is possible to prove that the Volterra operator

Uy=I+A,,
constructed in terms of the solution Ay (x, y) of Eq. (5.2) satisfies

UW Up=1, (5.4

which implies that H,, is self-adjoint.

We now prove that the operator V., =H, ~ Hy is local in the y direction, i.e., that its kernel, a gen~-
eralized function, is expressed in the form
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Vy (e, 9)=3((x, ) —( MV (x, y)
We note for this purpose that in the identity
Hydy—AyHy= —V (I + A (5.5}

which follows from Eq. (5.3), there exist terms with singularities of various orders on the plane (x, vy} =
(¥, v). The kernel A‘Y (x, v} itself has a discontinuity~type singularity,

Ay (x, )=0{(y —x, D] Av (%, ).

If it commutes with Hy there arises the more singular term of the form

B D= D (5 + 5555 ) A (50 9

which can be compensated for in the right side of Eq. (5.5) only by the potential V,y (X, ¥}, so that we will
find an explicit expression for the potential V. (X, y) in terms of the kernel Ay, ¥),

Vy(x, )= —28((x, )~y 7))3'(—2’.\,—)(‘4\‘ (X Mrm=w.))-

Until now we have not used the analyticity conditions on the kernel hy (k, 7). This property makes it
possible for us to assert that the operator H, is independent of v, so that the potential V., is local in every
direction and is therefore a function-multiplication operator. For this purpose we naturally use differen-
tial equations with respect to the parameter v.

We in turn note that the differential equation (4.8) can be derived by proceeding on the basis of the
definition of hy (k, 1) by means of the integral equation (3.7). In fact differentiating Eq. (3.7) with respect
to v, we find

Mehy (B, l)-—-2rt\hy(k m)d{(m— £k, )] (k2 —m2)(m—Ek, 71X E)X
X f (m, l)a’m+2fu§M hy(k, my6{(m—£k, (k2 —m?) fim, dm.

The free term here can be written in the form

jR\,g (k, m) f (i, Dydm

[cf, definition of Eq. (4.7) of the kernel of R'Y g] On the other hand, multiplying Eq. (3.7) by Ry I3CH k} and
integrating over k, we obtain for

ry(gs ={ Ryz (g, &) hy(k, 1) dl
an equation with integral term of the form
25\ Ry (g £) (ks m) 8 [(m— &, )] 3 (m2 — k2) £ (m, 1) dkedm.

Because of the presence of 3[(g—#&, )| in the kernel R,:(g.%) we can here replace 8{(m—£k, 7} by
8 [(m-—gq,7)]- The equations for Mh,(g,/) and r y{d: v) then coincide, so that Eq. (4.8) can now be said to
hold for the kernel hy (k, 1) reconstructed with respect to ik, 1.

We now recall that the very procedure for constructing A,y (k) in terms of h y (K, 1) is based on Eq.
(4.8) for this function, The kernel L 4k, 1) of the operator Ly=N{P~" can then be said [cf. Egs. (4.1) and
(4.2)] to satisfy the differential equatlon

MLy (k, )=\ 10, ¢ (&, m) Ly (m, 1) dim,
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where
Oyg(k, )=R_y (k. )—3(k—1) S [y (m, m)—q] ©_y 5(m, L) dm.

We introduce with this equation the operator ﬁv,g in the space §,. The analyticity of hy (k, I) when (k, y) =
(1, v) reduces to the operator I, ; =T}, :T, being triangular,

By (0 9)= (g ) (=9I, 2 (b, D) et dRdl =0, (x,7)> (v, ).
We also note that

H;.E': —H_yz,

which is a simple corollary of Eq. (3.9).

Recalling the definition of WV we find that

MW=, W, 4 W, .. (5.6)
We now prove, proceeding on the basis of Eq. (5.4), that
MU= —U,0, ;.

Yy YYE 5.7)

For this purpose we note that the operator Mg U.y is triangular and therefore uniquely determined by the
equation

(MUY Wy -+ Uy (M W)= — U7 (MUD U,

which is obtained by differentiating Eq. (5.4). In fact if we explicitly write out this equation in terms of the
kernels of the operators occurring in it, the right side will vanish when (x, 7} <(y, 7) and we will obtain a
linear integral equation for the kernel of M:U,, which differs from the Gel'fand—Levitan equation only

in the free term. Using Egs. (5.4) and (5.6) we easily find that — U,Il; ¢ satisfies this equation. The Volter-
ra property of [62% and the triangularity of II,: implies that U, ; is also triangular., Equation (5.7)
may therefore be said, because of the uniqueness noted above, to be proved.

Let us now turn to the operator Hy introduced in Eq. (5.3). We have
MeH =(M:Uy) HUT — U H YT (MU Uy =
=U‘YHOHV’ZU:l—‘UVH%EHOU;l=0'
since the operator II,: commutes with Hy. We have found the promised constancy factor on H, as a
function v and tegether with it the locality of the potential V.

In transferring this scheme to the case when a discontinuous spectrum is present, it is necessary to
observe care in differentiating the contribution to Eq. (5.2) from the improper vector x ,,. It is convenient
to first rotate all the variables so that a variation in vy will not vary the Volterra direction of the desired
operators, Differentiation with respect to y then no longer causes complications, In proving an equation
of the type of Eq. (5.8) it will be necessary to use a differential equation of the form of Eq. (4.13).

It remains for us to prove that the initial kernel f(k, I) is the scattering amplitude for the given Schrbe-
dinger operator H. We need only prove here that the solutions U, (x, k) constructed with respect to the
transformation operator U, and the determinant A+ (k) using Egs. (4.3) and (2.10) have for large |x| the
asymptotic

y (| £] 75 &) |e1sco = €IFIEN 4 0 (1), (5.8)
In fact once this equation has been proved, we easily verify that the set of solutions

4t (x, k)=S Q) (¢, k) uy (x, D dl,
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which is independent of y because of Eq. (5.7),has the asymptotic of Eq. (1.2) in which the initial kernel
f(k, 1) occurs, We will not present the arguments proving Eq. (5.8), since they require a significantly more
detailed study of the kernel Ay (x, y) than we have so far limited ourselves tfo,

This investigation can be carried out until the formal discussions of this chapter have been made
rigorous, The variants of it available to us are too cumbersome to fit within the present survey. We hope
that the formal scheme for solving the multidimensional inverse scattering problem presented here will
be a stimulus for some readers to develop better founded analytic models for its justification,

With this we conclude the description of the state of the inverse problem of quantum scattering theory
through the beginning of 1973,
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