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I N T R O D U C T I O N  

The cu r ren t  su rvey  s u m m a r i z e s  the compara t ive ly  quiescent  development  of what is called the inve r se  
p rob lem of quantum sca t t e r ing  theory over  the past  15 y e a r s .  The preceding  decade,  during which this 
p rob l em was formula ted  and subsequently intensively developed,  was deal t  with in my survey  [25]. Its 
en t i re  2 5 - y r h i s t o r y d e m o n s t r a t e s  that it is one of the m o s t  intr iguing and ins t ruc t ive  b ranches  of m a t h e m a -  
t i ca l  physics  and r evea l s  in its development  new and unexpected aspec t s ,  and that  it is far  f rom being e~- 
hausted.  

There  exis ts  somewhat  s e l f - cons i s t en t  methods for  present ing  the f o r m a l i s m  of the inverse  p rob lem.  
An e l e m e n t a r y  approach is based  on the study of the p r o p e r t i e s  of solutions of di f ferent ia l  and in tegra l  
equations c h a r a c t e r i s t i c  for  it by methods of c lass ica l  ana lys is .  The monograph  of Z. S. Agranovich and 
V. A. Marchenko [1] is an example  of this presenta t ion .  In the cu r ren t  survey ,  as in [25], we follow a dif-  
fe ren t  approach,  using w h e r e v e r  poss ib le  an o p e r a t o r - t h e o r e t i c  approach.  The or igin  of this method of 
desc r ib ing  the inverse  p rob lem was set  for th by Kay and Moses  [38, 39]. In this approach the inverse  
p rob lem of sca t t e r ing  theory  does not appea r  isolated,  but finds a natural  p lace  within the f r a m e w o r k  of 
gene ra l  sca t t e r ing  theory .  

Le t  us r eca l l  the genera l  s t a t emen t s  of sca t t e r ing  theory  for the Schr'Sedinger opera to r ,  with which 
we will deal  hencefor th .  It is a m a t t e r  of compar ing  the spec t r a l  p r o p e r t i e s  of two ope ra to r s  H and H 0 
defined in the Hi lber t  space  S2-~L2(R n) by the f o r m a l  d i f ferent ia l  equations 

H=--A-r-v(x); Ho=--~. 

Here  A is the Laplace  ope ra t o r  

0 ~ O~ 

and v(x) is a r e a l  function sufficiently continuous and rapidly  dec reas ing  as [xl - -  ~. The ope ra to r s  H and 
H 0 defined in D on the dense domain ~ = ~ ( R n ) ,  define se l f -adjo in t  ope ra to r s ,  which we will denote by 
these  l e t t e r s .  The ope ra t o r  H 0 has  absolutely  continuous spec t rum.  Its  diagonal  r ep re sen ta t i on  is r e -  
al ized by means  of the F o u r i e r  t r an s fo rm a t ion  

Here  

The a s se r t i on  that  the ope ra to r  H has  the s a m e  absolutely continuous spec t rum as H 0 is the fundamental  
r e su l t  of sca t t e r ing  theory .  More  p rec i se ly ,  there  ex i s t s  an invar ian t  decomposi t ion  r e l a t ive  to H of the 
space  ~ in the d i r ec t  or thogonal  sum 
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of natural subspaees corresponding to the discontinuous and absolutely continuous spec t rum of this opera -  
tor .  Here the res t r i c t ion  of H to 57~.~. is unitari ly equivalent to H 0. 

There  exist among the opera tors  i somet r i c  in ~ that rea l ize  this equivalence two opera tors  U (~) d is -  
t inguished in t e rms  of their physical  origin. They are called wave opera to r s  and a re  defined by 

U (:) = lim e~nte -~nd,  
t-.o-• ev 

where the l imit  is understood in the sense of a s t rong opera tor  topology. There  exists a broad l i te ra ture  
that deals with the conditions on v(x) under which these l imits  exist.  Our problem does not include the 
presenta t ion of this "direct"  problem of sca t ter ing theory,  although severa l  resul ts  relat ive to the exis-  
tence of opera tors  U (:~) wilt also be mentioned in the text. Details on this question may be found, for ex- 
ample, in the monograph of Kato [36]. We note that the fact  that the opera tor  V = H - H 0 is a funct ion-mul-  
t iplication opera to r  plays no role in genera l  d iscuss ions  in sca t te r ing  theory.  

The opera to r s  U(*) are  i somet r i c :  

Ur177 U( •177  

Here P is a p ro jec tor  on the subspace ~ a, which, as a rule,  is f ini te-dimensional .  The second relat ion is 
said to be a completeness  condition. The unitary equivalence spoken of above is real ized by the equation 

HU(• = U(~Ho. 

The physical  meaning of wave opera tors  is based on the following concepts.  In quantum mechanics  
the opera tor  

U ( t ) = e - ira  

descr ibes  the evolution of a sys tem,  which in our case,  consists  of a par t ic le  in the field of a potential 
center .  Over  a long period of t ime a par t ic le  with positive energy exits far  f rom the center ,  becoming 
sensi t ive to its influence, and as a resul t  its development over the course  of t ime as It]-~co is actually 
descr ibed  by the opera tor  

Uo(t) =e-~ao  ', 

corresponding to f ree motion. 

More prec i se ly  we may cor re la te  to every s ing le -pa ramete r  family of vectors  ,_( t ) ,  descr ibing 
free motion (wave packet) 

a solution of the SchrSedinger equation 

~,_ (t)---- e-m0t~_ 

(t) = e-mr3 

such that 

[l ~ (0  - -  r (t) lr-~0 

as t--~ --  co. The p rec i se  equation defining such a solution and following from the existence of wave opera -  
to rs ,  has the form 

~=U(-~_.  
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Every  solution of the SchrSedinger  equation $(t) f r o m  the given c lass  as t -- ~ again reduces  to a wave 
packet ,  in genera l  dif fer ing f rom r 

II '~ ( t ) - ,+  (t)It-+o 

as t--~, where 

,+ (t) =e-motg. ;  9+=U<+)*,. 

The las t  equation is just if ied s ince the o p e r a t o r s  U(+) and U(-) have a common range  of values.  

The pa s sage  f rom the wave packet  ~_(t) desc r ib ing  the initial  s ta te  of a par t i c le ,  to the wave packet  
~+(t) desc r ib ing  its final s ta te  is also the p r o c e s s  by which a pa r t i c le  is s ca t t e r ed  by the center .  All in- 
fo rmat ion  on this p r o c e s s  is contained in the ope ra to r  S, which r e l a t e s  both wave packets  by the fo rmula  

~+=s% 

Compar ing  the equations express ing  ~ in t e r m s  of ~_ and ~b + in t e r m s  of ~,, we see that 

S =U(+)*U(-), 

where it follows f rom the p r o p e r t i e s  of U(+) and U(-) that S is uni tary  and commutes  with H 0' 

s*s=ss*=i;  [s,  Ho]=O. 

These  re la t ions  re f l ec t  conserva t ion  of pa r t i c le  and energy  flux in the course  of sca t te r ing .  

The ope ra to r  S is said to be the sca t t e r ing  ope ra to r ,  I ts  r ep re sen t a t i on  

3=ToSTo 

in a diagonal  rea l iza t ion  of H 0 is defined by the equation 

~% (k)=~ (k) - 2~i f f (~, 0 ~ (~2_ 12) = (0 d4 

where 6, the integrand,  explici t ly takes  into account the fact that S and H 0 commute .  The function f(k, l) 
defined for  I k] = ]l] is called the sca t t e r ing  amplitude.  

There  exis ts  an a l te rna t ive  approach to the sca t t e r ing  theory,  called the s ta t ionary  approach,  based 
on the study of the asympto t ics  of the eigenfunctions of H as Ix I - -  ~. The sca t t e r ing  ampli tude f(k, l) he re  
expl ici t ly  occurs  in the desc r ip t ion  of these  asympto t i c s .  Such an approach and its re la t ion  to the nonsta-  
t ionary  approach  will be i l lus t ra ted  in the text.  

The p rob lem of r econs t ruc t ing  the potential  v(x) r e l a t ive  to the sca t t e r ing  ampli tude f(k, l)  is said 
to be the i nve r se  p rob lem of s ca t t e r ing  theory.  This  p rob lem is not defined if the per turba t ion  V = H -  H 0 
is an a r b i t r a r y  opera to r ,  s ince an en t i re  se t  of ope ra to r s  V can eas i ly  be se lec ted  with r e s p e c t  to an a r -  
b i t r a r y  uni tary  ope ra t o r  of the fo rm S, such that the cor responding  ope ra to r  S is a sca t t e r ing  ope ra to r  for  
the pa i r  H 0 and H 0 + V. It b ecom es  meaningful  only under  a fu r the r  condition, to which V is a function- 
mul t ip l ica t ion  ope ra to r .  Henceforth,  this condition will be said to be the local i ty  of the potential .  

Over  the pas t  50 y e a r s  the i nve r se  p rob lem has been solved for the case  m o s t  in te res t ing  for  physi -  
cal appl icat ions of a shpe r i ca l ly  s y m m e t r i c  potential ,  vizo, when n = 3, and 

v(x) = v ( [ x l ) = v ( r ) ,  O<r<co .  

In this case  the sca t t e r ing  ampli tude f(k, l) depends only on the lengths of the vector  k and l, which are  
equal by the condition, and on the angle between them so that it is actually a function f(]kl, cos 0) of two 
va r iab les .  The pa r t i a l  s ca t t e r ing  ampli tudes  fl (Ikl) a r i s e  in decompos ing  f([k[, cos 0) in Legendre  poly-  
nomia ls  

1 f(I  ~ I, cos 0) = - ~  y, (2t + 1) A ([ ~ I) P, (cos 0) 
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so characteristic for spherically symmetric problems. The unitarity condition on an operator S can be 

explicitly borne in mind by setting 

/ t  (I k I)= exp {i,~t (1 ,~ I)} s in~ (I/~ [), 

where V/(lkl) is a rea l  function, called the asymptot ic  phase because of its role in the s ta t ionary fo rmula -  
tion of the sca t te r ing  problem. 

The fundamental resu l t  obtained by V. A. Marchenko [16] and M. G. Krein  [12] states that the poten- 
tial v(x) is recons t ruc ted  in one of the asymptot ic  phases Vl (]k[), one such phase being an a rb i t r a ry  rea l  
function sat isfying the integral i ty condition 

Here m positive numbers  associa ted with the charac te r i s t i c s  of a discontinuous spec t rum of the radial  
Schrbedinger  opera to r  

d 2 / ( / + 1 )  _ . . 

H t  = --d--~ + " " 7 - -  + v (r), 

whose recons t ruc t ion  constitutes our problem,  must  be specified for a unique determinat ion of the poten- 
tial as must  be the phase Vl. 

It is p rec i se ly  this resu l t  that was dealt  with in the survey [25]. The subsequent development of the 
inverse  problem,  about which we shall speak in the cur rent  ar t icle ,  is associa ted  with the SchrSedinger 
opera tor  in the genera l  case without spher ical  s y m m e t r y  type assumptions.  Here,  two cases  are  dis t in-  
guished, theore t ica l ly  differing in t e r m s  of technical  diff icult ies:  n = 1 and n ->- 2. In the f i r s t  case,  tools 
developed for the rad ia l  Schr~iedinger opera tor  with Z = 0 turned out to be applicable. The chief role  is 
played by the existence of a fundamental sys tem of solutions for the corresponding one-dimensional  dif- 
ferent ia l  equation. In the mult idimensional  case,  when we must  deal with a part ia l  differential  equation 
in addition to ordinary  differential  equations, the concepts of a fundamental sys tem vanishes. It may be 
that it is p rec i se ly  this c i rcumstance  that constituted the hindrance that has extended the study of the mult i -  
dimensional  inverse  problem over such a long period of time. 

In spite of this c i rcumstance ,  which consti tutes a technical  distinction, it turned out that the one-di -  
mensional  and mult idimensional  inverse  problems are to some degree  analogous in many ways. This 
analogy can be par t icu la r ly  seen in an ope ra to r - theo re t i c  language, which we have chosen for our p resen ta -  
tion for p rec i se ly  this reason.  It is of in teres t  that all these asser t ions  on analogy re fe r  to the one-di -  
mensional ,  but not radial  Schr~iedinger opera tor .  In this sense the one-dimensional  case plays a fortunate 
role as an intermediate  link between the radial  Schr~Sedinger opera to r  and the mult idimensional  opera tor ,  
being technically close to the f o r m e r  and conceptually anticipatory of the fundamental outlines of the la t ter .  

We will now indicate the principal  dist inction between the inverse  problem considered in this survey 
and the case of the radia l  SchrSdinger opera tor .  It consis ts  in the overde te rminacy  of this problem, in 
the radial  case we must  construct  a function v(r) decreas ing  to infinity of a variable r that var ies  on the 
half-axis ,  in t e rms  of a function ~ll(Ikl) of a variable lkl also on the half-axis  and also sat isfying an asyrnp- 
totic condition as ikl~OO It is therefore  not r emarkab le  that the function +lt(Ikl) can be chosen a rb i t ra r i ly .  
A s imi la r  s imple calculation of p a r a m e t e r s  demons t ra tes  that the scat ter ing amplitude for more  complex 
problems cannot be a rb i t r a r i ly  selected.  

Let us f i rs t  consider  the SchrSedinger opera tor  for n = 1. An a rb i t r a ry  uni tary scat ter ing amplitude 
f(k, l), where k, l E R 1 can be pa ramet r i c i zed  by four rea l  functions of the variable Ikl, running through the 
half-axis .  A s y m m e t r y  condition, which follows f rom the rea lness  of the potential and which will be pre-  
sented in the text, dec reases  this number down to three.  At the same time the potential v(x) can be con- 
s idered only as two rea l  functions defined on the half-axis .  Indeterminacy is present  since it is difficult 
to imagine the physical  origin of the problem in which the nondegenerate correspondence of sets of two 
and three a rb i t r a ry  functions would be established. In other words these heur is t ic  arguments  demonst ra te  
that the sca t ter ing amplitude f(k, l) will sat isfy the necessa ry  condition and so can be expressed in t e rms  
of two rea l  functions of the half-axis .  Such a condition in fact a r i ses  and is der ived in the text. 
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When n -> 2 this indeterminacy is significantly aggravated.  The scat ter ing amplitude here  is a func- 
tion of 2 n -  1 var iables ,  while the proper ty  of being unitary reduces  to this function being real .  At the 
same time the potential is a rea l  function of n variables.  As a resu l t  of such indeterminacy the problem 
of determining necessa ry  conditions on the scat ter ing amplitude that follow from the localization condi- 
tion on the potential, a r i ses  and becomes  of great  importance.  It was previously unclear  that such condi- 
tions can in general  be expressed  in t e rms  of the sca t te r ing  amplitude in sufficiently explicit form. Never-  
theless,  as will be explained in the text, such conditions can be descr ibed.  

We will now formulate the fundamental s tatements  of the formal i sm of the inverse  problem. We will 
assume for the sake of definiteness that the opera tor  H has one simple eigenvalue, so that the pro jec tor  P 
under an i sometr ic i ty  condition is a pro jec tor  on the one-dimensional  subspace the corresponding eigen- 
vector  u spans. The choice of the t ransformat ion  opera tor  U, ioe., the choice of the solution of the equa- 
tion 

H U =  UHo, 

which differs f rom wave opera tors ,  is the basis of this approach. Every  t ransformat ion  opera tor  is ob- 
tained f rom the wave opera tors  U(~=) by multiplication on the r ight  by a normalizing opera tor  factor  N(*) 
that commutes  with H0, 

U = U ( ~ : ) N  (+), IN(+), H0] =0 .  

In par t icu lar  the scat ter ing opera to r  S is a normalizing factor  for U(-) with respec t  U(+), 

U(- )  = U(+)S. 

Comparing these two formulas  we can see that a factor izat ion of the sca t ter ing opera tor  

S ~ N ( + ) N ( - )  -~ 

eor r responds  to every  choice of the t ransformat ion  opera tor  U. 

We now assume that U is invertible in the sense that there  exists a vector  • not belonging to the 
space ~ ,  such that 

(1) 

u = UX. 

Then the completeness  condition expressed  in t e rms  of U will be 

U W U *  =I, (2) 

where 

W - - - N ( + ) - ' N r 1 7 7  *-~ -b Z@X. 

The opera tor  W will be called a weight opera tor .  

Equations (1) and (2) constitute the basis  for solving the inverse  problem. We must  find a success -  
ful determinat ion of U, such that Eq. (2) uniquely determines  it in t e rms  of the weight opera tor  W and that 
the corresponding factors  N(:e) is uniquely determined by the factorizat ion condition of Eq. (1) in t e rms  of 
a given opera tor  S. It turns out that s imi la r  t r ans fo rma t ionope ra to r s  exist  and are distinguished by a 
Vol te r ra  proper ty .  

Let  us clarify in detail what we understand by a Vol te r ra  proper ty .  In the one-dimensional  case this 
concept is formulated in the mos t  c lass ica l  fashion. The kernel  A(x, y), where x, yER i is said to be t r ian-  
gular  if A(x, y) = 0 when x < y  or  A(x, y) = 0 when x >y.  An integral  opera tor  with t r iangular  kernel  is said 
to be a t r iangular  operator .  Finally an opera tor  of the form "identity element plus t r iangular  opera tor"  
is said to be a Vol ter ra  operator .  We have two possibi l i t ies  for a Vol te r ra  opera tor  in theone-d imens iona l  
c a s e :  
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oo 

U,~ (x) = q  (x) + I A~ (x, y) q (y) dy; 
x 
x 

U2'~ (x)=~ (x) + f Az (x, y) ~ (y) dy. 
--co 

Both fo rmu la s  may  be desc r ibed  uniquely  if a d i rec t ion y is introduced,  i .e . ,  actual ly  a va r iab le  taking 
two values y = �9 1 

V v q ( x ) = q ( x ) +  i A v(x,y)  9(y)dy. 
( g - x ) ~ , > 0  

In this fo rm the calculat ion of the Vo l t e r r a  ope ra to r  is na tura l ly  ca r r i ed  ove r  to the case  n-> 2. The 
va r i ab le  y in this case  is a unit vector  and runs  through, unlike the one-d imens iona l  case ,  a connected set ,  
namely  the sphe re  S n-1. An ope ra t o r  of the fo rm 

U~,~(x)=,~(x)+ I Av(x'Y)~(y)dy 
( y - - x , y ) > 0  

is said to be a Vo l t e r r a  ope ra to r  with d i rec t ion  y of Vo l t e r r a  p rope r ty .  

We will now prove  that the Vo l t e r r a  p rope r ty  of a t r a n s f o r m a t i o n  ope ra to r  Uy reduces  the comple t e -  
ness  equation (2) to a l inear  in tegra l  equation for the ke rne l  Ay(x,  y) occur r ing  in i ts  definition. Suppose 
Y is some  d i rec t ion  and let  U7 be a Vo l t e r r a  t r a n s f o r m a t i o n  ope ra to r  with d i rec t ion  y of Vo l t e r r a  p r o p e r -  
ty. We cons ider  the ope ra to r  

U.r = I + A  v. 

This ope ra to r  has  d i rec t ion  of Vo l t e r r a  p rope r ty  opposite to that  of the ope ra to r  y ,  so that  

2~ ( x , y : = 0 ,  (x--y,.~.)>O; S4~(x,y)=0, ( x - -y , - / )<0 .  

Suppose Wy is a weight ope ra to r  for  Uy,  and we set  

Equation (2) with the notation introduced, can be r ewr i t t en  in the f o r m  

Av + ~, + Av2v = A v 

or .  in m o r e  detai l ,  in t e r m s  of the ke rne l s  Ay(x,  y), ~y (x ,  y), and Ay(x,  y) in the fo rm 

A v (x, y) + o v (x, y) + I Av (x, z) ~o, (z, y) dz = Av (x, y). 
(z-.~V)>0 

The r ight  side he re  vanishes  when (y - x, 3/) > 0. If this condition holds,  we obtain the l inear  in tegra l  equa-  
t ion 

Av(x' Y)+~v(x '  Y)+ i A~(x, z)2v(z, y ) d z = 0  
~ z - - x , y ) > 0  

( y - - x ,  4 )>0 ,  

which can be used to find the ke rne l  Ay(x,  y) in t e r m s  of the known ke rne l  9y(x,  y). This  equation const i -  
tutes  a genera l  formula t ion  of the G e l ' f a n d - L e v i t a n  equation introduced in [8] for  the actual example  of a 
S t u r m - L i o u v i l l e  ope ra t o r  on the ha l f -ax is .  

Thus we will see how to r econs t ruc t  the Vo l t e r r a  t r a n s f o r m a t i o n  ope ra to r  Uy if the cor responding  
weight ope ra to r  W 7 is known. To const ruct  the ope ra to r  Wy in t e r m s  of a known ope ra to r  S it is neces -  
s a r y  to solve one m o r e  p rob lem in the fac tor iza t ion  of Eq. (1) to de t e rmine  the normal iz ing  f ac to r s  of U~/. 
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It is still not ent irely understood whether this problem for Vol ter ra  U~/ also reduces to a l inear equation 
nor whether it is even solved explicitly in the one-dimensional  case. It turns out that normalizing factors  
for  Vol te r ra  t ransformat ion  opera tors  themselves  turn out in some sense to be Volterra .  We will not 
clarify this c i rcumstance  in more  detail here  and re fe r  the reader  to p rec i se  formulat ions in the text. 

Thus, the procedure  for solving the inverse  problem solving for given scat ter ing amplitude a set of 
factorizat ion problems (1) to de termine  the normalizing factors  N{7~). A weight opera tor  Wy is constructed 
in t e rms  of these data and charac te r i s t i c s  of the discontinuous spect rum,  if such exists,  and then using the 
G e l ' f a n d - L e v i t a n  equation, the t ransformat ion  opera tors  Uy are reconst ructed .  All the stages,  in general ,  
can be conceptualized for an a rb i t r a ry  initial opera tor  S. Moreover  if S is unitary, each of the opera tors  

14v,~UvI-loU'~ l 

will be self-adjoint .  Additional necessa ry  conditions, about which we spoke above, begin to play a role at 
the next stage, when it is clarif ied that the opera tors  Hy in fact are independent of y .  This important  s tate-  
ment simultaneously serves  for investigating the proper t ies  for the recons t ruc ted  opera tor  H and for prov-  
ing that the initial opera tor  S is in fact the scat ter ing opera tor  for the pair  H and H 0. The tools for proving 
the independence of H~/ f rom y differ for n = 1 and n -> 2, because of the difference between the range of 
values of the variable y .  When n->2, i.e., when this set  is connected, we can use differentiation with r e -  
spect  to the pa r ame te r  y .  In the one-dimensional  case it is necessa ry  to use more  art if icial  means.  

We conclude this descr ip t ion of the tools for solving the inverse  problem, since fur ther  detail r e -  
quires  a more  formal  presentat ion,  which will be presented in the text. We note only that, in our opinion, 
abs t rac t  scat ter ing theory can be fur ther  developed so that Vol ter ra  t ransformat ion  opera tors  and the 
existence of separated factorizat ions of the form (1) of the scat ter ing opera tor  find a natural place within 
its f ramework.  Apparently the formulation of scat ter ing theory due to Lax and Phillips [45] is the most  
successful  s tar t ing point for  such a generalization,  and a given causali ty condition wilI in a reasonable way 
be the appropriate  language. 

Let us now indicate on the s t ruc ture  of the survey.  Differences in the technique and elaboration of 
the cases  n = 1 and n -> 2 forced us to t rea t  them separately.  We will finally emphasize the analogies be-  
tween the corresponding discuss ions  and equations wherever  possible.  

The one-dimensional  case is d iscussed in Chap. 1. A significant technical simplification for study- 
ing the one-dimensional  SchrBedinger opera tor  lies in the existence of selected fundamental sys tems  of 
solutions of the correspondinding differential  equation. All opera tor  equations are  suitably introduced and 
justified proceeding on the bas is  of the well-known proper t ies  of these solutions. The descr ipt ion of these 
proper t ies  is d iscussed in Sec. 1, which plays an auxil iary role.  In Sec. 2 the fundamental s tatements of 
sca t ter ing theory for  a given concrete  example are  formulated and proved. Vol te r ra  t ransformat ion  opera-  
tors  are  introduced in Sec. 3 and the normalizing factors  corresponding to them are obtained in Sec. 4. 
Ge l ' f and -Lev i t an - type  equations are  formulated in the lat ter  section. Section 5 t rea ts  the solvability of 
these equation. A relat ion is analyzed there  between t ransformat ion  opera tors  for y = 1 and y = - 1 .  The 
general  investigation of the inverse  problem concludes here .  The last  Sec. 6 contains a descr ipt ion of an 
explicit solution of the G e l ' f a n d - L e v i t a n  equation for the par t icu lar  case when the scat ter ing amplitude is 
a rat ional  function of a p a r a m e t e r  k. 

Chapter 2 also t rea ts  one-dimensional  problems.  Here a general izat ion of the formal i sm developed 
in Chap. 1 to the case of potentials v(x) having nonzero asymptot ic  as x ~ - ~ o  (Sec. 1) or  to the case of an 
opera to r  of the form 

I d (p(.) q(x) l H=(--O! O)-3x + ,q(x) --p(x))' 

which is a d i rec t  general izat ion of the Schr~edinger opera tor  (Seco 2), is analyzed at an e lementary  level. 
In the last  sect ion we will descr ibe  so-ca l led  t r ace  identities, which relate  cer tain functionals of the poten- 
tial and scat ter ing amplitude. These identities, through not a means for the d i rec t  solution of the inverse  
problem, can indirect ly lead to information on the potential according to known proper t ies  of the sca t t e r -  
ing amplitude, and conversely .  Section 4 descr ibes  an application of the inverse  problem of scat ter ing theory 
to the solution of one-dimensional  nonlinear evolutionary equations. The s tar t ing point of this application 
was set forth in the important  work of Kruskal et al. [42]. Then P. Lax [44], V. E. Zakharov and A. B. 
Shabat [11], V. E. Zakharov and the author [10], and others  fur ther  developed this subject. The inverse  
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problem method of sca t ter ing theory for solving nonlinear equations current ly  draws ever g rea te r  attention 
and is rapidly developing. The region of its applicability is still far  f rom clarif ied and we will consider  in 
the p resen t  survey  only two charac te r i s t i c  examples.  

In Chap. 3 we re tu rn  to our  fundamental theme and consider  the inverse  problem for the mult idimen- 
sional SchrSedinger opera tor .  For  the sake of definiteness we will de s /w i th  the physical ly interest ing 
case n = 3, although all the d iscuss ions  are  t r ivial ly car r ied  over  to a rb i t r a ry  n -> 2. In the mult idimen- 
sional case no fundamental sys tem of solutions nor  proof procedure  is available due to the far  g rea t e r  
cumbersomeness .  The scope of the present  survey does not allow us to present  somewhat instruct ive 
es t imates  needed to make all the construct ions  of Chap. 3 r igorous .  We will therefore  l imit  ourse lves  to 
a presenta t ion of only the formal  scheme of these construct ions.  We leave it to the r eade r  to complete the 
a lgebraic  f ramework  of this scheme by appropriate  analytic arguments .  

In Sec. 1 we set forth the fundamentals of scat ter ing theory for the three-d imensional  SchrSedinger 
opera tor .  General  concepts that are  of ass is tance  in r e s e a r c h  on Vol te r ra  t ransformat ion  opera tors  U~/ 
are  descr ibed  in Sec. 2. The construct ion of normed factors  and the weight opera tor  W 7 are  d iscussed in 
Secs. 3 and 4. The descr ipt ion of the G e l ' f a n d - L e v i t a n  opera to r  and a scheme for studying the inverse  prob-  
lem are presented in Sec. 5, with which Chap. 3 concludes. 

No special  knowledge is required  to read this survey.  In par t icular ,  it can be read independently of 
the preceding survey [25], since all the necessa ry  information on the SchrSdinger opera tor  are enumerated 
here  once again. We hope that for some mathematicians this survey can serve  as an introduction to sca t -  
ter ing theory,  a branch of functional analysis and mathemat ica l  physics  which is constantly expanding the 
domain of its applications. 

In concluding this introduction we note trends associated with the inverse  problem of scat ter ing the- 
ory that are  not indicated in this survey.  These include: 1. works of B. M. Levitan and M, G. Gas~a~nov, 
M. G. Krein, and his students on canonical sys tems and Di rac - type  sys t ems  on the semi -ax i s .  These works 
in t e rms  of the formulation of the problem and methods re la te  to the problems associated with the radial  
SchrSedinger opera tor .  We refer  the reader  to new studies [7, 13] for r e fe rences  to the l i te ra ture  given 
there.  

2. Works on inverse  problems in t e rms  of scat ter ing data for fixed energy.  By this problem ,~s under-  
stood the recons t ruc t ion  of the potential v(r) in t e rms  of a known set of asymptot ic  phases Uz(Ik]) for all 
l = 0, 1, 2 . . . .  and fixed Ik]. An opera to r - theore t i c  formulation of this problem is not at all evident and the 
resul ts  obtained have yet  to reach,  in t e rms  of elegance and completeness,  the level attained in the spec-  
t ra l  formulat ion of the inverse problem. The most  detailed presentat ion of well-known facts on this prob-  
lem can be found in Loeffel [47]~ 

3. Works of V. A. Marchenko and his students on the stability of the inverse  problem, p r imar i ly  for 
the example of the radial  Schr~edinger equation. The recent  monograph of V. A. Marchenko [17] d i scusses  
this subject. 

We will use no unusual notation. Constants appearing in the l imits are  denoted by C. An expticit de-  
pendence of these constants on pa rame te r s  is indicated only if this is important.  In numbered equations 
the f i rs t  digit indicates the number of the section and the second, the number of the equation. The number-  
ing of the sections begins anew within each chapter.  A re fe rence  to an equation of a different chapter will 
use a number made of three digits of the type (II.3.14), whose meaning is self-evidento 

CHAPTER 1 

ONE-DIMENSIONAL SCHROEDINGER OPERATOR 

In this chapter we will consider the SchrSedinger operator 

d 2 
H =  - - T V  + v (x) ,  

where the potential v(x) is assumed to be a rea l  measureab le  function satisfying the condition 

~(1 + lxi) l~(x)l d x  < ~ .  
- - c o  

(P) 
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Here  the ope ra t o r  H defined on the dense set  D=W~(R) in the Hi lber t  space  ~-~L  2 (R) is a se l f -adjoint  
ope ra to r .  We will introduce and c h a r a c t e r i z e  the sca t t e r ing  data  cor responding  to this ope ra to r  and de-  
s c r ibe  the p rocedu re  for  solving the inve r se  p rob lem for  r econs t ruc t ing  the potential  v(x) in t e r m s  of 
these  data.  

1 .  F u n d a m e n t a l  S y s t e m  o f  S o l u t i o n s  o f  S c h r S e d i n g e r  E q u a t i o n  

This  sect ion is auxi l iary.  Here  we will desc r ibe  two fundamental  s y s t e m s  of solutions of the Schr~e-  
dinger  equation 

d 2 
H9 = --  -a~ * (x) + v (x) 9 (x) = k2q (x). (I.1) 

Hencefor th  k, as a ru le ,  will be a r ea l  number ,  but s o m e t i m e s  we will a s s u m e  it to be a complex number ,  
pa r t i cu l a r ly  when specif ied.  

Condition (p) means  that v(x) effect ively vanishes as Ix l-+ oo, so that  we may natural ly  a s sume  that 
eve ry  soIution of Eq. (1.1) coincides at infinity with some solution of the equation 

d 2 
H09 - - ~ ,  (x ) - -  k2, (x), 

i .e . ,  a l inea r  combinat ion of exponents 

fo(x ,  k)=e i~;  /o(X, - - k ) = e  -~kx. 

More r igorous ly ,  we may  prove  that there  exis t  solutions fl(x, k) and f2(x, k) of Eq. (1.1) which have the 
asympto t ic  

f t ( x , k ) = f o ( X , k ) + o ( 1 ) ,  x - + o o ,  (1.2) 

f 2 ( x , k ) = f 0 ( x ,  - - k ) + o ( 1 ) ,  x - + - - o o .  (1.3) 

The proof  is based  on the fact  that the d i f ferent ia l  equation (1.t) with the boundary conditions (to2) 
and (1.3) is equivalent  to the equations 

f ,  (x, k) = e i~x + ~ G, ( x - -  y, k) v (y) f ,  (y, k) dy; 

f2 (x, k)-= e -ihx + ~ Q2 (x -- y, k) v (y) f2 (Y, k) dy; 

(1.4) 

(1.5) 

where  

G 1 ( X ,  .~ sin kx  sin kx k ) = - - ~ ( - - x ) - ~ ;  O~(x,k)=O(x) 

and O(x) is the Heavis ide  function 

O(x )= l ,  x > O ;  O(x)=O, x < O .  

These  equations a re  V o l t e r r a - t y p e  in tegra l  equations,  so that  the method of success ive  approx ima-  
t ions always converges  for  them.  Here  the p a r a m e t e r  k can have complex values f rom ~he upper  half -  
plane.  As a r e su l t  of analyzing the succes s ive  approximat ions  we will p rove  that the solutions fl(x, k) and 
f2(x, k) exis t  and for  fixed x a re  analytic functions of k when Im k> 0 and a re  continuous when Im k = 0. 
Here  we have the bounds for  them 

If, (x, k) - -  eikX 1 4 C ~ I (1 + ]yl)lv (Y)ldy; 
x 

(1.6) 
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e I m k x  i [f~(x, k ) - -e  -'~' ~ < C - -  (1 +]yl)lv(y)ldy. l+k (1.7) 

Such asse r t ions  were  f i r s t  obtained by Levinson [46]. 

It follows f rom the bound of Eq. (1.6) on the bas is  of the Jordan l e m m a  that we have for the solution 

fl(x, k) the in tegral  r ep resen ta t ion  

oo 

f l  (x,/e)=elk'~+ ~AI (x, y) em'dy, (1.8) 
x 

where the ke rne l  Al(x, y) is quadrat ical ly  integrable with r e spec t  to y for  any fixed x. Similar ly  f2(x, k) 
can be r ep resen ted  in the form 

f2 (x, k) = e -~kx + i A2 (x, y) e-ikYdy, (1.9) 

where the kerne l  A2(x, y) also is quadrat ical ly  integrable with r e s p e c t  to y. Such integral  r epresen ta t ions  
for solving the Schrtiedinger equation were introduced by B. Ya. Levin [15]. 

The detailed p roper t i e s  of the kerne l s  Ai(x, y) can be obtained on the bas is  of an investigation into 
in tegral  equations equivalent to the corresponding equations (1.4) and (1.5) for  the solutions fl(x, k) and 

f2(x, k) 

.g--x 

A I ( x ' Y ) = 2  I v(z) dz--  . dt d zv ( t - - z )A l ( t - - z , t+z ) ;  
. r + y  x + g  0 
-v" T 

(1.1o) 

x+y x+y 

- -oo  - -oo  y - - . v  

2 

(1.11) 

Such equations were  f i r s t  der ived  by Z. S. Agranovich and V. A. Marchenko [1]. Agranovich and 
Marchenko proved the convergence of the method of success ive  approximations for these equations and 
obtained bounds on the solutions.  To wri te  the bounds it is suitable to introduce the monotone functions 

r x 

~1 (x)= j" ]~, (y)lay; ~ (x)-- I Iv (y)tay. 
x --co 

Bounds on the kerne l s  Al(x, y) and A2(x, y) have the form 

(1.12) 

Fu r the r  it is possible to prove using these equations the exis tence  of the f i r s t  der iva t ives  of Al(x , y) 
and A2(x, y) and to obtain bounds on them. For  example,  

~Al (x ,  y ) T T v  

0 and s imi l a r  bounds hold for  3~ AI (x, y) and ~A~(x, y). 

Finally,  it is evident f rom the equations that 

oo x 
1 I 

A, (~, x)= y I ~ (y) ay; A~ (x, .~)= ~ i ~'(y) dy, 
x moo 

343 



so that 

--2 d A, (X, x)----v(x)----2 ~ A2(x, x). 

The pai rs  f l ( x ,  k), f l ( x ,  -- k ) = f l  (x, k) and f2(x,  I~), f2(x, - - /~ )= f2 (x ,  k) for  rea l  k ~ 0 are  fundamen- 
tal  sys tems  of solutions of the fundamental equation (1.1). In fact,  since the Wronskian {fl, f l } = f~ f~ - - f~ ]~  
is independent of x, it coincides with its values as x--- 0% which may be calculated using the asymptot ic  for  
the solution fl(x, k) and its der ivat ive .  It can be proved that as x ~ oo 

so that 

f ~ (x ,  ~) = ike  ~k~ + o (1), 

{ft (x, k), )'l (x, --  k)} = lira {fl (x, k), f l  (x, --  k)} -=-- Jr 
= ikeik~e-i~-- e ~h~ (-- il~) e-lkx= 2ik. (1.13) 

We will see that when k ~  0, the Wronskian is nonzero and the solutions fl(x, k) and fl(x, - k )  are  l inear ly  
independent. Similar ly  

{f2(x, k), f2(x ,  - - /~)}=--2ik ,  (1.14) 

so that f2(x, k) and f2(x, - k )  a re  also l inear ly  independent when k ~ 0. 

Any solution of Eq. (1.1) can be r ep resen ted  in the form of a l inear  combination of the solutions fi(x, 
k) and fl(x, - k )  or  f2(x, k) and f2(x, - k ) .  In par t i cu la r ,  we have 

JX2(x, ~ ) = f l ( X ,  ~)Cil(t~)Jf-fl(dC, --k)Cl2()~), 
f l  (x, k )= ]~  (x, k) c= (k) + f2 (x, -- k) c21 (k). 

(1.15) 
(1.16) 

Substituting Eq. (1.15) for  f2(x, k) in Eqo (lo16) and pe r fo rming  the same operat ion with fl(x, k) we find that 
the following equations must  hold in Eqs. (I.15) and (1.16) are  to be consis tent :  

an (&) c22 (&) + a12 (--/z) c21 (k) = c22 (k) cn (k) + c21 (--  k) c,2(&) = 1, 

c1~ (k) e~2 (/0 + e~ (--  k) c~ (k)-= e21 (/0 c11 (/0 + e22 ( - /~)  c1#)  =0 .  
(1.17) 

We may express  the coefficients cij(k), i, j = 1, 2 in t e r m s  of the Wronskians of the solutions fl(x, k) 
and f2(x, k). In view of Eqs. (1.13) and (1.14) and also in view of the se l f -evident  equations 

we find 

{/1(x, ~),/~(x, k)} -- {]s (x, k), f2(x, k)}=0, 

c12 (k)-----c2t (k)=2iJ ~ {fl (x, /0, f2 (x, k)}; 
1 

ell  (~)=~-~ if2{ x, k), f l  (X, --~)}; 

c~(k)=2,- ~ {.f2(x, - k ) ,  f l  (x, k)}. 

Comparing Eqs. (1.19) and (1.20) we find that 

c11 (~)= --e22 (-- k), 

which, incidentally also follows f rom Eq. (1.17) since ci2(k) = c21(k). These  equations imply also that 

Ic,2 (k)l 2 = 1 + le,, (k)? = 1 + le~ (k)?.  

(1.18) 

(1.19) 

(1.20) 
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We will see that the four coeff icients  cij(k) are  in fact expressed  in t e r m s  of two complex-valued 
functions 

sat isfying the condition 

Here  

a(k)  =c~2 (k); o ( k ) = c ~  (~), 

la(k)[2 ~ 1 + Jb (k)lu. 

c2~ (~ ) - -  a (/0; c22 (k) = - O ( -  k). 

We will hencefor th  r e f e r  to these functions as convers ion fac tors ,  

To der ive  fur ther  p roper t i e s  of the functions a(k) and b(k) we express  them in t e r m s  of the kerne l  
A2(x, y). F o r  this purpose we note that Eq. (1.5) implies that f2(x, k) as x - -  ~ has the asymptot ic  

1 e~X ~ e_iky v (y) f2 (Y, k) dy - -  f 2 ( x ,  k)----e-ikx +~-~ 

! e -~kx ~ eit~Yv(y)f2(y, k ) d y + o ( 1 ) .  2ik 

Comparing this equation with the equation 

f2 (x, le)=eikXb (k) + e-ikxa(k) + o (1), 

which follows f rom Eq. (1.15) if we take into account definit ion (1.2) of the solutions fl(x, k) we obtain for  
a(k) and b(k) the equations 

1 ~ elkx~o a (l 0 = 1 - -  ~Y~ (x)  f2 (x,  k) dx ,  

(1.21) 

(1.22) 

oo  

o (~) = ~ i ~-"~' (x) A (x, k) dx. (1.23) 

We now rep lace  f2(x, k) by the kerne l  A2(x , y) using Eq. (1.9). We find 

I ~ v (x )dx_~_Tk~i i2 (x )e2 ,k~dx  ' a (k) = 1 --  2~ 
- -eva  0 

where 

112 (x) = 2 ~ v (y) A2 (y, y - -  2x) dy 
- - o o  

and 

b(k)-~-~ ~ IIt(x)e-~xdx, 
- - o o  

where 

1I~ (x)---- v (x) + 21 v (V) A2 (y, 2 x - -  y) dy. 
X 
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Bounds on Hi(x) and II2(x) follow f r o m  the bounds on A2(x , y): 

[~, (x)l < Iv (x)l + Ch (x) ~, ix), 

which imply that  the function II2(x) is absolutely  in tegrable  on the s e m i - a x i s  0 ~< x ~ c~, while Hi(x) is ab-  
solutely in tegrable  on the ent i re  axis .  Thus,  we have found for  the convers ion  fac to r s  a(k) and b(k) an ex-  
p r e s s i o n  in the fo rm of a F o u r i e r  t r a n s f o r m  of absolutely in tegrable  functions. In pa r t i cu la r ,  it follows 
f rom the obtained r ep resen ta t ions  that  for  l a rge  k we have for  these  coeff icients  the asymptot ic  

a ( k ) = l - k  -qWO(lk-~); q = i v ( x ) d x .  (1.24) 

Moreover ,  we see  that a(k) is the l imit ing value on the r e a l  axis of a function analytic and bounded 
in the ha l f -p lane  Im k> 0 and that  the asympto t i c  of Eqs.  (1.24) holds for  all k with I m k  -> 0. 

We will cons ider  the decomposi t ion  of the ze roe s  of a(k) on the complex plane. Because  of Eqs.  
(1.21), a(k) does not vanish on the r ea l  axis .  Fu r the r ,  it follows f rom the asympto t ic  of Eq. (1.24) that 
a(k) is also nonzero for  sufficiently l a rge  Ikl. tt t he r e fo re  follows that  a(k) can have only af ini te  number  
of z e roe s .  It follows f rom the r ep re sen t a t i on  of Eq. (1.18) for  a(k) by means  of the Wronskian of the solu- 
t ions fl(x, k) and f2(x, k) that  if  a(k 0) = 0, these  solutions are  l inear ly  dependent for  k = k0, i .e . ,  

f , ( X ,  ko)~-cf2(X, ko). (1.25) 

We note that  when I m k > 0  the solution fl(x, k) exponential ly d e c r e a s e s  as x ~ while the solution f2(x, k) 
behaves  l ikewise as x - -  ~.  When k = k 0 we m a y  conclude on the bas i s  of Eq. (1.25) that  Eq. (1.1) has a 
solution that  is quadra t ica l ly  in tegrable  on the ent i re  axis .  The fo rma l  se l f -conjugacy of the equation i m -  
pl ies  that  this is poss ib le  only for  r ea l  k 2, i .e . ,  for  purely  imaginary  k 0. 

We have thus found that  a(k) can have only a finite number  of pure ly  imaginary  ze roes .  We will 
p rove  that these  ze roe s  a re  s imple .  Fo r  this purpose  we obtain an express ion  for  a(k0) = (d/dk)a(k~ k=k0. 
We will p roceed  on the bas i s  of Eq. (1.1) for  fl(x, k) and f~(x, k) and the equation 

3-~ qJ + k2~----- v (x) ,~ - -  2 k~ 

for  fl(x, k) and f2(x, k). We obtain by the s tandard  method the identi t ies 

{f, (x, k), }2 (x, k)} ,x !A -A = 2k f ,  (x, k) f~ (x, k) dx, 

A 

{], (x, k), f 2 (x, le)} tax = --  21e ! f , (x, te) f 2 (x, k) dx" 

(1.26) 

On the other  hand, using Eq. (1.18) we find 

d (2ika (k))=2ia  (k) + 2ikd (k) .= 

-= {f~ (x, k), f2 (x, k)} q- {f~ (x, k), f'2 (x, k)}. 
(1.27) 

Suppose now that  k coincides with one of the ze roe s  of a(k), which we again denote by k 0. When k = k 0 the 
Wronskians  in Eqs.  (1.26) taken for  x = :L A vanish and the in tegra ls  in the r ight  s ides of these  equations 
converge  in l imi t  as A --- ~ .  Compar ing  Eqs. (1.26) and (1.27) and reca l l ing  that a(k0) = 0, we find 

ia (k0)---- ~ f l  (x, k0) f~ (x,/%) dx. (1.28) 
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The solut ions ft(x, k) and f2(x, k) for  imag ina ry  k a re  rea l .  The in tegra l  in the r ight  side of Eq. (1.28) does 
not vanish because  of Eq. (1.25), so that h(k 0) ~ 0 and, consequently the ze roe s  of a(k) a re  s imple .  These  
ze roe s  will hencefor th  be  denoted by i x  l ,where  I = 1 . . . . .  N. With this  we conclude the study of the p rop -  
e r t i e s  of the convers ion  fac to r s  a(k) and b(k). 

In concluding this sec t ion  we p r e s e n t  an expres s ion  for  G r e e n ' s  function of Eq, (1.1). Suppose ~ is 
a complex p a r a m e t e r  and le t  us se lec t  a b ranch  for  I/X- , such that Im VT, >0 .  The ke rne l  

1 
R(x ,y ;  ~.)= 2i f f~a(V~)  "f ' (x 'V-x-)/2(Y' V~-)' y < x ;  

R (x, y; x) = R (y, x ;  ~,) 

for  fixed x and y is an analyt ic  function of X on the plane with sec t ion  on the pos i t ive  pa r t  of the r ea l  axis 
and with s imp le  poles at the points X = - ~ } .  If X does not coincide with these  points and if X ~ 0, we have 
this ke rne l  the bounds 

I R (x,  y: x) l ~< c e -  TM r'~ ~-,,.  

Here  R(x, y; X), as follows f rom Eq. (1.18), is a solution of the equation 

dl - -  ~ R (x, y; x) + v (x) R (x,  y; x ) -  xR (x, y; x) = ~ ( x - -  y). 

We may  prove  using these  facts  that  the in tegra l  o p e r a t o r  R(D with ke rne l  R(x, y; X) is the r e so lven t  ( H -  
XI) - i  of the se l f -ad jo in t  ope ra to r  H. Moreove r ,  we may  use  the p r o p e r t i e s  of this ke rne l  to define the 
ope ra to r  H i tself ,  which incidental ly we have not done. 

Let  us now turn  our attention to the fact  that  the function a (1/~-) is in the denomina tor  of the r e so lven t  
R(x, y; X) and has  z e roe s  at the e igenvalues  of H. In this it r eminds  us of the c h a r a c t e r i s t i c  de te rminan t  
d e t ( H -  XI). We may  ver i fy  that such an in te rp re ta t ion  of it is in fact just if ied.  F o r  example ,  we have the 
equation 

d~- In a ( V ; )  = - -  Tr (/7 (k) - -  Ro (k)), 

where  R0(X) is the r e so lven t  of the o p e r a t o r  H 0. Subtract ion by R0(X) plays the ro le  of a r equ i red  r e g u l a r -  
izat ion for  the definit ion of d e t ( H -  XI). 

2 .  S c a t t e r i n g  T h e o r y  

Knowledge of the fundamental  s y s t e m  of solutions for  the SchrSedinger  equation (1.1) allows us to i l -  
l u s t r a t e  in a s imple  way, using the ope ra t o r  H as an example ,  the genera l  s t a t emen t s  of sca t t e r ing  theory  
desc r ibed  in the introduction.  We will p rove  how the wave ope ra to r s  U(~) for  the pa i r  of o p e r a t o r s  H and 
H 0 defined in &=L2(R) by the equation 

d t d I 
H = - - ~  + v (x); H 0 =  --d-~' 

can be e x p r e s s e d  in t e r m s  of appropr ia t e  solut ions of the s ta t ionary  SchrSedinger equation (1,1). All the 
p r o p e r t i e s  of the wave ope ra to r s  a re  subsequent ly  obtained as s imple  co ro l l a r i e s  of this re la t ion,  

We begin with a desc r ip t ion  of the diagonal  r ep re sen t a t i on  for  H 0. We cons ider  the space  ~0 con- 
s is t ing  of pa i r s  of functions 

(~,) 
,-, ( = ~ %, (~,))' 

quadra t ica l ly  in tegrable  on the s e m i - a x i s  0~<),< co and having the s c a l a r  product  

co 

0 

A diagonal  r ep re sen t a t i on  for  H 0 can be rea l i zed  in ~0. The cor responding  i s o m o r p h i s m  ~ - ~ o  is p ro -  
vided by the Fo u r i e r  t r an s fo rm a t i on  

9 (x)  ~ T0q, = ~ (~), 
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w h e r e  

~ (~') = V-~z _= ~ ( x)  e -~ rr~'dx;~2 (X) -~ ~ - ~ _ o ~  ~ (x)  e ~ r r ~  d x .  

The  o p e r a t o r  T O is  u n i t a r y :  

ToTo-.-~ I; T T o = I  o. 

The  o p e r a t o r  H 0 unde r  the  i s o m o r p h i s m  T O is  c a r r i e d  o v e r  into an o p e r a t o r  f o r  mu l t i p l i ca t i on  by  the  in-  
dependen t  v a r i a b l e  X, 

Hoq, (x) -+ x~ (x). 

We now c o n s i d e r  two se t s  of  so lu t ions  of  the Schr~Sedinger equat ion:  

u~ +~ (x, ~ u~ +) g)---~--~f~ (x, ~); (x, k ) - - -~T / ,  (x, k); (2.i) 

Ut -) (X, k'/----- u(+)2 t "c,'~ k); u~ -) (X, k)=Ul +) (x, k). (2.2) 

F o r  the s ake  of d e f i n i t e n e s s ,  k>  0 e v e r y w h e r e .  The  t ab le  of  the a s y m p t o t i e s  of  t hese  so lu t ions  as  Ix[ - -  .o 
has  the  f o r m  

u~ +) (x,  k)---- su  (k) e -lk~: + o (1)----e -lk': + s12 (k)  e 'tk, + o (1), 

u~ +) (x, k)---- s~l (k) e-lk~ + e ~  + o (1) = s2~ (k) e tk~ + o (1) 

ut - )  (x, k) ----- e -ik~ + ~2 (k) e t~  + o (1) = ~ 1  (k) e -lkx + o (1), 

u~ -~ (x, k)- -?~ (k) e'~ + o O) = s ~  (~) e - ~  + e ~  + o 0 ), 

The  le f t  co lumn  h e r e  be ing  r e f e r r e d  to x - +  - -  co, and the r i gh t  co lumn  to x - +  co. The  coef f i c i en t s  sij(k) 
and s~ij(k} o c c u r r i n g  in th is  t ab le  a r e  e x p r e s s e d  in the fol lowing way in t e r m s  of the c o n v e r s i o n  f a c t o r s  
a(k) and b(k):  

k t �9 ttz~ = b (t~). b (--k). t 
S l l (  )~-"~'~-k(k)' S I2v ' "  a{k)'  S21(k)m~---- a(k)  ' $ 2 2 ( k ) = ~  ; 

~1 (k)~S~2 (k); s12 (k)=s2t (k); s~l(k)=s12 (k); s22 (k )=s l l (k ) .  

T h e s e  p r o p e r t i e s  fol low f r o m  r e l a t i o n s h i p s  of  the f o r m  of Eqs .  (1.15) and (1o16) and the a s y m p t o t i c s  of  Eqs .  
(1.2) and (1.3) fo r  the so lu t ions  fl(x, k) and f2(x, k).  

The  funct ions  sll(k) and s12(k) have  m e a n i n g  f o r  al l  k ~ 0, s ince  a(k) does  not vanish  on the  r e a l  axis .  
We will  p r o v e  tha t  i f  [a (0)] ~ co, the  coe f f i c i en t s  of  sl l  and s~2 equal ly  have  mean ing  up to k = 0. tn this  
c a s e ,  ev iden t ly ,  s11(0 ) = 0 and only sl2(k ) i s  to be  c o n s i d e r e d .  I t  is ev ident  f r o m  Eq. (1.22) tha t  [a(k)[-+ co, 
if  

lim 2 ika  (k) = ~--- - -  i v (x)  f2  (x ,  O) d x  4= O. 

H e r e ,  as  is  ev iden t  f r o m  Eq. (1.23), 

l im si~ v e ) =  l l m - ~ / , ~  i lm ..---v--~..: = p = - - 1  
k -,,0 k->O ~ ~,~1 k-~.0 ZLRa ~g) 

so  that  s12(k) is  def ined  by  cont inui ty  up to k = 0 and s12(0 ) = - 1 .  We m a y  s i m i l a r l y  p r o v e  tha t  in this  c a s e  
s21(0) = - 1  and szz(0) = 0. F o r  l a r g e r  lk], 
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We can natura l ly  continue sij(k) to the s e m i - a x i s  k < 0  by the equation 

s~:(  - k )  = s u (k ) .  

We may  eas i ly  ver i fy  based  on the p r o p e r t y  of Eq. (1.21) that  the m a t r i c e s  

s (k)= I!s,j (k)ll; s- ,  (~) = It~j (k)l! 

are  i n v e r s e s  of each other ,  as is indicated by the notation, and a re  unit m a t r i c e s ,  so that  for  example  

s *  (k) s (~)=s (k) s*  (k )=I ,  

or ,  in m o r e  detai l ,  

Is,de + Is=d= = 1 = Is=d = + Is,=l 2, 
s,,  (/0 s2, ( - / a )  + s,= (/0 s~2 ( - / 0  = o. (2.3) 

We will see ,  in pa r t i cu la r ,  that for  all  k # 0, 

and we r eca l l  that  if Is12(0)1 = 1, then 

Is,2 (k)l < 1; Is2, (k)[ < 1 (2.4) 

s,2 (0) = s~, (0) = - -  1. (2.5) 

Final ly ,  a compar i son  of the a sympto t i e s  of the se t  of solutions u!+)(x~ , , k) and u~-)(x, k) impl ies  the l inear  

re la t ion  

u(+) (x, k ) =  S (/0 u(-) (x, k), (2.6) 

where  natura l  vec tor  notation is used.  

~-~)(x, We note that the se t  of solut ions u k) a re  natural ly  in te rp re ted  in the i r  a sympto t i c  in t e r m s  of a 
rad ia t ion  pr inciple .  However.  we will not use this fact anywhere below. 

l~)(x, The solutions u k) const i tute a complete  o r thonormal ized  set  of eigenfunctions of the continuous 
s p e c t r u m  of the ope ra to r  H. We may  ve r i fy  this fact  by calculat ing the j u m p s i n t h e  r e so lven t  R(x, y; ),} 
through a sect ion in the posi t ive  pa r t  of the r ea l  axis,  which co r r e sponds  to the continuous s p e c t r u m  of H. 
We have the equation 

R(x,  y; k2+iO)--R(x, y; k2-- iO)= 
1 = ~  (ul -+~ ix, k)u[• k) + u W  (x, ~)u,,• (y, k)),. 

which quite s imply  ver i f ies  the d i r ec t  subst i tut ion of Eqs.  (2.1) and (2.2) for  the solutions u~• (x, ~) and 
u~ (+-) (x, k) in t e r m s  of fl(x, k) and f2(x, k) in the r ight  side.  The comple teness  equation which the reby  fol-  
lows has  the fo rm 

co 

•  (uW(x,  k)ul-+)(y, k)+u~,-+)(x, F)u~(+)(y, k ) )d~+ 2a 
0 

N 

+ ~] u~ (x) us (y )=~  ( x -  y). 
l = l  

Here the Ul(X), I = 1 . . . . .  N are orthonormalized eigenfunctions of the discontinuous spectrum of H. The 
orthogonality relation 

27 u~ +)(x' k)u} +)(x' l)dx==8iig(x--Y) 
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can be  d e r i v e d  us ing  the ident i ty  

f ( x ,  k ) f ( x ,  O= t d ~ {f(x, k)f(x,  t)}, 

which is  t r u e  fo r  a r b i t r a r y  so lu t ions  of the S c h r S e d i n g e r  Eq. (1.1), the a s y m p t o t i c  as I x l ~  c~ of the so lu -  
t ions  u~+-)(x, k),  and the  u n i t a r y  condi t ion  on S(k). 

We c o n s t r u c t  u s ing  the so lu t ions  u~ +-) (x, k) two m a p s  T• : $2-+~0 us ing  the equat ions  

1 co 

(x); = V F  (x) u?-) (x, g ; )  dx. 
--oo 

The  c o m p l e t e n e s s  and o r thogona l i t y  r e l a t i o n s  a r e  wr i t t en  in t e r m s  of t h e s e  o p e r a t o r s  as  fo l lows:  

T*+_T +=I--P; T+T*+=I o. 

H e r e  P is a p r o j e c t o r  into ~ on the  p r o p e r  s u b s p a e e  of H spanned  by  i ts  e i g e n v e e t o r s  u l, l = 1 . . . . .  N. 

We wil l  now p r o v e  tha t  the wave  v e c t o r s  can be  in t roduced  by  the equat ions  

U (+) = T*+ To. (2.7) 

F o r  the p r o o f  i t  is su f f i c ien t  to d e m o n s t r a t e  tha t  fo r  any v e c t o r  ~(X)~0 in a dense  s e t  the v e c t o r  

Z (-+) (r ~--- e-mtT*~ - -  e-mOtTo~ 

van i shes  in n o r m  in ~ as t -+ ___ c~. Th i s  is in tu rn  e a s y  to v e r i f y .  In fac t ,  r e c a l l i n g  the def in i t ion  of the 
o p e r a t o r s  T .  and T 0, we can wr i t e  the  funct ions  Z( • t) r e p r e s e n t i n g  the v e c t o r s  X(+)(t), in the f o r m  

Zc • (x, t ) = ~  [~, (k2) (u~+)(x, k ) - - e  'k~) + 

+ ~ (k2)(u~• f~-  e-"x)] e-'k"dk. 

The  funct ions  q~l(k 2) and q~2(k 2) can  be  c o n s i d e r e d  as  cont inuous  and f ini te .  By the R i e m a n n -  Lebesgue  l e m -  
m a  the con t r ibu t ion  to the i n t e g r a l  

llZr ~) (0112 = ~ IX(- +) (x, 012 dx 
- - c o  

f r o m  an a r b i t r a r y  f ini te  i n t e r v a l  Ixl ~<A can  be  a r b i t r a r i l y  s m a l l  f o r  su f f i c ien t ly  l a r g e  [tl. F u r t h e r ,  the 
con t r ibu t ion  to the i n t e g r a l  within the i n t e r v a l  - -  ~ < x < - - A  and A < x < c~ f r o m  t e r m s  of  type  o(1) in the 
a s y m p t o t i c  as  Ixl ~ 0o of  the funct ions  u!=~)(x, k) can be  c a r r i e d  out fo r  su f f i c ien t ly  l a r g e  A u n i f o r m l y  in a r -  
b i t r a r i l y  s m a l l  t .  F o r  this  p u r p o s e  we need only u s e  bounds  of t h e t y p e  of Eqs .  {t.6) and (1.7). The  r e m a i n -  
ing i n t e g r a l s  have  the  f o r m  

A ~r 

and 

--A ~ [ 2 
]~• (t)--- ~ l !  O (k) e-~k't e• dx, 

w h e r e  [ce,/3] is  a f in i te  i n t e r v a l  on the s e m i - a x i s  0 < k < ~ and G(k) is  a cont inuous funct ion tha t  van i she s  
a t  i ts  endpoin ts .  The  a s s e r t i o n  a c c o r d i n g  to which 

J[+~, J~+)-+0, t - + ~ ;  J l  -~, J~-~-~0, t - ~ - - o o  
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whose p roof  we leave  to the r e a d e r ,  concludes the proof  with 

Ilz(• t-~ +_ ~ .  

In fact ,  we have not only p roved  the coinciding of Eq. (2.7), but have a lso  given an independent p roof  
for  the ex is tence  of wave o p e r a t o r s  U(~). Asympto t ic  comple t enes s ,  i .e . ,  the r e l a t ion  

U (• U (• = l - -  P, (2.8) 

for  which the re  ex is t s  in the a b s t r a c t  theo.r~ a complex proof ,  in our case  immedia te ly  follows f r o m  the 
comple t eness  condition on the functions u(~t(x, k). The i s o m e t r i c i t y  condition 

U (-+)* U (• E l ,  

which is t r iv i a l ly  proved  in the  a b s t r a c t  theory  is equivalent  to the or thogonal i ty  of the functions u(~)(x, k) 
and can be used for  der iv ing  it. 

Equation (2.6) can now be wr i t ten  in the fo rm 

UC-) =U{+)S, 

where  the o p e r a t o r  S is defined by the equation 

, ^  

S = To S T  o, 

and the o p e r a t o r  S is defined in Do by the m a t r i x  S(k), 

Evidently,  S com m ut e s  with H0, 

[S, Ho] = 0 .  

We have  thus obtained an exp re s s ion  for  the sca t t e r ing  o p e r a t o r  S in the  given case .  The m a t r i x  S(k) de-  
fining it, which yie lds  a r e p r e s e n t a t i o n  of it in a diagonal  rea l iza t ion  of H0, is said to be the S - m a t r i x .  We 
say  that s21(k ) and s l 2 ( k  ) a r e  said to be the left  and r ight  ref lec t ion  coeff ic ients ,  r e spec t ive ly ,  and the coef-  
f icient  sll  = s22 , the t r a n s m i s s i o n  coefficient  in accordance  with the in te rp re ta t ion  of its m a t r i x  e l emen t s  
sij (k) in the sp i r i t  of the radia t ion pr inciple .  

These  p r o p e r t i e s  of the S - m a t r i x  allow us to r e c o n s t r u c t  it if and only if the ref lec t ion  coeff icient  
is given. In fact ,  suppose S12(k) is given. We may  de t e rmine  f r o m  the uni ta r i ty  condition of Eq. (2.3) the 
modulus  of the t r a n s m i s s i o n  coeff icient  

Is,, (k)l--- (1 -Is12 (k)D '/2. 

The a rgument  of this coeff icient  (and thus the en t i re  coefficient) is r econs t ruc t ed  in t e r m s  of its modulus 
based  on the analyt ic i ty  of the coefficient  in the upper  hal f -p lane .  We have the explici t  fo rmulas  

l ~176 d l  ~) k + i• Su (k)-----exp ~2 t--~ ~ ,  Imk  >0; 

st, (k )= l ims , ,  (k + ie), Im k=O.  

The coefficient  s21(k ) can now be cons t ruc ted  on the bas i s  of the uni tar i ty  condit ions:  

(2.9) 

s2, ( k ) =  s,, (--k) a, (k) 
sit ( - -k)  (2.10) 
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This p rocedure  remains  meaningful for  any functions sl2(k) that sat isf ies  the conditions of Eqs. (2.4) and 
(2.5) and which posses ses  the asymptot ic  

The conditions of Eqs.  (2.4) and (2.5) for  the resul t ing s21(k) also hold and for  la rge  lk] we have the asymp- 
tot ic  

s,, (k)=l  + 0 (~); s2~ (/0= 0 (1~)" (2.12) 

We note that the analytici ty of the t r ansmiss ion  coefficient  is also the additional neces sa ry  condition we 
spoke of in the introduction in d iscuss ing the ove rde te rminacy  of the inverse  problem. 

Fu r the r  p roper t i e s  of the Four i e r  t r ans fo rm of the coefficients sll(k), s21(k), and sl2(k ) will be found 
in the next section.  

We conclude he re  with the descr ip t ion  of the fundamental objects of sca t te r ing  theory for  the pa i r  of 
ope ra to r s  H and H 0 and pass  to the inverse  problem,  the problem of recons t ruc t ing  an opera tor  H, i .e . ,  the 
potential  v(x), in t e r m s  of the ma t r ix  S(k), Leo, in fact in t e r m s  of one of the ref lec t ion  coefficients.  

3 .  V o l t e r r a  T r a n s f o r m a t i o n  O p e r a t o r s  

As a l ready noted in the introduction,  t r ans format ion  opera to r s  const i tute the basis  of the technique 
for  solving the inverse  problem,  i~176 solution of the equation 

H U  = U H  o, 

which have the s t ruc tu re  of Vol te r ra  opera to rs  

co  

UI* (x) =,~ (x) + ! A1 (x, y) ~ (y) dy; (3.1) 
X 

X 

u~ q~ (x)--~ (x) + I A2 (x, y) ~ (y)a~y. (3.2) 

These  opera to r s  we have in fact  a l ready introduced. Indeed we will define opera to r s  V i, i = 1, 2, opera t -  
ing f rom ~ into ~0 by the equations 

oo 

~(x) = r (x).f~ (x, V-i-) dx; 

, ~ v2 , - -  ,~: ,~1 (x) = V ~  * (x) A (x, V g) ax; 

,, 0,)-- ,(x) I ,  ( x . -V r )ex .  

Then the opera to rs  

Ul--~ V~iT0, i ~ 1, 2, (3.3) 

a re  defined by Eqs. (3.1) and (3.2), where the kerne ls  Ai(x, y) are  defined in Sec. 1 by Eqs. (1.8) and (1.9). 

Le t  us discuss  how the completeness  condition of Eq. (2.8) appears  in t e r m s  of the opera tors  U 1 and 
U 2. For  this purpose we f i r s t  calculate  the normalizing fac tors ,  i .e . ,  the opera to rs  N~ ~), i = 1, 2, real iz ing 
the equation 
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U~=U(+-)N~ ~:), i = l ,  2. 

As a consequence of the commutivity condition 

(3 .4)  

[H 0, N~ (• =0 ,  

which these operators  must  sat isfy,  they can be defined by the ma t r i ces  Nl:~)(k), s imi la r  to how the opera-  
tor  S is defined by the matr ix  S(k). The definition of Eqs. (2.1) and (2.2) imply that 

f , = M ~  +-) (~)u(• f2=M~ +-) (k) a (• (3.5) 

where fl, f2, u(:~) are the columns of the solutions fl(x, - k ) ,  f~(x, k), f2(x, k), f~(x, - k ) ,  u~ ~), u~ ~), respec-  
tively, while the ma t r i ces  M~:~)(k) have the form 

M[+)(k)=(~ --b(k)~. M(-), , ,  f ~(--k) o ~  
a(k)i' ' ~ J = ~ - - b ( - - k )  I/;  I (3 .6)  

M2 (+) (k) - -  (~ (k) (_~ 1 b (k) 

It therefore  follows f rom the definitions of Eqs. (2.7), (3.3), and (3.4) that the normalizing factors N~ :~) are 
expressed by the equations 

N(+) T*}V(• l ~ 0 i O' 

* (e:) operate in ~0 as matr ix-mult ip l icat ion opera tors :  where the operators  N i 

g i  (+) (k)=/H~ • (k)*. 

Comparing Eqs. (2.6) and (3.5), we also see that the mat r ices  M~• and M~:~)(k) factor  the matr ix  S(k): 

s (k)--  M~ +) - '  (~) M~ -) (~) - -  M(2+)-'(k) M~ (-) (k). (3.7) 

The factorizat ion condition and the tr iagonal  s t ructure  of the mat r ices  M!~-)(k), apparent in the explicit 1 
equations (3.6), yields a unique determinat ion of them in t e rms  of a given matr ix  S(k). In fact, if the f i rs t  
equation of Eqs. (3.7) is rewri t ten in the form 

m12 Sll sI2 0|) ,  

we obtain a l inear  sys tem of equations for determining the coefficients roll, ml2 , m21 , and m22 of the ma-  " 
t r i ces  MI +) and Ml(-) , which yields a unique solution. The second equation of Eqs. (3.7) may be s imi lar ly  
t reated.  Equations (3.6) yield the des i red  result .  In other words a pr ior i  data  on the s t ruc ture  of the 
normalizing factors  corresponding to the t ransformat ion operators  U1 and U 2 uniquely determines  them in 
t e rms  of a given scat ter ing operator  S. 

The operators  Ui, i = 1, 2, like the wave operators  U (=~), have the proper  subspace H corresponding 
to its absolutely continuous spectrum as range of values. We will show how to expand the domain of defini- 
tion of the operators  by leaving the space ~, so that their  range of values subsequently coincides with ~ ~ 
The discussion is based on the fact that the eigenfunctions of the discontinuous spectrum u/(x) of H generat-  
ing the defect subspace for the operators  U are proportional to the solution fi(x, k) when k = i ~ .  Thus, 

co 

u, (x) = Zl b (x) + S At (x, y}" Zl (') (Y) dy=UIz~);  
x (3.8) 

u, (x)----- Xl 2) (x) + i As (x, y) Zl 2) (y) dy = Uffff  ), (3.9) 
--co 

where 

l - -  ~ [  ='= 
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and then m i d  a r e  normal iz ing  fac to r s ,  

We note that  Eq. (1,28) impl ies  that 

i=1 ,2 .  

We now consider  the spaces  

m(,)_(2) ~. _ i = i  Res snlk=z,, t. t u~t -~-i~, 7t--h(iut)  

~t=~@~z, 

. (0 ~L are spanned by the function L t . where the f in i te -d imens iona l  spaces  The s c a l a r  product  in 
duced by the equation 

(e-",  x, e-"P) ,=~, l ;  (e "'x, e"P)2=~tj. 

Equations (3.8) and (3.9) extend the o p e r a t o r s  U 1 and U 2 to the spaces  9, 
range  of values then coinciding with 9. 

The comple teness  equation (2.8) in t e r m s  of these  extended ope ra to r s  then is 

UlWiU*t=I.  

The weight o p e r a t o r s  Wi opera te  in the spaces  0~ and the decomposi t ion  of Eq. (3.12) reduces  them.  
o p e r a t o r s  W i in the subspaces  ~5 i a re  given in the bases  {e • by the diagonal  m a t r i c e s  

W~ l ~  = {m~O . . . . .  m(~}, i = 1, 2. 

The o p e r a t o r s  W i in the subspaee  ~ a re  given by the equation 

W ~,f{~)-I at(_+)*-' 7.*fvz .7. i = a v t  ~v i = ~0W/I  0 �9 

We use Eq. (3.6) to exp re s s  these  o p e r a t o r s  in t e r m s  of the ma t r i x  e lements  of S(k). 
ba s i s  of the uni tar i ty  condition, 

W, (/~)= (Mt ~-) (/~) j~-b)*(~))-, = ( s l ,  l ( -k)  ~1' (k)~l ] 

and s i m i l a r l y  

and 92 , r espec t ive ly ,  the i r  

(3.10) 

(3.11) 

(3.12) 

~ is in- 

(3.13) 

The 

We have on the 

Thus,  the m a t r i c e s  Wi(k) a re  e x p r e s s e d  in t e r m s  of only one of the re f lec t ion  coeff icients .  Ca r ry ing  out 
the Fou r i e r  t r ans fo rma t ion  n e c e s s a r y  for  the final calculat ion of the Wi, we find that they a re  e x p r e s s e d  
in the f o r m  

W l = l + P ~ l ,  i - -  1,2, 

where  the f~i a r e  in tegra l  o p e r a t o r s  with ke rne l s  depending on the sum of the a rguments  

~(x ,  y ) = ~  (x + y), 

~ (x)---Y~ m(,'e-"' '~ + F, (x); n~ ( x ) = ~  m?)e "''~ + F2(x), 

where  

(3.14) 
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where 

- - r  ~ o o  (3.t5) 

The p r o p e r t i e s  of Eqs.  (2.11) and (2.12) imply that the functions Qi(x) and ~2(x) a r e  quadra t ica l ly  in-  
t eg rab le  on the in terva ls  a < x <  co and - -  co < x < b ,  r e spec t ive ly ,  for  finite a and b. More detai led in- 
fo rma t ion  on these  ke rne l s  will be found in the next sect ion.  

4 .  G e l ' f u n d - L e v i t a n  E q u a t i o n s  

The heur i s t i c  cons idera t ions  p re sen ted  in the introduction d e m o n s t r a t e  that  comple t enes s  conditions 
reduce  to l inear  equations for the ke rne l s  Al(x, y) and A2(x , y) for  the t r a n s f o r m a t i o n  o p e r a t o r s  U1 and U~, 

0 o  

At (x, y) + ~21 (x + y) + f A~ (x, z) 9,1 (z + y) dz = 0 ;  x < y, (4.1) 
X 

A2(x'Y)+~22(x +Y)+ i A2(x,z)~2(z + y)dz=O; x > y .  (4.2) 

These  equations were  f i r s t  der ived  by Kay and Moses  [40]. They coincide in ou t -ward  appearance  with the 
equation of V. A. Marchenko [16] f r o m  the theory  of the rad ia l  SchrSedinger  ope ra to r  for  Z = 0. One change 
cons i s t s  in the range  of var ia t ion of the va r i ab l e s  becoming  the en t i re  axis .  We will, however ,  cal l  them 
the G e l ' f a n d - L e v i t a n  equations,  s ince the i r  o p e r a t o r - t h e o r e t i c  content is s i m i l a r  to that for  the equations 
introduced by I. M. Gel 'fund and B. M. Levi tan  in the theory  of the i nve r se  S t u r m - L i o u v i l l e  inve r se  spec -  
t r a l  p rob lem.  To s t r i c t ly  der ive  these  equations we mus t  inves t igated the o p e r a t o r s  U. *-t  opera t ing f r o m  
#J~ into ~ or  r ep l ace  o p e r a t o r - t h e o r e t i c  concepts  by m o r e  e l e m e n t a r y  concepts .  One vlariant of these  d i s -  
cuss ions  conceptually s i m i l a r  to [1] and c a r r i e d  out expl ici t ly  in [23, 26] will be se t  forth below. 

We will use  the equations 

ul (x, k)---- s12 (k) f~ (x, k) + f l  (x, - -  k), 

u2 (x, k) - - - - - s . ~ 1  (k) f2 (x, k) + f2 (x, - -  k), 

(4.3) 

(4.4) 

which const i tute  a va r ian t  of Eqs. (1.15) and (1.16). We omit  he re  the index (+) in u~+)(x, k), s ince the func- 
tions u!-)(x,  k) will no longer  be used.  

1 

We know that the functions fl(x, k) and f2(x, k) a re  analyt ic  and bounded in the upper  ha l f -p lane  and 
a re  bounded the re  

fl(x,k)e-~k~:=l +O(l~);  f2(x,k)et~x~ 1 +O(vEi),' l " (4.5) 

where 0 I-~, in genera l  depends on x. The functions us(x , k) and u2(x, k) a re  a lso  analyt ic  in the upper  

ha l f -p lane  except  at the points k = ix  l , l = 1 . . . . .  N, where  they have together  with 1/a(k) s imple  poles .  The 
cor responding  r e s idues  are  s imply  assoc ia ted  with the values  of the functions fa(x, k) and f2(x, k) at these  
points.  F o r  example  

Res ul (x, k) [k=z~ l ~  Res slt (k) lk=~xtf2 (x, ixt) ----- f, (x, i• 

--i ~ h (x, i• h (x, i~t) dx 
~ o a  

where m~ 1) is defined in Eq. (3.10). S imi la r ly ,  

~rn~)fl (x, i~,l), (4.G) 

At l a rge  Ik[ the functions ui(x , k) have the asympto t i c  
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u,(x,k)eZkX=l + O  1~-~ ; u2(x'l~)e-ikx=l +0 ~ , 

where O ( ~ )  may also depend on x nonuniformly. 

Functions with only a single number occur  in each row in Eqs. (4.3) and (4.4) and both equations are  
completely identical  to within the substi tutions 1,-.2 and e ~ k ~ e - ~ .  In each of them two functions f(x, k) and 
u(x, k) possess ing  definite analytic p roper t i e s  on the complex plane are  re la ted  on the rea l  axis in t e rms  of 
the function s(k) given only for I m k =  0. It turns  out that we can r econs t ruc t  on the basis of these equa- 
tions both functions f(x, k) and u(x, k) in t e r m s  of given s(k). 

F o r  this purpose we pass to the Fou r i e r  t r ans format ion  par t ic ipat ing in these equations of the fune- 
tions. The Four i e r  t ransformat ions  for fs(x, k), f2(x, k), s12(k), ands2~(k) have a l ready been used many 
t imes  above [ef. Eqs. (1.8), (1.9), and (3.15)]. Suppose 

r  

tt, (x, k ) = e  -lk-~ + I B, (x, y) e-ikYdy. (4.8) 
b o o  

Based on the analytici ty p roper t i e s  of us(x , k) descr ibed  above, 

N 

B, (x, y ) =  i ~ Res u, (x, k) lkz,~e -~ly = 
l = l  

=--~..m}')  e -~x+ Al(x, z)e-~hZdz e -~'#', x < y .  
l = 1  . r  

(4.9) 

By the convolution theorem,  Eq. (4.3) takes the form,  following a F o u r i e r  t ransformat ion ,  

r  

Ft (x + y) + i A1 (x, z) F1 (z + y) dz  -t- A1 (x, y) = B1 (x, y) (4.10) 

and when x < y  we a r r ive  at Eq. (4.1) on the basis  of Eq. (4.9)~ Equation (4.2) is s imi lar ly  derived.  

The discussions we have presen ted  on the basis  of Eqs. (4.3) and (4.4) together  with analyt ic i ty- type 
conditions occur r ing  in them for functions of the form of Eqs. (4.1) and (4.2) can be r eve r sed .  More p re -  
cisely,  suppose As(x, y) is a solution of Eq. (4.1), such that the function f~(x, y) analytic for  Im k > 0 con- 
s t ructed  in t e r m s  of it  by Eq. (1.8) sa t isf ies  the condition of Eq. (4.5). We consider  the kerne l  Bl(x, y) 
defined by Eq. (4.10) and const ruct  using it a function ul(x, k) by Eqo (4.8). Carrying out a Four i e r  t r ans -  
formation,  we find that fl(x, k) and us(x, k) are  re la ted  by an equation of the form Eq. (4.3), so that, in pa r -  
t icular  ul(x, k) when I m k =  0 sat isf ies  the condition of Eq. (4.7), Equation (4.1) implies that Eq. (4.9) is 
tu re  for  Bl(x, y) when x < y ,  so that ut(x, k) has an analytic  continuation into the upper half-plane Imk> 0 
with poles at the points iv./, while Eq. (4.6) holds for  the corresponding res idues .  The proof  of this equiv- 
alence concludes with this fact.  In the next sect ion we will study the solvabili ty of the Ge l ' f and-  Levitan 
equation and will formula te  more  p rec i se ly  the corresponding asser t ion  for  the exis tence and uniqueness 
of a pai r  of functions u(x, k) and f(x, k) that sat isfy such analytici ty conditions and are  re la ted  by an equa- 
tion of the type of Eq. (4.3). 

In concluding this sect ion we will use the G e l ' f a n d - L e v i t a n  equation to ref ine the p roper t i es  of the 
ref lec t ion coefficients ,  that is, we will study more  p rec i se ly  the behavior  of the functions Fl(t) and F2(t), 
about which we so far  only know are  quadrat ical ly  integrable.  We consider  for  the sake of defini teness the 
function Fs(t). We rewr i t e  Eq. (4.1), setting x = y: 

oo 

~1 (2x) + Al (x, x) + 2 f A1 (x, 2y - -x)  2~ (2y) dy =0 ,  
x 

(4.11) 

and consider  this equation as the function for ~21(2y). This is a Vol te r ra - type  equation and the method of 
success ive  approximations always converges for  it. We obtain based on the bound of Eq. (1.12) for  the 
ke rne l  As(x, y) a bound for  ~2s(2x), 
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% (2x) < c (x) h (x). 

Here and below we denote by C(x) a monotonically nondeereasing function bounded as x --- ~ and, in general ,  
inc reas ing  as x - - -  ~o. We conclude as a consequence of the differentiabil i ty of At(x, y) that at(x) is also 
differenti~ble and using Eq. (4.11), we find the bound 

We can s imi la r ly  prove using Eq. (4.2) the differentiabil i ty of ~22(x) and find the bounds 

t ~ (x) < D (x) ~ (x). ] 22 (2x)[ 4 D (x) ~2 (x); [ d a; (2x) + ~- 

Here and below the function D(x) is a monotonically nondecreasing function bounded as x - - -~o  and inc reas -  
ing, in general ,  as x - -  r 

The resul t ing es t imates  and the proper t ies  (P) of the potential imply that 

r  

S(' <+>l"x-< c (~ , 
5[ 

b 

The functions Fl(x) and F2(x ) differ f rom ftl(x) and ~2(X) by a continuous t e r m  with dec reases  as 
x - -  oo and x - - - ~ ,  respeet iveIy.  Consequently, inequalities of the type of Eqs. (4.12) and (4.13) are  t rue 
also for Fl(x) and F2(x). 

We will see that the functions dx 1 (x) and F 2 (x) behave s imi la r  to v(x) as x--> co and x ~ - -  oo, 
respect ively .  If v(x) is differentiable,  it can be proved using Eqs. (1.10), (1.11), and (4.11) that this analogy 
extends also to the succeeding der ivat ives  of ~21(x) and f~2(x). 

5 .  I n v e s t i g a t i o n  o f  I n v e r s e  P r o b l e m  

In the preceding sections we explained how the scat ter ing mat r ix  S(k) corresponding to a potential 
v(x) sat isfying proper ty  (P) pos se s se s  the p roper t i es :  

1. Unitari ty:  

Sn s12 "F S21 S22 ~0 ;  

I s . l = +  Is ,= t= -  - 1 - - I s = , l = +  '+s~l ~', 
s,~ (O)= s=t (O)= -- l, if s (0)=0. 

2. Rea lness :  

% ( -  k) = s u (k); 

3. Symmet ry :  

s,1 (~) = s~2 (e); 

4. Asymptot ic  behavior :  

st2=O(~); s2 t=O(~) ;  sn=  l +O (~); 

and the Four ie r  t r ans fo rms  FI(x ) and F2(x) of the coefficients sl2(k ) and s21(k) sat isfy the condition 

oo c o  

a b 
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5. Analyt ici ty:  the function sll(k ) is the l imit ing value of a function analyt ic  in the ha l f -p lane  I m k >  0, 

there  the asympto t i c  1 + 0 ( ~ )  and a finite number  of poles on the imag ina ry  axis.  having 

It is poss ib le  that  some of these  p r o p e r t i e s  a re  consequences of o thers ,  but we will not bother  our -  
se lves  about this m a t t e r .  In the cu r ren t  sect ion we will p rove  that these  n e c e s s a r y  p rope r t i e s  a r e  also 
sufficient  conditions under  which a potent ial  v(x) sa t is fying (13) co r responds  to such a ma t r i x  S(k). Here  
we mus t  specify  N m o r e  posi t ive  numbers ,  where  N is the number  of poles  of sll(k), for  a unique def ini-  
t ion of v(x), in addition to S(k). This r e su l t  was formula ted  in [23] and proved  in detai l  in [26]. 

The proof  of this a s s e r t i o n  will be found using the invest igat ion of G e l ' f a n d - L e v i t a n - t y p e  equations,  
which we now begin to desc r ibe .  

We begin with an invest igat ion of the solvabi l i ty  of Eqs. {4.l) and (4.2). Suppose we are  given 

1) The function 

st2 (t~) ~ ~ Ft (x) e-l~rdx 

such that 

s12(--k)=st2(k); ls12(k)14 1 

and 

CO 

S(l+ixt j e,(x) e.<c(.). 
a 

2) dis t inct  a r b i t r a r y  pos i t ive  numbers  ~l ,  l = 1 . . . . .  N. 

3) the s a m e  number  of pos i t ive  numbers  mQ ), l = 1 . . . . .  N. 
tion ~t(x) in t e r m s  of Eq. (3.14) and cons ider  thetequation 

We cons t ruc t  using these  data  the rune- 

c o  

Al (x, y) + ~ql (x Zs y)+ I A1(x, z) ~i (z + y) dz=O, x < Y, 
X 

as the equation for  Al(x, y). This  is an equation in t e r m s  of the second independent var iable  of this func- 
tion, where x occu r s  only as a p a r a m e t e r .  Setting 

ax (.7) ~A1 (x, y); ,% (y) .~-~21 (x + y); 

~xg (Y)---- f g (z) 21 (z + y) dz, 
X 

we rewr i t e  Eq. (4.1) in the fo rm of the ope ra to r  equation 

a~ (y) + %, (y) + 2~a~ O) = o. (5.1) 

The f ree  t e r m  C0x(Y) is absolutely  in tegrable  and bounded, and, consequently,  is also a quadra t ica l ly  
in tegrable  function on the in terva l  x ~ < y <  oo, i .e. ,  %(y)~L1~(x, oo). We will find a solution also f rom Ll2(x, 
0o) and p rove  that it ex is t s  and is unique for  any x, - -  oo < x < oo. 

Fo r  this purpose  we f i r s t  ver i fy  that we are  dealing with an equation posses s ing  a complete ly  con- 
tinuous ope ra to r  in L~(x, oo) and L2{X, oo). Suppose 

oo 

~ (x )=  ~q~ dy. 
X 
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The function ~l(x) on the bas i s  of Eq. (4.12) is absolute ly  in tegrable  on the in te rva l s  [a, ~) for  any a > -  c~ 

and we have the inequali t ies  

c o  o o  

I~,(.x)dx~C(a); I(1 +Ixf)~,~(x)dx~C(a). 
a a 

Using the bound 

r  

X 

we find that  

fdyldzlgq(y+z)12~< N , ( x + y ) d y  < c ~ ,  
X 

i .e . ,  the o p e r a t o r  ~x  is a H i l b e r t - S c h m i d t  type ope ra to r  and i ts  no rm approaches  ze ro  as x - - ~ .  The com-  
plete  cont inuousness  of ~x  in L~(x, r162 is also a well-known c o r o l l a r y  of the absolute in tegrabi l i ty  of ~l(x). 

We now note that  the ope ra t o r  I + 12 x is posi t ively  defined for  any x. In fact  it is obtained by l imi t ing  
the pos i t ive  ope ra t o r  W f rom Sec. 3 to L2(X , ~) .  In pa r t i cu l a r ,  this  impl ies  that  the homogeneous equation 

a (y) + 2~h (y) = 0  (5.2) 

has  no nontr ivia l  solutions in L2(x, ~).  We now prove  that  e v e r y  solution of Eq. (5.2) in Ll (x  , ~o) also be -  
longs to L2(x, ~). We have 

th(y)[~<Ilg~(y+z)[Ih(z)]dz 4 ~, ( x + y ) I I  h(z) ldz 
.X: X 

so that hi(Y) is quadra t ica l ly  in tegrable  on the in te rva l  [x, ~o). We conclude that  Eq. (5.2) has  no nontr ivia l  
solut ions in Ll(x, r162 so that  Eq. (5.1) is uniquely solvable  in Ll(x, ~) for  any x. We will now consider  how 
the bounds for  the solution Al(x, y) follow f rom this fact .  

The o p e r a t o r  (I + [2x) -1 is un i formly  bounded for  all  x f rom the in te rva l  In, ~), since the norm of ~x 
approaches  ze ro  as x - - :o  

lid +~A' li~, <C(a), 

so that  

co  

I IA, (x, y)[ dy ~ C (x). 

Substituting this bound in the in tegra l  occur r ing  in Eq. (4.1), we find that  

I AI (x, y) [ ~< C (x) ~, (x + y). (5.3) 

Using Eq. (4.1) we may  also ver i fy  that  the solution Al(x , y) is singly d i f ferent iable ,  and we may  find 
bounds on the de r iva t ives .  Let  us e s t i m a t e  the function O AI (x, y). Different ia t ing Eq. (4.1) with r e spec t  

to x, we a r r i v e  at the equation for b x (y)---- ~x A1 (x, y) + 0~- ~l (x + y) of 

o~, (y) + ~, (y) + .~A~ (y)-O.  

Here  the f ree  t e r m  

~ (y)-----A (x, x ) ~ ( x + y )  
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has the bound 

]~x (y)[ ~ c (x) ~, (2x) ~, (x + y). 

We the re fo re  find for  the solution bx(Y) that 

o A We may  s i m i l a r l y  e s t ima te  the de r iva t ive  ~ 1 (x, y) and the r e su l t  is given by 

A, (x, y) + ~ 2, (x + y)[ ~< c (x) 7, e x) ~, (x + y) 

The integral equation (4.2) is similarly investigated. If 

b 

s2, (--/0=s2, (k); Is2, (k)[ ~ I; - I (I + Ixl) ff-~F~(x)ldx~<O(b), 
--oo 

This equation is uniquely solvable and we have for the solution the bounds 

]A2 (x, y)[ ~< D (x) ~12 (x + y); 

~A~(x y)+ ~2(x~ +y)i~<O(x)~(2x)~(x+y); 
"+ :7 + + 

where 

x 

- - o o  

If the functions Fl(x) and F2(x) have m o r e  than one der iva t ive ,  the ke rne l s  Al(x, y) and A2(x, y) a re  
also mul t ip ly  di f ferent iable .  Bounds on the cor responding  de r iva t ives  a re  found in a way s i m i l a r  to what 
was done for  bx(Y). 

Returning to the pa i r  of analyt ic  functions u(x, k) and f(x, k), we ver i fy  that if we are  given a func- 
tion s(k) sa t i s fying the conditions repea ted ly  formula ted  for  sl2(k ) and N unequal pos i t ive  numbers  ~l ,  l = 
1 . . . . .  N, and fu r the r  N posi t ive  numbers  m/,  the re  exis ts  a unique pa i r  of functions u(x, k) and f(x, k), 
such that  

1) the function f(x, k) and u(x, k) a re  analyt ical ly continued in the upper  ha l f -p lane  I m k >  - 0, where  
f(x, k)e - ikx  is bounded for  all  k, Im k -> 0, and u(x, k) has  s imple  poles  at the given points k = in l, l = 1, 
..., N; 

2) the r e s idues  u(x, k) a re  connected to the values  of f(x, k) when k = ix  l by the equation 

3) on the r ea l  axis by 

Res u (x, k)l~=ix L = imlf  (x, ixt); 

f ( x ,  k)----/(x,--k); u(x, k)=u(x,--k);  

f ( x ,  k)e-ikx-----l+ ~lkl/ 

4) for l a rge  ]kt by 

k)+ f(x,  - k ) = u ( x ,  k). 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.S) 

5) for  r ea l  k we have the equation 

s (~)./(x, 
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We now const ruct  using the solutions for  the G e l ' f a n d - L e v i t a n  equations Al(x, y) and A2(x, y) found, 
opera tors  U 1 and U 2 using Eqs. (3.1) and (3.2) and consider  the opera tors  

Hi=U~HoU'{ 1, i ~  1, 2. (5.9) 

We carry out the investigation of these operators at the formal level, without going too deeply into justifica- 
tions. A rigorous justification of the results obtained here can be derived more simply by following the 
quite elementary, but laborious discussions of [1]. 

We first prove that the operators H i are self-adjoint. For the proof we note that the Gel'land-Levi- 
tan equations derived from the completeness equation (3o13) are in fact equivalent to it, i.e., in other words 
the operators U I and U 2 obtained by us satisfy this equation. We consider for the sake of definiteness the 
case i = Io Suppose an operator AI has kernel Al(x, y), where 

O, x < y; ~, 

-41 (x, y)= ~o1 (x + y) +~ At (x, z) ~1 (z + y) dz, x > y. 

We const ruc t  the Vol te r ra  opera tor  

tY,=l +~,. 

The G e l ' f a n d - L e v i t a n  equation can now be writ ten in the form 

The opera to r  

is also self-adjoint  since Wl is self-adjoint .  

U,W, =U,. 

~],U; = U,W,U*~ 

But it is simultaneously a Volterra operator, since the opera- 
tors  U~ and UI* are  Vol te r ra  with identical Vol te r ra  direction.  These two proper t ies  are  consis tent  only 
if 

8,u;--l, 

which implies that U 1 sat isf ies the completeness  equation 

UIW,U~ = I. 

Using this equation we can rewr i te  the definition of the opera tor  H~ in the form 

H, = U,HoW, U*,, 

which implies that H I is self-adjoint since H 0 and W I commute. The case i = 2 is similarly considered. 

We now prove that the H i are represented in the form 

H~ = H0+ V,, 

where the V i are  for multiplication by the functions 

v, (x) = --  2 d A, (x, x); ~% (x) = 2 d A2 (x, x). (5.10) 

For  this purpose,  assuming again for the sake of definiteness that i = 1, we rewri te  Eq. (5.9) in the form 

H1U1 =U1Ho (5.11) 
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and take into account that the opera to r  U 1 = I + A 1 is Vol ter ra ,  so that 

Aa (x, y)---- 0 (y-- x) A1 (x, y), 

where 0(x) is the Heaviside function. Equation (5.11) is rewr i t ten  in the form 

r~ 0s 0z �9 7 
--[[~-~--'5~)At(x,Y)J 0 (y -- x) + 2~ (x --  y) d dl (x, x ) +  

+ (V1Ut)(x, y)=0 ,  

where we set  Vs = Hs - H0 and assume Vs to be an integral  opera to r  whose kerne l  can be a general ized func- 
tion. The result ing equation is consis tent  with V 1 being self-adjoint  and U s being a Vol ter ra  only if 

Vt (x, y)~= --2~ (x - -y )  d At (x, x ) =  ~ ( x - - y ) v l  (x). 

Moreover ,  we will see f rom this fact that As(x, y) sat isf ies  the par t ia l  different ia l  equation 

o , _ .  . o i 
-~1 (x, y)--  ~ At (x, y ) -  v l (x) A1 (x, y ) =  O, 

which, incidentally,  we will not use. 

The opera tor  H 2 is analogously investigated. Our resu l t  is that the H i a re  different ia l  opera tors  of 
the form 

d 2 
Ht--- - - -s  i ~  1,2, 

where the functions vi(x) are  given by Eqs. (5.10). 

Equation (5.11) also implies  that the functions fs(x, k) and f2(x, k) constructed in t e rm s  of the kernels  
of As(x, y) and A2(x, y) by means of Eqs. (1.8) and (1.9) are  solutions of the different ial  equations 

f~(x ,  k ) + l : f ; ( x , k ) = v ~ ( x ) f t ( x , k ) ,  i-----1,2, 

and have the asymptot ics  of Eqs. (1.2) and (1.3). Finally, the bounds of Eqs. (5.4), (5.5), (5.7), and (5.8) 
demons t ra te  that vl(x) and v2(x) sat isfy bounds of the form 

~( 1 + r x 1) [ Vl (x)] dx  ~< C (a); 
a 

b 

I (I +1 x I)Iv2 (x) Idx ~< D (b). 
(5.12) 

moo 

Moreover, if Fs(x) and F2(x) are n times differentiable, the potentials vs(x ) and v2(x ) have n-1 derivatives. 
Here v~ m] and v~ m] as x ~ ~ and as x ~-~, respectively, behave as F~ re+i] and F~ m+1]. 

We conclude the study of the inverse problem by proving if ~L(x) and ~2(x) are consistent, i.e,, Fs(x) 
and F2(x) are constructed in terms of the given matrix S(k) satisfying the necessary properties given at the 
beginning of the section and m} I) and m} 2) are related by Eq. (3.11), f1(x, k) and f2(x, k) satisfy the equations 

s .  (k) A (x, k) = s~  (k) f~ (x, k) + :~ (x, - k); 
s2~ (~) f ,  (x, ~)--- s~ (k) :2 (x, k) + f2 (x, - -  k). (5.13) 

It t he r e fo re  follows that vl(x) and v2(x) coincide, and we obtain f rom the bounds of Eqs. (5.12) that 

i(1 + l x l ) v ( x ) d x <  oo 

together  with the corresponding re f inements  on different iabi l i ty  in the case of the different iabi l i ty  of Fl(x ) 
and F2(X ). 
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We have the reby  found that  the ope ra to r  H = H 0 + V cons t ruc ted  by us belongs to the initial  c l ass  of 
the SchrSedinger  o p e r a t o r s .  Fu r the r ,  these  equations (5.13) imply that H has the se t  of eigenfunctions 
u~+)(x, k) with a sympto t i c  fo rmula ted  in the table  in Sec. 2, this  a sympto t i c  containing as the coefficient  
sij(k) the ma t r i x  e l emen t s  of the init ial  s ca t t e r ing  ma t r i x  S(k). The cons t ruc t ion  of the ope ra to r  H and 
the reby  the proof  of the suff ic iency of the p r o p e r t i e s  of the s ca t t e r i ng  m a t r i x  s ta ted at the beginning of this 

sec t ion  concludes with this fact .  

To prove  Eqs.  (5.13) we use  the uniqueness  t h e o r e m  obtained above for  the pa i r  of functions u(x, k) 
and f(x, k), proving that  the functions ui(x, k) and fi(x, k) cons t ruc ted  using the G e l ' f u n d - L e v i t a n  equations 
sa t i s fy  the equations 

u, (x, ~) = s,, (k) f2 (x, k), 
u2 (x, k ) =  s2s (~) f ,  (x, ~). 

Equations (5.13) are thereby derived by using Eqs. (4.3) and (4.4). 

Suppose u2(x, k) and f2(x, k) are obtained using the equation 

s~, (k)A (x, k)+A(x, --~)=u~ (x, k) 

and the analyt ic i ty  p r o p e r t i e s  fo rmula ted  above. 

We mult ip ly  Eq. (5.14) by s21(-k).  We obtain 

! s2, (/0 ISfs ( x , / 0  + s~t ( - / ~ )  A (x, - k) = ss, ( -  k) u~ (x, k). 

The second t e r m  in the left  side is again  rep laced  on the bas i s  of Eq. (5.14), 

- (1 --Is2, (/0 D f2 (x,/~) + us (x, - /~ )  = s~, ( -  k) us (x, k). 

In view of the uni ta r i ty  condition of Eq. (2.3), the l a t t e r  equation is r ewr i t t en  in the fo rm 

We introduce the functions 

- sst ( -  ~) us (x, ~) + us (x, - k)-= I sli (k)12fs (x, k). 

(5.14) 

(5.15) 

tt(x, te)=s~t (te) f s (x, k); f (x, k ) = u  2 (x, l~)/s,1 (k). (5.16) 

The function u(x, k) is analyt ic  eve rywhere  in the upper  ha l f -p lane  except  for the points k = i~ l, 
where  together  with sis(k) it has s imple  poles .  The function f(x, k) has no s ingular i t ies  at k = i• D since 
the s ingula r i t i es  of u2(x , k) and s~l(k ) compensa te  each other .  If s11(0) = 0, f(x, k) the reby  lacks  a s ingula r i -  
ty at k = 0. In fact  if s11(0) = 0, s12(0 ) = - 1 ,  and using Eq. (5.14) we find that u2(x , 0) = 0, so that the ra t io  
u2/sl~ lacks  a s ingular i ty  at k = 0. Evidently,  for  r ea l  k, 

f(x,--k)=f(x,k); u(x, --k)=u(x,  k). 

We eas i ly  ver i fy  that  the res idues  u(x, k) a r e  re la ted  to f(x, k) by the equation 

Res u (x, k) [k=~ l -~ irn(~')f (x, ixt). 

We need ovJy use  the condition of Eq. (3.11). Finally,  Eq. (5.15) has  the fo rm in t e r m s  of f(x, k) and u(x, k) 

sl~ (k) f (x, k) + f (x, - -  k) = u (x, k). 

Based  on the uniqueness of this pa i r  of functions as fo rmula ted  above, we conclude that 

f(X, ~)=11 (X, ~); U(X, ~)=U 1 (.X:, ~), 

which impl ies ,  by Eq. (5.16), Eq. (5.13). 
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We conclude with this fact  for  the genera l  study of the inve r se  p rob l em for  the one-d imens iona l  Schr~Se- 
dinger  ope ra to r .  

6 .  P a r t i c u l a r  C a s e s  o f  t h e  S o l u t i o n  o f  t h e  I n v e r s e  P r o b l e m  

Here  we will cons ider  two examples  where  the inve r se  p rob lem has an explici t  solution: 

1. Absence of ref lec t ion ,  i .e . ,  the coeff icients  s12(k) and s21(k ) identical ly vanish and the ent i re  non- 
t r iv ia l  contr ibution to the G e l ' f a n d - L e v i t a n  equation is provided by the discontinuous spec t rum of H. 

2. Rational  re f lec t ion  coefficient.  

Both examples  a re  combined through the common p rope r ty  of the ke rne l  ~2(x + y) in the G e l ' f a n d -  
Levi tan  equation; it b ecom es  degenera te  and the solution r educes  to quadra tu res .  However,  we will con- 
s ide r  these  examples  sepa ra t e ly .  Here  we will a s sume  in the second example ,  in o r d e r  to s impl i fy  the 
equations,  that the discontinuous s p e c t r u m  of H is absent.  This  will be sufficient  for  the r e a d e r  h imse l f  
to analyze,  by combining methods for  the f i r s t  and second examples ,  how a l ternat ions  to the equations 
a r i s e  in the genera l  case .  These  examples  make  it  poss ib le  to solve the inve r se  p rob lem for  a dense se t  
of sca t t e r ing  data.  

Thus,  let  us cons ider  the G e l ' f a n d - L e v i t a n  equation (4.1) and a s sume  that  s12(k) -- 0, so that the ke rne l  
~21(x + y) has the fo rm 

2V 

e, (x + y)=~ ra~')e-~' (~+~'. 
/=I 

The solution Al(x, y) in this case  is natural ly  found in the fo rm 

N 

A, (x, y ) = ~  gt (x) e -~tu, 
l~1 

an a lgebra ic  s y s t e m  of equations natural ly  wri t ten  in vec to r  notation 

g (x) + go (x) + ~v, (x) g (x) = o 

ar i s ing  for  the function g/(x). Here  g(x) is the des i r ed  column vec tor  with components  gl(x), l = 1 . . . . .  N, 
g0(x) is a column of the functions m~')e-~:,  l = 1 . . . . .  N and Wl(x) is a m a t r i x  with e lements  

rn  ( I )  
w : ' ( l . )  ~ ' o x  _ _  ,"it  - - ( ~ l + ~ i ) x  
W l j  I..,~l---ut.l_• ] v 

The solvabi l i ty  of the resu l t ing  s y s t e m  is guaranteed  by the genera l  r e su l t s  of the preceding  sect ion 
and, solving it, it is  poss ib le  to find gl(x) and, together  with them, the ke rne l  At(x, y). In pa r t i cu la r ,  it can 
be eas i ly  ver i f ied that  an expres s ion  is obtained for  Al(x, y) which in our  notation can be wri t ten as fol-  
lows:  

A, (.x, x) =tr (~ WI (x)(/q- WI (x)-') ~ d  Indet (1 q- WI (x)). 

We thereby  find an exp re s s ion  for  the des i r ed  potential ,  

d' v (x) = - -2  ~ In det (I q- W1 (x)). 

We can s i m i l a r l y  cons ider  Eq. (4.2). We obtain for  the potential  v(x) the equation 

d' v ( x ) =  --2 ~'i lndet (lq-W2 (x)), 

where  W2(x) is a m a t r i x  with e lements  

(6.1) 

(6.2) 

m (2) 
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We note that the t r ansmis s ion  coefficient in our ease has the form 

N 

s .  (k) = ]7[ ~ + i.~ 
1'=1 l ~ - - i x l '  

so that 

7 z = i  Res sn (k)ik=%= --2~1 I I  x~+• 
]g=t 

and we recal l  that the constants m} 1) and m} 2) are  related by the equation 

$ g, g" 

It follows f rom the general  considerat ions  of See. 5 that Eqs. (6.1) and (6.2) for v(x) coincide under these 
conditions. Direc t  verif icat ion of this identity consti tutes a nontrivial combinator ia l  problem. 

We now pass  to the second example. Suppose s12(k) is a ra t ional  function of the variable k, 

- - .  P m  ( k )  

where Pro(k) and Qn(k) are  polynomials  of degree  m and n, m < n, having the identity element as coefficient 
for the highest degree  k, and r is a constant.  The rea lness  condition 

sl~ ( - -  k) = s12 (k) 

will hold if 

r = (i) ~-n r0, 

where r 0 is a rea l  number and the ze roes  of the polynomials Pm(k) and Qn(k) are  located symmet r i ca l ly  
about the imaginary axis. The constant r 0 must  be sufficiently smal l  in order  that 

ts. (k)l < 1. 

For  this purpose it is necessa ry  that all the ze roes  of Qn(k) have nonvanishing imaginary  part .  For  s im-  
plicity we will assume that all these ze roes  are simple.  The case of multiple ze roes  can be considered by 
the corresponding passage  to the limit.  

The procedure  descr ibed  in Sec. 3 for recons t ruc t ing  the t r ansmiss ion  coefficient sll(k ) itz t e r m s  of 
s12{k) can be explicitly pe r fo rmed .  We recal l  that we have assumed that the discontinuous spec t rum of H 
is absent, so that sll(k) has no poles in the upper half-plane.  The explicit equation for stl(k) has the form 

n n +  n -  

~,, (k) = I I  (~ + ~,) H (k + ~,~+~)-' I1 ( k -  ~}- , ) - ' ,  ,~+ + ,~_ = ~, 
l = I  l = l  l = l  

where a}+) and ~}-)  are  the ze roes  of Qn(k) in the upper and lower half-plane,  respect ively ,  and these 
are  roots  of the equation 

l =sl= (k) s~2 (- /~)  

in the upper half-plane.  There  are  p rec i se ly  n such roots ,  since the equation is invariant  re la t ive to the 
substitution k ~ - k .  Using Eq. (2.10), we can see that the second ref lec t ion coefficient s21(k ) is also a r a -  
tional function and is represen ted  in the form 

s2~(/O=r" P~"(~----2-) m'<n', 
O'., (~) ' 
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! 
where the polynomials  Pm,(k) and Qn,{k) and the constant  r '  p o s s e s s  p r o p e r t i e s  s i m i l a r  to that for  Pm,  
Qn, and r .  We will a lso  a s s u m e  that  all the z e r o e s  of Qn'  a re  s imple .  

The Fou r i e r  t r a n s f o r m s  Fl(x) and F2(x ) of the re f lec t ion  coeff icients  s12(k ) and s2flk) a r e  calculated 
using the Jo rdan  l e m m a .  In pa r t i cu l a r ,  

n+ 

F , ( X ) = ~ ,  pte tr x > 0 ;  
g--I 

F, (x)= Y, pie-' ; c+'', x < o, 
l--I 

where the sums  a re  taken ove r  the ze roe s  of Qn(k) and Qn,(k) in the upper  hal f -p lane .  The coeff icients  p/ 
and p~ coincide to within a f ac to r  i with the r e s i d u e s  s12(k) and s21(k) at the poles located at these  ze ro e s .  

We will see  that  the ke rne l s  Fl(x + y) and F2(x + y) of the G e l ' f a n d - L e v i t a n  equations (4.1) and (4.2) 
a r e  degenera te  when x > 0 and x < 0, r e spec t ive ly .  We can use a method in these  regions  for  solving them 
a l ready  ment ioned in the invest igat ion of the f i r s t  example .  As a r e su l t  we find the express ion  for the 
des i r ed  potent ia l  

(x) = - -  2 ~ In det (I + Z, (x)), x > O; 

d' 
v (x) = - -  2 a---}-r In det (1 + Z~ (x)), x <: 0, 

(6.3) 

(6.4) 

where  the m a t r i c e s  Z1 and Z 2 have as m a t r i x  e lements  the expres s ions  

f f - (+ ) - - c , (+ )~ .  

z!~' = ip,' e-,(d,(+~+~(+')~ , ,  

The potential  mus t  be a continuous function if s12(k) is to suff icient ly d e c r e a s e  as Ikl-+ co. In p a r -  
t icu lar ,  when m ~<n--2 Eqa. (6.3) and (6.4) a r e  continuous and will coincide at x = 0. A d i rec t  proof  of 
this a s se r t i on  is f a r  f r o m  s imple .  One pa r t i cu l a r  case  of the resu l t ing  equations,  when v(x) = 0 at x < 0 
was p resen ted  in [37]. 

We now note that the explici t  equations obtained by us for v(x) contain a logar i thmic  der iva t ive  of the 
de t e rminan t  of a ma t r ix .  It turns  out that this fact  is not accidental .  In can be proved that the potential  
v(x) is e x p r e s s e d  by the equation 

d' d 2 
v ( x ) = - - 2 ~ - ~  In A, ( x ) =  - -2  3-~ In A2(x ) (6.5) 

in t e r m s  of the Fredho lm de te rminan t s  Al(x) and A2(x ) of the G e l ' f a n d - L e v i t a n  equations (4.1) and (4.2). 
The appearance  of the f in i te -d imens ional  m a t r i c e s  W(x) and Z (x) in the examples  we are  consider ing is 
explained by the degeneracy  of the cor responding  ke rne l s  in these equations.  We p re sen t  a b r i e f  and fo rma l  
der iva t ion  of Eq. (6.5). The r igo rous ly  just if ied method is too long to be p resen ted  he re .  

We will p rove  that 

Ax(x, x)= d l n  Al(x); A2(x, X)= --~xlnA2(x), 

a f t e r  which Eq. (6.3) is implied by Eq. (5.10). Thus,  suppose 

A i (x) = det (I + .o.x) , 

where  I + ~2 s was introduced in Sec. 5 and has  the f o r m  PxWlPx, where Px is a p ro j ec to r  into L2(R ). 

p , , ( y )  - -  o ( y -  x) 9 (y). 
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We now note that 

In h 1 (x) = Tr In (I + ~ax) = Tr In (I + Px 9"1), 

where T r  is defined on the left  in the space  L2(x, ~), and on the r ight ,  in L2(R). 
is an in tegra l  ope ra to r  in L2(R) with ke rne l  

q .  (y, z) = 0 (y -x )  21 (y + z). 

The last equation implies that 

The ope ra to r  Px~l  = Qx 

d~ |I1 ~1 (X) = Tr ((/" -[- lnx) ~ Px~l), 

Here  we have introduced the r e so lven t  F x of the ope ra to r  Qx, i .e . ,  an in tegra l  ope ra to r  whose ke rne l  sa t -  
i s f ies  the equation 

[ ~ ] r x ( y , z ) + 0 ( y - - x )  ~o l (yTz)+I r . (y ,  O ~ i ( ~ + z )  dt =0 .  
x 

Compar ing  this equation to the G e l ' f a n d - L e v i t a n  equation (4.1) we may  ver i fy  that 

r .  (x, x )=A1 (x, x). 

The t r a c e  des i r ed  by us in this notation is e x p r e s s e d  by 

d_ 
( x ) =  - - f  dydz (~ (y - - z )+P . ( y ,  z)) ~(y- -x )  2 x ( z + y ) =  In kl dx 

= P .  (x, x)  = A1 (x: x), 

which a lso  p roves  the f i r s t  equation in Eqs.  (6.5)~ The second equation is p roved  ent i re ly  analogousIy.  

C H A P T E R  2 

S I M P L E  G E N E R A L I Z A T I O N S  A N D  A P P L I C A T I O N S  

The technical  appara tus  desc r ibed  in the f i r s t  chapter  is c a r r i e d  ove r  without s ignif icant  var ia t ions  
to a number  of one-d imens iona l  p r o b l e m s  in s ca t t e r ing  theory .  In this sect ion we will consider  several.  
examples ,  l imit ing ou r se lves  bas ica l ly  to only the formula t ion  of the r e su l t s ,  genera! iz ing  or  modifying the 
a s s e r t i o n s  s ta ted in Chap. 1. Moreover ,  we will cons ider  in Sec. 4 an applicat ion of developed methods 
f r o m  sca t t e r ing  theory  for  solving nonl inear  equations in the theory  of one-d imens iona l  continuous media .  

1 .  P o t e n t i a l s  w i t h  D i s t i n c t  A s y m p t o t i c s  a t  I n f i n i t y  

Here  we will cons ider  two examples  of the Schr~hedinger o p e r a t o r  

d ~ 
H ~ (X) = - -  a~ ~ (x) + v (x) ~ (x), 

behaves  d i f ferent ly  as x ~ - -  ~ ve r sus  x -+  oo: where  the potential  v(x), xER, 

Example  1. 

�9 o ( x ) ~ c ~ ,  x ~ - - o o ;  

was cons idered  by V. S. Bus laev  and V. L. Fomin  [6]. 

Example  2. 

v ( x ) + o a ,  x - + - - o o ;  

was studied by P. P. Kulish [1.4]. 

~ (x)-~ O, x ~ c o  
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We will not exceed the l imits  of e lementary s tat ionary scat ter ing theory. All the t rea tments  can be 
embedded in an abstract  scheme of scat ter ing theory,  but not very instructively.  We will also not present  
any proofs, re fe r r ing  instead to the original works. 

Let  us pass to a descript ion of the f i rs t  example. We assume that 

0 

I ( l + ] x l ) l v ( x ) - - c 2 I d x <  oo; 
-oo (1.1) 
c o  

!( l  + I x l) !~ (x ) ldx  < oo. 
0 

Suppose l e~=Vk2- -c  2 is defined so that I m k t > 0  when Imk>~0. The solutions ft(x, k) and f2(x, k) of the 
SehrBedinger equation 

,"  (x) +/~9 (x)---- v (x) 9 (x) 

are  distinguished by the asymptotic conditions 

(1.2) 

f t  (x, k)----et~,~+ o (1), x-,- oo; 
f2 (x, k)----e-'k,x + o (1), x-+ -- co; 

and are analytic functions for fixed x of the parameters  k and kl in the upper half-plane. We have the in- 
tegral  representat ions  

oo 

f l (X, I~) = e lf~x + I At (x,  y) eikYdy, 
..t" 

x 

f 2 ( x ,  k)=e- i~ 'x+ I A~(x, y) e-tk'Vdy, 

bounds s imi la r  to that presented in Sec. 1 Chap. 1 holding for the kernels  Al(x, y) and A2(x, y). The solu- 
tions ut(x, k) and u2(x, k) of Eq. (1.2) are uniquely determined by the radiation principle and have the form 

ut ( x , / 0  = sil (/0 f~ (x,/0---- s~ (/0 .ft ( x , / 0  + f~ (x, - /~) ;  
k>O, 

u2 (x, k) = s22 (k)/1 (x,  k) = s~ (k) .f~ ( x , / 0  + f2 (x, - 10; 
/~>c. 

The coefficients sij(k) determining the scat ter ing matr ix  possess  the following proper t ies :  

1. Unitarity: 

k 
s22 (k)s~ (k) + s~ (k) sH (k) =0 ,  ~ >c; .  

~, 1s22 (k)12 +Is21 (k)F" = 1; ~-ls, t  (k)12 +ls l  2 (k)12- - 1, k > c ;  

Is~2(k)l---- 1, O< &< c ;  
s~2 (c) = 0:*'s21 (c)= -- 1; 
st1 (0)----- O=~s l2  (0)----- - -  1. 

2. Symmetry:  

kls~ (k) = ks2~ (e). 

3. Analyticity: the coefficient sll(k ) is the limiting value of a function analytic in the upper half-plane 
and having there simple poles on the imaginary axis at the points k = ix[ with residues 
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4. Behavior  as 

such that 

Res sll (k) [k~z,~r = iTt; "~t = 1 (x, i~t) f2 (x, ixt) dx . 

[/~ I-+ ~ :  there  exis t  F o u r i e r  t r ans format ions  

F,(X)~2)- ~ i s , ~ ( k ) e ' d k ;  F2(x)=~-~7 ~. s,,(/c2+-~--+-~e-'U'dk 

, ~ l h  F,  (x)[ (1-t- ] x 1) dx..~ C (a)~ 
a 

b 

~ o o  

We shall  be a r  in mind the modificat ion of the uni tar i ty  and s y m m e t r y  conditions. 

These  p roper t i e s  r econs t ruc t  the ent i re  mat r ix  S(k) in t e r m s  of the re f lec t ion  coefficient  sl2(k). 
the same t ime knowledge of s21 at k> c is not sufficient for  this purpose.  

The Gel ' fand--Levi tanequat ion  for the ke rne l  As(x, y) is unchanged: 

At 

eo 

A1(x, Y)+~I (x + Y) + f At (x, z) P~l (z + y) dz~O,  x < y .  
x 

Here  

N 

(x) (x) + Y, rn? e 
l = |  

where the function Fl(x ) has a l ready been introduced,  while 

The G e l ' f a n d - L e v i t a n  equation for the kerne l  A2(x, y), 

A2 (x, y) + ~2~(x + y) + I A2 (x, z) ~2 (z + y) dz = O, x > y, 

contains a new t e r m  

N c 
_ 1 r -x c~r  aee 

l = l  

Here  the m~ 2) a re  re la ted  to the m~ l) by the equation 

An investigation of these  equations and a proof  for  the necess i ty  and suff iciency of these p rope r t i e s  
of S(k) corresponding to the potential  v(x) sat isfying the condition of Eqo (1.1) will be p resen ted  analogous 
to what was done in Chap. 1. We r e f e r  the r e a d e r  to [6] fo r  detai ls .  

Let  us now pass to a descr ip t ion  of the second example.  In this case  the SchrSedinger  equation (1.2) 
has a solution u(x, k) which pos se s se s  the asymptot ic  
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u ( x , k ) = o ( 1 ) ,  x + - o o ;  
u(x ,  k)=e-ik" +s(k)eZk" +o(1),  x.-> oo, 

where the ref lect ion coefficient s(k) sat isf ies  the unitari ty condition Is(k)[ = 1. At la rge  k, s(k) rapidly 
osci l la tes .  The inverse  problem consists  in recons t ruc t ing  v(x) in t e r m s  of given s(k). 

Let  us refine the conditions on v(x) for which the resu l t s  formulated below are true.  The nature of 
the increase  in v(x) as x --* -co is difficult to express  explicitly in t e rms  of the asymptot ic  behavior of lns(k) 
as k--0% It is, however,  possible to expand the class  of potentials v(x) so that the necessa ry  and sufficient 
proper t ies  of the corresponding ref lect ion coefficients can be described.  We will assume that for finite a, 

~'0 +Ix  I)v (x)dx<C(a), 
a 

and the spec t rum of the S t u r m -  Liouville problem 

- - . ~ + v ( x ) ~ , ( x ) = X g ( x ) , - o o  4 X < X o ,  9(x) x x. 

for some x 0 is semi-bounded f rom below and discontinuous.We will also assume that this opera tor  H lacks 
a discontinuous spect rum.  

The existence of the solution f(x, k), such that 

f (x, k)=e'kX + o(1), x ~ oo, 

its analytic proper t ies  in t e r m s  of a pa r ame te r  k, and, in par t icu lar ,  the integral  representa t ion 

cO 

f (x, k) = e lk" + f A (x, y) eikYdy 
X 

have already been proved by methods known to us. The eoeffieient s(k) is uniquely determined by the faet 

that 

u (x, k) = f (x, --  k) + s (k) f (x, k) 

is integrable in square  in a neighborhood of x = --  oo. The proper t ies  of s(k) are  as follows. 

1. The Four i e r  t ransformat ion  

c o  

e I s (k) 

defined as a general ized function, coincides with an absolutely continuous function, such that 

LI 

2. s(k) can be represented  in the form 

s (k)=so(k) + O (~, ) ,  

where Is0(k)]-----1 when Imk-----0 and s0(k) has meromorph ic  continuation onto the entire complex plane of 

the variable k, while when Im k > 0  , 

I So (/01 ~< e 2~m~~~ �9 
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3. The function u(x, k) = f(x, - k )  + f(x, k)s(k) will have an analytic continuation in the upper half- 
plane, such that the function P(D defined by the equation 

O0 

~dp (L) u (xo, k) 

,~(x, k) 

is the spec t ra l  function of the S t u r m - L i o u v i l l e  problem on the semi -ax i s  (-r162 x 0) with boundary co ,d i -  

d tion ~x O(x)=O when x = x 0. 

We note that the s ta tement  of the la t ter  condition includes, in addition to s(k), the solution f(x, k) of 
the Schrhedinger  equation (1.2), so that this proper ty  at f i rs t  glance is not formulated solely in t e rms  of 
s(k). In fact. the situation is not that bad. It is possible to solve a G e l r f a n d - L e v i t a n - M a r c h e n k o  equation 
for  every function s(k) sat isfying the f i rs t  and second conditions and also the uni tary condition 

co  

A(x, y)=F(x+y)+fA(x, z)F(z+y)dz=O, x < y ,  
X 

at x = x 0 and to find the solution f(x, k) and its derivat ive at x = x 0. We next verify the third condition. Re-  
construct ion of the potential v(x) at x < x 0 must  be car r ied  out using the G e l ' f a n d - L e v i t a n  procedure  for 
solving the inverse  S t u r m - L i o u v i l l e  problem with discontinuous spect rum.  Here we conclude the desc r ip -  
tion of the second example and r e f e r  the r eade r  for fur ther  details to [14]. 

2 .  C a n o n i c a l  S y s t e m  

Many methods developed for the one-dimensional  Schrhedinger  opera tor  are  naturally ca r r i ed  over 
{and somet imes  even simplified) to the differential  opera tor  of a canonical l inear  sys tem,  which we write 
in mat r ix  notation 

H=]~+q(x) .  

Here J is a s implicial  mat r ix  and Q is a real  symmet r i c  mat r ix  function with zero  t r ace  

t--' ~ / p  (x) q (x)] 

The technical  tools for studying the spec t ra l  p roper t ies  of such an opera tor  were developed by M. G. 
Krein and his students and also by M. G. Gasymov and B. M. Levitano Corresponding re fe rences  can be 
found in [13, 7]. In both these works H is considered on the semi -ax i s  0 < x < c c .  In this section we will 
p resent  the fundamental equations and resul ts  of the s ta t ionary scat ter ing theory and inverse  problem for 
an opera to r  H on the entire axis, following the thesis  of Takhtadzhyan [20]~ 

We consider  the sys tem of differential  equations 

j d 9 (x) + Q (x) q~ (x) = kO (x), --  c~ < x < oc, (2.1) 

which plays in our  case  the role of the Schr'bedinger equation. The sys tem (2ol) has solutions f~{x, k) and 
f2(x, k) which are  column vectors  and have the asymptot ic  

i)ei~*+o(1), x ~  co, f ,  (x, ~) = ( 

f2.(x,k)=(~i)e-'kX+o(1), x->--.r 

To prove the existence of these solutions it is sufficient to assume that the coefficients p(x) and q(x) of 
Q(x) a re  absolutely integrable functions, 

• ip(x)[dx< ~; ~lq(x)idx< oo. 
- - 0 3  --0r 

(2,2) 
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The components fi(0(x, k) and f!Z)(x, k) of fl(x, k) and f2(x, k) for  fixed x have an analytic continuation 
in the upper  half-plane of the p a r a m e t e r  k. For  large k 

f , (x ,k)  e-"=(  i ) + o ( 1 ) ;  f ,(x,/Oe"=(--i)+o(1 ). 

For  rea l  k the pa i rs  of solutions fl(x, k), fl(x, k) and fz(x, k), f2(x, k) form two fundamental sys tems  
of solutions of Eq. (2.1). The convers ion  fac tors  a(k) and b(k) are  introduced by the equations 

3"2 ( x , / O - - a  (k) f l  (x, k) + b (k) f l  (x, k); 

f l  (x, k)----- --  b (k)'.f~ (x, k) + a (k) f~ (x,/~). 

These  coefficients sat isfy the identity 

1 + lb (k )  12=la(k)tz 

and can be expressed  in t e r m s  of fl(x, k) and f2(x, k) by means of the equation 

a (k)---- _1 {fl (x, k), f2 (x, k)}. 

Here {f, g}, an analog of the Wronskian, is defined as a b i l inear  form of the ma t r ix  

If ,  g} __ fO)g2--f(2~g(O. 

We will see that a(k) has an analytic continuation on the upper half-plane and is bounded there  as k ~  0% 

a(k)-----1 + o(1). 

The function a(k) does not have ze roes  in the upper half-plane since such ze roes  would cor respond to com- 
plex eigenvalues of the formal ly  self-adjoint  sys tem (2.1). 

Knowledge of the fundamental sys tem of solutions of the sys tem of equations allows us to introduce 
solutions u(x, k) sat isfying the radiat ion pr inciple  and to develop sca t te r ing  theory s imi la r  to what was 
done in Sec. 2 Chap. 1 for  th.e example of the Schr~iedinger equation with decreas ing  potential.  We will 
not c a r r y  this out here ,  l imiting ourse lves  to stating that the mat r ix  S(k) is de termined by the convers ion 
fac tors  a(k) and b(k) by means  of equations that coincide l e t t e r  for  le t te r  with those presented  here .  The 
sole d i f ference  is that the p a r a m e t e r  k now runs through the ent i re  rea l  axis. In par t icular ,  the ent i re  
ma t r ix  S(k) can be recons t ruc ted  in t e r m s  of one of the ref lec t ion  coefficients 

~2 ~J-----~-~, s~  (k)----- - a (~)" 

We have for the solutions fl(x, k) and f2(x, k) the integral  representa t ions  

OO 

f l  (x, k) = f 0  (x, k) + I A1 (x, y) f0 (Y, a) dy; 
X 

X 

f2 (x, k)=fo(x, k)+ f A2(x'y)fo(Y'k)dY" 
- - o o  

Here  the column vector  f0(x, k) has the form 

and the kerne l s  Al(x, y} and A2{x, y} are  rea l  mat r ix  functions absolutely integrable with respec t  to y for  
fixed x. 

The kerne ls  Al(x, y) and Az(x, y) can be used to construct  the Vol te r ra  t rans format ion  opera to r s  and, 
in par t icu la r ,  to express  in t e r m s  of them the completeness  condition. We will not ca r ry  this out he re  and 
p resen t  only equations express ing  Q(x) in t e rm s  of these kerne ls  
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Q(x)= --[A, (x, x), JI=iA2 (x, x), J] 

and a formula t ion  of one of the G e l ' f a n d - L e v i t a n  equations 

AI (x, y) + F, (x + y) + l A~ (x, z) F I (z + y) dz-~O, x < y. 

Here  the ma t r i x  function Ft(x) is int roduced by the equation 

! 

It is poss ib le  to prove ,  based  on a study of this equation and its analog for  the ke rne l  A2(x , y), that 
the p r o p e r t i e s  of S(k), viz. ,  i ts  uni tar i ty  and s y m m e t r y ,  the analyt ici ty of the t r a n s m i s s i o n  coefficient ,  and 
the absolute in tegrabi l i ty  of the F o u r i e r  t r a n s f o r m a t i o n s  Fl(x) and F2(x) of the re f lec t ion  coeff icients  s~2(k) 
and s21(k) 

c~ b 

! Ip, (~)1~ < c (~), f IF~ (x)ld~ < c (b) 
a - -  o o  

are necessary and sufficient properties of the scattering matrix for a canonical system with matrix Q(x) 
satisfying the condition of Eq. (2.2). 

We will now show how the canonical system is a generalization of the Schr~iedinger equation. If the 
matrix Q(x) has the form 

Q,' x ' , -  (o q (x)~ 
", , -- \q(x)  0]' (2.3) 

the s y s t e m  of Eqs.  (2.1) is equivalent  to the SchrSedinger  equation vAth ope ra to r  H of the fo rm 

d ~ 

which is evidently posi t ively  defined. That  the equation 

stj ( - -  k) = s,~ (k), 

which also in fact  r educes  the range  of var ia t ion  of the p a r a m e t e r  k to the s e m i - a x i s ,  is r ea l  const i tu tes  
a n e c e s s a r y  and sufficient  condition on the sca t t e r ing  data co r respond ing  to the m a t r i x  Q(x) of the fo rm of 
Eq. (2.3). 

We note in conclusion that  the case  of the s y s t e m  (2.1), when the m a t r i x  Q(x) has  the fo rm 

Qix)=( %:-;) 
where m is a pos i t ive  constant  ( sys t em of Di rac  equations with mass ) ,  was recen t ly  cons idered  by L S, 
F r o l o v  [30]. 

3 .  T r a c e  F o r m u l a  

In this sec t ion  we will de r ive  ident i t ies  re la t ing  the momen ta ,  the function In I a(k)I, where  a{k) is one 
of the convers ion  fac to r s ,  with the in tegra l  of po lynomia ls  fo rmed  by de r iva t ives  of the potent ia ls  in the 
one -d imens iona l  SchrSedinger  ope ra t o r  or  in the o p e r a t o r  of the e a n o n i c ~  sys t em.  These  equations f i r s t  
appeared  apparent ly  in [5], which in turn  developed a pape r  by 1. M. Gel ' fand and V. M. Levi tan  [9]. In 
these  works  it  was shown why such identi t ies  can na tura l ly  be called t r ace  fo rmulas .  The der iva t ion  which 
we p r e sen t  will not use  genera l  o p e r a t o r - t h e o r e t i c  concepts  and is taken f rom [10]. 

We f i r s t  cons ider  the case  of the Sehr~edinger  ope ra to r .  We will a s s u m e  that  the potent ia l  v(x) is a 
Schwar tz - type  function. Then the re f lec t ion  coeff icients  s12(k ) and s2~(k ) d e c r e a s e  as [ k [ ~  m o r e  rapidly  
than [kl - .  for  any n > 0. The equation 
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N 
1~  _ t t . ~  1 {' In l a  ( k ' ) l  . ~ l  

l : l  

which const i tu tes  one va r ian t  of Eq. (I.2.9) impl ies  that  In a(k) has  a decompos i t ion  in negative deg ree s  of 
k, 

co 

l n a ( k ) = ~  c,, ( 3 . 1 )  
n=lk"~' 

where 

N 

1 i k2j l .  la (k) ldk--., z E (ixt~ 2j+I. cgj - -~ O; c~ l+  1 ~-~ ~ ~ - =  ~ / t  ~ T'--I " 

Even d e g r e e s  vanish as a consequence of the evenness  of the integrand lnla(k)[. Bear ing  in mind the in te r -  
p re ta t ion  of a(~r~) as a r egu la r i zed  c h a r a c t e r i s t i c  de t e rminan t  of H, we can say that  the c2j+1 are  p r o p o r -  

2j+~ 
t ional to r egu l a r i zed  t r a c e s  of the ha l f - in t ege r  deg ree s  N .--U- of H, while such t r a c e s  vanish for  in te-  
g r a l  deg ree s .  

We now calculate  the coeff icients  c n d i rec t ly  in t e r m s  of v(x). This  calculat ion can be in te rp re ted  as 
l 

/_1+• the definit ion of the m a t r i x  t r a c e  of the o p e r a t o r s  . Ident i t ies  which are  obtained following the se t -  
ting equal of the thus obtained exp re s s ions  for  c n a r e  also called the t r a c e  fo rmulas .  This  in te rpre ta t ion  
will not be evident in the e l e m e n t a r y  calcula t ions  following. 

We cons ider  the function 

Z (x, k ) = l n / 1  (x, k ) - - i k x .  

It can be p roved  that  this function is analyt ic  in k when I m k >  0 and suff icient ly l a rge  Ikl for  any fixed x. 
F o r  l a rge  Ix] it has  the a sympto t i c s  

~(x, k)=o(1) ,  x.-~ co, Z(x, k ) ~ l n a ( k )  +o(1) ,  x ~  -- oo, 

so that  

where  

In a(k) ~-. - -  ~ o (x,  k) dx ,  

o (x, k)-- ~ z (x, k). 

The Schrgedinger  equation impl ies  that  ~(x, k) sa t i s f i es  the Riccat i  equation 

d 
d'-x a + ~2_ v + 2ika=O, 

which can be used to de t e rmine  the asympto t i c  decomposi t ion  

0 o  

- -  o .  ( x )  o (x, k ) - ~  ~ .  

We find for  the coefficients Crn(X) the r e c u r s i o n  re la t ions  

n - - !  

d (X)--- E %-t~-1 (X) %(X), n = 2  . . . .  ; a,(xl=v(x).  o,, ( x ) ~  - -  ~ o . - I  

(3.2) 
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The f i rs t  few coefficients have the form 

d 7) dZ ~ = d~, (X); ~ (X) = -- 7) ~ (X) + ~ V (X); 

d a d % (X) ----- - -  ~ V (X) + 4v (x) ~ v (x); 

�9 d 4 d ~ I d ~l :~ (x) = ~ ( x ) -  6~ (x) d~ ~ ( x ) -  5 ( ~  ~ @)) + 2~  (~) 

We will see that a2(x) and an(x) are  total der ivat ives .  This proper ty  is also p rese rved  for all (ra(x) for 
even n. Returning to in a(k) we will verify that the coefficients c n in the decomposi t ion of Eq. (3.1) are 
wri t ten in the form 

c o  

/ l ~i+z c,,=o; c~,+,=-(#) f<,~,+,{x}<l~, 
m ~  

so that, for  example 

c l  ~ - - ~ 7 -  ca----- - - ~ -  

- - C o  

We have thus found the set  of identites 

f <'~,+, (-<)e~ = - (~ f ;+ '  S k" ~n i <~ (k)I ~ k - 2  "' ~ :  + ,  ~'~ ~ 
- - t x ,  0 l ~ l  

called the t race  formulas .  Their  in terpreta t ion in t e rms  os the t r aces  of the half - in teger  degrees  of H is 
ca r r i ed  out in a par t icu lar ly  self-evident  way due to the presence  in the right side of the sum of half - in-  
t eger  degrees  of its d i sc re te  eigenvalues.  

The differential  opera tor  of the canonical  sys tem is considered analogously. We ~411 use as the func- 
tion (x, k) following [1I], the equation 

It can be proved that 

o(.<, k)=s247 (z> (x.,<)+ ,n> (x..)>)-,.. 

In a (k)---- - -  ~ a (x, k) dx. 
m o o  

The canonical sys tem (2.1) for  (r (x, k) implies the equation 

1 2ikg P~-a~-[-~(.~) dx (w-~x)a)--[ w p, "w~p-i-iq, 

which can be used for the asymptot ic  decomposi t ion of the type of Eq. (3.2). Here the f i r s t  coefficients 
n(X) have the form 

ol(x)-- '- lwP" ~ - - - ~ 7 ~ ' ;  : ~ = - w & + i w i  4, 
~ 4 =  - - w  w "  + w w '  [w[ 2 + 4w~  w w ' .  

As a resu l t  an asymptot ic  decomposi t ion of the form of Eq. (3.1) is obtained for In a(k), where all the co- 
efficients c n are  in general  nonzero,  the two different methods for calculating them leading to the identi- 
t ies 
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S % (x) dx = (2i) n k "-I In la (k)ldk. 
- - o l  - - o 0  

These  fo rmu la s  can be in t e rp re t ed  in t e r m s  of r egu l a r i zed  t r a c e s  of the deg ree s  of H of the canonical  s y s -  
t em.  

If the condition for  infinite d i f ferent iabi l i ty  of v(x) or  of p(x) and q(x), which we have used in der iv ing 
the ident i t ies ,  does not hold, the number  of t rue  t r a c e  fo rmu la s  is  de te rmined  by the number  of the eont i -  
uous de r iva t ives .  Here  the absolute  convergence  of one in tegra l  in these  ident i t ies  guaran tees  the con- 
ve rgence  of the second in tegra l .  Thus,  the t r a c e  fo rmu la s  a r e  an indi rec t  means  for  obtaining informat ion  
on the babav io r  of s ca t t e r ing  da ta  in t e r m s  of p r o p e r t i e s  of the potential .  

Identi t ies  s i m i l a r  to those p re sen ted  he re  for  the rad ia l  Schr6edinger  o p e r a t o r s  and the i r  r e l a t iv i s t i c  
analogs were  also used in a number  of works  [31-33] by Ital ian phys ic i s t s  for  m o r e  meaningful  a s se r t i ons  
on the inve r se  p rob l em.  

4 .  N o n l i n e a r  E v o l u t i o n a r y  E q u a t i o n s  

The work of Kruska l  et al. [42] and the succeeding work of Lax [44] opened a new range  of appl ica-  
t ion of sca t t e r ing  theory .  That  is ,  it turned out that it is poss ib le  to de sc r ibe  using the sca t t e r ing  p rob-  
l em the genera l  solution of ce r ta in  nonl inear  evolut ionary equations with a single spa t ia l  var iable .  Here  
we will de sc r i be  two c h a r a c t e r i s t i c  examples  of such appl icat ions.  

1. Kor t eweg-de  Vr ies  equation 

0 3 0v (~, t) = 6 v (x, t) o ,o (x,  t ) - -  ~ v (x,  t). ot (4.1) 

2. Nonl inear  Schr6edinger  equation 

.ow(~, t )_o,w(.~,  t) 2w(x, t) l w ( x  , t) ! ~. (4.2) 
- -~ Ot - -  

In the f i r s t  example  v = v(x, t) is a r ea l  function while w(x, t) in the second example  is complex,  w(x, t) = 
p(x, t) + iq(x, t). We will a s s um e  that  they rapidly  d e c r e a s e  for  l a rge  Ixl and fixed t. 

We will p rove  that both functions consti tute a mot ion equation for  an inf in i te-dimensional  Hamil tonian 
s y s t e m .  We will r e ca l l  that  the definit ion of such s y s t e m s  includes the s impl ic ia l  manifold (M, 9), where  
M is a d i f ferent iable  even-d imens ioan l  manifold and ~2 is a c losed nondegenerate  2 - f o r m  on it, and the d i s -  
t inguished function (Hamiltonian) is h : M - - R .  The t r a j e c t o r i e s  of the Hamil tonian s y s t e m  a re  given by the 
d i f ferent ia l  equations 

;~ =J (dh (~)), (4.3) 

where ~ is a point of the manifold, ~ is a tangential vector to the trajectory at the point }, and J is the map 
of the 1-form in the vector fields defined by the form ~ (ef., for example, [2])~ 

We now note that Eq. (4.1) can be written in the form 

0v 0 ~h lcl 
= ~ ,  (4.4) 

where the functional h[v] has the fo rm 

CO 

h [ v l =  I [ v S ( x } +  I /dv (x ) }~ ldx  T i ~ / J  �9 

- - o O  

Compar ing  Eqs.  (4.3) and (4.4) we see  that the l a t t e r  equation in fact is of Hamil tonian form,  where h[v] 
p lays  the ro le  of the Hamiltonian,  while the a n t i s y m m e t r i c  ope ra to r  J = 8 /~x  genera tes  a s impl ic ia l  s t r u c -  
tu re  in the se t  of functions v(x). The cor responding  2 - fo rm ,  which we wri te  as a b i l inear  fo rm of the v a r i -  
at ions 51v and 6zv of v(x) is de te rmined  by an ope ra to r  inve r se  to J and having the fo rm 
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x 

o (~lV, ~2v)= dx I dy [~lv (x)~2v(y)--~lv(y)~?v(x)]. (4.5) 
- - c o  - - o o  

The s i m i l a r  objects  for  Eq. (4.2) have the f o r m  

co 

and 

2(~lw, ~2w)=~ (~lw(x)a2w(x)--~w(x)~2w(x) )dx, 
- - c o  

cor respondingly .  We will see  that  the s impl ic ia l  s t ruc tu re  in the space  of complex functions w(x) is in- 
duced by the natura l  complex  s t r u c t u r e  of the r ea l  space  of functions p(x) and q(x), where  w = p + iq. 

The sca t t e r ing  p rob l em  is used to de sc r i be  subst i tut ion of va r i ab l e s  in Eqs.  (4.1) and (4.2), under  
which they become  explici t ly  solvable .  We desc r ibe  the cor responding  scheme  f i r s t  for the exa~nple of 
Kor t eweg-de  Vries  equation. We cons ider  the function v(x) as a potential  in the SchrSedinger  o p e r a t o r  H 
studied in the preceding  chapter .  Suppose (s12(k), uz, m~ (~) are the cor responding  sca t t e r ing  data which in 
tu rn  uniquely define v(x). It turns  out that  the functional h[v] and the fo rm ~ cannot be e x p r e s s e d  expl ici t !y 
in t e r m s  of the sca t t e r ing  data  and the i r  var ia t ions .  The cor responding  fo rmu la s  have the fo rm 

co 2 r  

i, M= f k P(k) ak-  (4.6) 

and 

co N 

~2 = I ~lP (k) ~2Q (k) dk + ~ 8ipi~2qt- (1 ~ 2), (4.7) 
0 l ~ l  

where 

P ( k ) =  ~ In [a (k)l; Q (k)=  2 a rg b (k); 

p,=z~; q,=21nbz; b~=irn~') da(k)k_~,~t, (4.8) 

the convers ion  f ac to r s  a(k) and b(k) being cons t ruc ted  in t e r m s  of the initial  s ca t t e r ing  data.  

We will see  that  the new va r i ab les  a re  expl ici t ly  canonical ,  where  P(k), Pl, l = 1 . . . . .  N p l a y t h e  
ro le  of canonical  momenta ,  while Q(k), qt, l = 1 . . . . .  N play the ro le  of canonical  coordina tes .  Moreove r ,  
the Hamil tonian h[v] turns  out to be a function only of the momenta ,  so that the Hamil tonians  of the equa-  
tion in new var iab les  is t r iv ia l ly  solved.  Turning to the sca t t e r ing  data,  the cor responding  solution can be 
wr i t ten  in the f o r m  

s~2 (k, t) = s~  (k, O) est"; ~.t ( t ) =  ~ (0); rn~(~) _ o ' ~  .r ( t ) - ~  rn~, (0). (4.9) 

These  facts  a lso  make  it poss ib le  to solve the Kor t eweg-de  Vr ies  equation using an auxi l ia ry  s ca t -  
t e r ing  p rob lem.  Suppose v(x, 0) = v(x) is a Schwar tz - type  function defining the Cauchy data for  this equa-  
tion. The sequence of maps  

v (x,  o)-+ (s~ (k, o), ,n,(, (o), ** (o))-~ (s~ (k, t), roT)(t), .~ (t)) -~ ~ (x ,  t) 

defines the cor responding  solution. Here  the f i r s t  lef t  a r r o w  denotes  the solution of the d i r ec t  s ca t t e r ing  
p rob l em for  the Schrt iedinger equation with potent ial  v(x) = v(x, 0), the next a r r o w  is defined in Fq. (4.9)~ 
and finally, the l a s t  a r r o w  const i tu tes  the solution of the i nve r se  p rob lem.  
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I t  is p r e c i s e l y  this propos i t ion  which is p resen ted  in the f i r s t  work of Kruska l  et al. [42]. 
tonian in te rp re ta t ion  p resen ted  he re  was obtained in [10]. 

Analogous fo rmu la s  

His Hami l -  

h [w] = 4  ~ k2P (k) d# (4.10) 

and 

where  

(4.11) 

P (k) = ~ In a (k); Q (k) ~ arg b (k), 

can be found for  the nonl inear  equation of the second example .  Here  a(k) and b(k) a re  the convers ion  fac-  
t o r s  for  the canonical  s y s t e m  (2.15 cons t ruc ted  in t e r m s  of the functions p(x) = Re w(x) and q(x) = I m  w(x). 
We note that  no fac tor  k was p r e s en t  in the definit ion of the momen tum P(k) and that the range  of var ia t ion 
of the va r i ab le  k is now the en t i re  axis .  These  fo rmulas  were  found inthe thes i s  of L. A. Takhtadzhyan 
[20]. They imply that  the genera l  solution of the boundary-va lue  p rob lem for  the equation is provided for  
by the sequence of m a p s  

w(x,  O)->(a(k, 0), b (k, 0))-+(a(k, t), b (k, t))-+w(k, t), 

where 

a(k, t )=a(k ,  0); b(k, t)-~e4U~'tb(k, 0). 

The s im i l a r  equation 

a~(x,t) 0'~(x,t) - - ~ = ~ + ~ ( x ,  t)[q~(x, 0[2, ~>0, 

(bearing in mind the opposite sign in front  of the nonlineari ty)  was prev ious ly  cons idered  by V. E. Z akharov  
and A. B. Shabat [11]. The cor responding  sca t t e r ing  p rob lem is non-se l f -ad jo in t  and has  yet  to be mathe-  

ma t i ca l ly  invest igated.  

Let  us now dwell b r ie f ly  on the der iva t ion  of Eq. (4065, (4~ (4.105, and (4.11). We cons ider  only 
the Kor teweg-de  Vries  equation, s ince the second example  is cons idered  analogously.  Equation (4.6) has 
a l ready  been der ived  by us in the preceding  sect ion and const i tutes  the identity for the third t r ace .  In fact  
the coefficient  c 5 is p ropor t iona l  to the functional h[v]. The r ight  side of Eq. (4.6) a r i s e s  if we bea r  in 
mind the definition of Eq. (4.85. We note that  the preceding  r e su l t s  imply that  all the functional c2j+i of 
the function v(x) p r e s e r v e  the i r  values for  the Kor teweg-de  Vries  equation. In fact  the t r a ce  identi t ies 
d e m o n s t r a t e  that  all  these  functionals depend only on m o m e n t u m - t y p e  va r iab les  which do not vary  with 
t ime .  This  observa t ion  p rov ides  a s imple  and exhaust ive approach to the descr ip t ion  and comple teness  
p rob l em of the motion in tegra l s  for the Kor teweg-de  Vr ies  equation, which has been dealt  with in a broad  
l i t e r a tu r e .  Re fe rences  can be found for example  in [43]. 

To der ive  Eq. (4.7) for the fo rm [2 we note that it is poss ib le  to obtain using the G e l ' f a n d - L e v i t a n  
equation an express ion  for  the va r ia t ion  of the potential  v(x) in t e r m s  of the var ia t ions  of the sca t t e r ing  
data,  

-I-2 ~ (/~(x, izt)gin} ~) -t- 2im~) f (x, iz l) f (x, i~.~);z l) . 
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Here  st2(k), fl(x, k), ~l ,  and m~)/ a re  objects  cor responding  to the potential  v(x) and fl(x, k) is the d e r i v a -  
t ive of f~(x, k) with r e s p e c t  to k. Calculat ion of the fo rm ~ is subsequently found by subst i tut ing this ex-  
p r e s s i o n  into Eq. (4.5) and calculat ing the in tegra l  with r e s p e c t  to x and y. F o r  this purpose  the following 
equation tu rns  out to be useful  

I d 
{ f~(x ,  k), p ( x ,  l )}= t ' - -k '  dx ( { f ( x ,  k), ./(x, i)}) ~, 

which follows simply from the SchrSedinger equation. Details on the calculations can be found in [10], to 
which we refer the reader. By carrying out the calculations presented there, they can be easily carried 
over to the second example considered by us and Eq. (4.11) can be obtained. Equation (4.10) constitutes 
an identity for the traces No. 3 for the canonical system. 

With this we conclude the description of an unexpected application of the formalism of scattering 
theory for solving one-dimensional nonlinear equations. The inherent reasons why this scheme works as 
well as its range of application has yet to be clarified. One "experimental" approach towards its use is to 
consider a one-dimensional differential operator for which the direct and inverse scattering problems are 
investigated and to describe the trace identities. We find a simplicial structure on the set of coefficients 
of this operator which can be explicitly expressed in terms of the scattering data. Then, the equations 
generated by this structure and by some functional of the trace formulas as a Hamiltonian can turn out to 
be exactly solvable. Finally, this scheme has not been studied to any great extent, but it must be used for 
lack of a better scheme. Equation (4.2) was found precisely by this method. 

Searches for new scattering problems that can be studied are of particular interest. Generalizations 
of the Schr~iedinger equation or of the canonical system tothe case of vector functions are obvious candi- 
dates. The monograph [I] demonstrated that most results known for scalar equations can be carried over 
without any difficulties in the case of vector equations. Equations of higher orders however are more prom- 
ising. For example, V. E. Zakharov has recently proved that the third-order differential operator 

d s d i dp (x) 
Hu----i "U~'x' + 2ip (x) -3-~ + dx + q (x) 

(4.12) 

genera tes  the nonlinear  equation 

o',,(~, t) o ' s ( x ,  t) , 2 ( o . ( x ,  t))'  o ' . (~ ,  t) ~_ 
ot' - -  ~ -r  , - ' - O Y - /  + 2u  ( x ,  t) --ox--;v--- _ 

1 04u (x, t) 
4 Ox* " 

which plays  the ro le  of a continuum analog of the nonlinear  F e r m i -  Pas ta - -  Ulax-u p rob lem.  
p rob l em of sca t t e r ing  theory  for  the ope ra to r  of Eq. (4.12) has  yet  to be solved~ 

The inverse  

C H A P T E R  3 

T H R E E - D I M E N S I O N A L  S C H R ( S E D I N G E R  O P E R A T O R  

In this chapter  we will cons ider  the SchrSedinger  ope ra to r  in a space  of functions depending on the 
th ree  va r i ab l e s  

H = - - 5  + v (x) = H 0 +  V. 

Here  x ~R a, h is the Lap lace  ope ra to r ,  and v(x) is a function which we will a s s u m e  to be r ea l ,  bounded, 
and sufficiently rap id ly  dec rea s ing  at infinity. 

Spect ra l  ana lys is  of this o p e r a t o r  is s ignif icant ly m o r e  complex than the one-d imens iona l  SchrSedin- 
g e t  ope ra to r  cons idered  in Chap. 1. This  pa r t i cu l a r ly  r e l a t e s  to the detai led invest igat ion of such p r o p e r -  
t ies  as continuity and the asympto t i c  behav ior  of the sca t t e r ing  ampl i tudes ,  which mus t  be ca r r i ed  out in 
o r d e r  to d i scuss  sufficient  o r  n e c e s s a r y  conditions on this function cor responding  to a potent ia l  v(x) of a 
given c lass .  We wilt, t he re fo re ,  in this chapter  p r e sen t  only a f o rma l  s cheme  for  solving the i nve r se  p rob-  
l em,  not making explici t  each t ime  under  which conditions on v(x) do the d i scuss ions  hold. A t radi t ional  
condition on v(x) under  which m o s t  of the bounds p resen ted  below hold a s s e r t s  that  
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iv (x)] ~< C (1 + [xl)-a-% ,.. > 0. 

Under this condition the ope ra t o r  H defined in 9 = L 2 ( R  3) on the dense domain ~ W ~ ( R  3) is se l f -adjoint .  

We cons ider  a t h r ee -d imens iona l  ease  only for  the sake of def ini teness .  All equations genera l ize  
without difficulty to the ease  of a r b i t r a r y  n -> 2. In appropr ia t e  p laces  we will note analogies or  d ive rgenees  
f rom the one-d imens iona l  case  t r ea t ed  in Chap. 1. The m a t e r i a l  se t  forth f i r s t  appeared  in [29]. 

1 .  S c a t t e r i n g  T h e o r y  

The construct ion of sca t t e r ing  theory  for  the pa i r  of o p e r a t o r s  H and H 0 in a s ta t ionary  var iant  is 
based  on the exis tenee  of a se t  of solutions u(:~)(x, k) of the Sehriiedinger equation 

A9 (x) + k:9(x)--  v (x) 9 (x) 

with the following asympto t i c  behav ior  at infinity, i .e. ,  as Ix] - -  ~o, 

u ( + , ( x  ' k ) = e . k , ~ , +  e +''~' '~' ( t )  Ixl f ( •  n ) + o  ~-( 

(1.1) 

(1.2) 

( r ad i a t i on  principle) .  Here  

X ke~ ~, Ixl=(x, x),n, ltt=(k, ~),n, n=~ .  

The solutions u(• k) a re  s i m i l a r  to the se ts  of solutions u~• k) and u~&)(x, k) of Sec. 2 Chap. 1. The 
ro le  of the index i = 1, 2 in played by the d i rec t ion  ~ = k/]k[ of the vec tor  k, which runs through the unit 
sphere 82 . 

An exis tence  proof  and an invest igat ion of the solut ions u(~:)(x, k) was c a r r i e d  out by A. Ya. Povzner  
[18, 19]. The range  of the d i scuss ions  p resen ted  in Chap. 1 and based on the exis tence  of a fundamental  
s y s t e m  of solutions of the Schr(iedinger equation is not c a r r i ed  over  to our case .  The re fo re ,  it is neces -  
s a ry  to study d i rec t ly  the in tegra l  equations of sca t t e r ing  theory 

u(-) (x, k) ---= e ~(k,~) + f 0(+) (x - -  y, ]k l) v (y) u(+) (y, k) dy. 

Here  U(+) (x, [k[) is Green ' s ' f unc t ion  for  the Helmholtz equation 

(1.3) 

~a(~) (x, lkl) + k20<• (x, [ki)=~ (x), 

which can be uniquely defined by the radia t ion pr inciple .  The explici t  equations 

1 e -'-Lt kflxl 

O(• lkl)-- 4~ t,r 

well known in the t h r ee -d imens iona l  case are  obtained f rom the genera l  equation 

1 n (1.4) 
k ~ - -  l ~ + iO 'dl 

af te r  calculat ion of the integral .  In the las t  equation the well-known genera l ized  function (x :L i0) - i  occurs .  

The invest igat ion of A. Ya. Povzner  is based on Fredholm theory for Eqs.  (1.3). An impor tant  role  
is played by the Kato t heo rem  [35], which impl ies  that  homogeneous equations corresponding to Eq. (1.3) 
for  r ea l  k do not have nontr ivial  const ra ined solutions.  A. Ya. Povzner  proved that the solutions u(:e)(x, k) 
fo rm a complete  o r thonormal ized  s y s t e m  of eigenfunctions of the continuous spec t rum of H, which fills 
the ent i re  posi t ive  s e m i - a x i s .  This spec t rum has uniform infinite mult ipl ic i ty ,  so that the eigenfunctions 
a r e  numbered  in addition to the eigenvalue k 2 by the point a E S 2 Besides  a continuous spec t rum,  H can 
have a finite number  of nonposit ive e igenvalues  of finite mult ipl ic i ty .  To s implify the equations we will 
a s s u m e  that  the ent i re  discontinuous s pec t rum of H cons is t s  of a single negative eigenvalue,  which we denote 
by - x  2. The corresponding normal ized  eigenfunction, which can be assumed to be r ea l ,  is denoted by u(x). 
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The comple teness  and orthogonal i ty  conditions on the function u(~=)(x, k) a re  wri t ten  in the form 

l a . 

1 3 (1,6) 

The sca t t e r ing  ampli tude f(k, I) is s imply  re la ted  to the function f(+)(k, n) desc r ib ing  the asympto t ic  
of the solut ions u(+)(x, k) 

f (+)(k,  n)=--2~:2f(le,  l); k2=12; n = / ~ ,  

and can be e x p r e s s e d  in t e r m s  of the solution u(+)(x, k) by the equation 

/ (k,  0 =  ~l~e-'e'~)~(x)u ~+~ ~)d,:, (1.7) (2~ ,, (x, 

which is an analog of Eq. (I.1.22) and (I.1.23). 

We now p re sen t  a r e l a t ion  between the functions u(~=)(x, k) and the wave o p e r a t o r s .  F o r  this purpose  
we int roduce a diagonal r e p r e s e n t a t i o n  for  H 0. Suppose the space  5~0 is fo rmed  by the functions ~ 0,, ~), 
defined on R+xS~  and having the s c a l a r  product  

o0 

('~, v~"Jo = 3,~' Y~-dx - 7  I d ~ ( ~ ' .  ~),e" (~, ~), 
0 S~ 

where  dc~ is an e lement  of su r face  of the sphere  S 2. We define the i s o m o r p h i s m  T0:~-~5% by the fo rmula  

~(x)-~ dx.  

The ope ra to r  T o is uni tary ,  

T'oTo=I; T o T ~ = I  o 

and c a r r i e s  H 0 into a 1-mul t ip l ica t ion  ope ra to r ,  

/%,? (x)-~ x, (x, ~). 

We introduce now two m o r e  maps ,  T _ + : ~  o and 

The comple teness  and or thogonal i ty  equations of Eqs.  (1.5) and (1.6) a re  wri t ten  in t e r m s  of them as fol- 
lows:  

T*+_T+_ = t - -  P; T+T~ = I o. 

Here  P is a p r o j e c t o r  into S~ on a one-d imens iona l  subspace  spanned by the function u(x). 

The wave o p e r a t o r s  U (• a r e  given by 

U(• =T~T~ (1.8) 

This  fact  can be proved  using the s chem e  p resen ted  in See. 2 of Chap. 1. Detai led d i scuss ions  as r e g a r d s  
this p roof  can be found in the  a r t i c l e  of Ikebe [34], which also contains s e v e r a l  r e f inements  of works of A. 
Ya. Povzner .  

Let  us now r e l a t e  the s ca t t e r i ng  ope ra to r  S defined by the fo rmula  
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U(-) m_U(+)S, 
to the s ca t t e r i ng  ampli tude f(k, l). We note for  this purpose  that the solutions u (+) (x, /~) and u (-) (x, I,) a re  
l inea r ly  independent 

u (+) (x ,  k)  = u (-) (x ,  /~) + f g (k, z) B (~2 _ r-) u ( -~ (x ,  l) dl ,  (1.9) 

and by compar ing  the i r  a sympto t i c s  we note that the ke rne l  g(k, l) coincides with the sca t t e r ing  amplitude,  

g(k. l)=--2"~if(k, [), (1.10) 

which in tu rn  mus t  sa t i s fy  a un i t a r i ty - type  re la t ionship .  To write the l a t t e r  it is convenient to introduce on 
~0 an o p e r a t o r s  S by the equation 

8 ~  

This  ope ra to r  is also uni tary .  

f o rm 
A compar i son  of these  definit ions d e m o n s t r a t e s  that  the sca t t e r ing  ope ra to r  can be wwitten in the 

which also yie lds  the des i r ed  re la t ion.  
Chap. 1. 

Henceforth,  we will find it convenient to r e f e r  to the space  ~0 s imply  as L~ (R 8) 

S-----T*oSTo, 

We note the analogy of the equations obtained and those in See. 2 of 

k ~p(x, =)=,p(,~); Ikl=V~-; ~ = = .  

In this case  T o is a F ou r i e r  t r a n s f o r m ,  

(x ) ,  T0~---- ~ (k); 

The ope ra to r  S in this notation is given by 

(1.11) 

| S . 

$~ (k)--- ~ (k)-2=i f f(k, 0 ~ (k2_z2) ~ (0 dZ. 

using the identity 

Let  us now r e t u r n  to the solutions u(~=)(x, k) and say a few words about the i r  p rope r t i e s .  It can be 
proved  that the functions u(+)(x, Ikf~) for  fixed x and ~ have an analyt ic  continuation into the upper  half-  
plane of the p a r a m e t e r  s = ]kl and have a s imple  pole at the point s = ix .  The pr incipal  par t  in the neigh- 
borhood of this pole has  the fo rm 

Res ~(+> (x,  s~%="" = c (,,) u (x),  (1o12) 

where  

c (=)= ~ i e-"," ='~ (x) ,, (x) ax (1.13) 

and u(x) is the a l r eady-men t ioned  eigenfunction. It is n e c e s s a r y  to study Eq. (1.3) in the complex domain 
s = ]kl for  the proof.  One var ian t  of these d i scuss ions  can be found in [24], Fur ther ,  for  l a rge  lk[, we 
have the asympto t ic  

(1.14) u <+) (x, k)----e t(k'x> + o (1), 

while if v(x) is d i f ferent iable ,  we can r ep lace  here  o(1) by O(1/Ikl) .  A der iva t ion  can be found in [22]. In 
pa r t i cu l a r ,  these  r e su l t s  imply that the sca t t e r ing  ampli tude is forward;  i .e. ,  the function 
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f(I,% ,<)=f(k, #~) 

for  fixed a has  an analyt ic  continuation into the upper  ha l f -p lane  of the p a r a m e t e r  s = lkl, has  a pole when 
s = in with pr inc ip le  pa r t  

Res f (s, e)ls=~----- ~ c (a) c ( - -  v" (1.15) 

and at infinity has  the asympto t i c  

f ( s ,  ~)-----q+o(1), q=t2~) l v ( x ) d x .  

The proof  r equ i r e s  the use  of the r ep re sen ta t i on  of Eq. (1.7) for the sca t t e r ing  ampli tude.  

The las t  p r o p e r t y  f i r s t  found by the phys ic i s t s  Wong [48] and Khuri  [41] is an analog of the analyt ici ty 
condition on the t r a n s m i s s i o n  coefficient  a(k) of Chap. 1. However ,  unlike the one-d imens iona l  case ,  this 
condition fa r  f r o m  exhausts  all the n e c e s s a r y  conditions on the sca t t e r ing  ampIitude which folIows f r o m  
the local i ty  of the potential .  In the next sect ion we will find a profound genera l iza t ion  of this p rope r ty ,  
fo rmula ted  in [28]. 

We will r e f e r  to the p rob lem of r econs t ruc t ing  a potent ial  v(x) in t e r m s  of given sca t t e r ing  axaplitude 
f(k, l) as the inverse  p rob lem.  The r e su l t s  p resen ted  imply one impor tan t  dist inct ion of the mul t id imen-  
sional  case  f rom the one-d imens iona l  case  cons idered  above; when n -  2 there  ex is t s  at mos t  one poten-  
t ia l  that decides  the inve r se  p rob lem.  In fact  Eq. (1.14) impl ies  that for  l a rge  [kl = Ill, 

f(k, /) ~--- (2@)' i ei(r~-z'x)v (x) dx -}- o (I), 

so that,  set t ing k - l = m and let t ing [k[ tend to infinity, we can r e c o n s t r u c t  the F o u r i e r  t r an s fo rma t io n  of 
the potent ial  in this l imi t .  This  long es tabl i shed and s imple  a s se r t i on  found in [3, 21] was for a long t ime  
the only r igorous  r e su l t  on the mul t id imens iona l  inve r se  p rob lem.  ~t finally is not of pa r t i cu l a r  in te res t ,  
though in eve ry  case  it impl ies  that,  unlike the one-d imens iona l  case ,  all the c h a r a c t e r i s t i c s  of the d iscon-  
tinuous spec t rum  n e c e s s a r y  for  solving the inve r se  p rob l em a re  calculated in t e r m s  of the sca t t e r ing  a m -  
plitude i tself .  

2 .  R e s e a r c h e s  o n  V o I t e r r a  T r a n s f o r m a t 4 o n  O p e r a t o r s  

In the one-d imens iona l  case  the t r a n s f o r m a t i o n  o p e r a t o r s  U~ and U 2 dist inguished by the Vo l t e r r a  
condition, play an impor tan t  ro le .  As a l ready noted in the introduction,  the se t  of ope ra to r s  U 7 with Vol- 
t e r r a  d i rec t ion ~ S  2 , 

u~, (x)= ~ (x) + ~ A~ (x, y),(7) ~y 
o-2:~)>0 (2.1) 

is their natural multidimensional analog. In this section we will demonstrate how to prove the existence 
of such operators. 

Chapter  1 d e m o n s t r a t e s  that  V o l t e r r a  t r a n s f o r m a t i o n  o p e r a t o r s  a re  genera ted  by a se t  of solut ions of 
the Schriiedinger equation p o s s e s s i n g  spec ia l  analyt ic i ty  p rope r t i e s .  In our case  it is n e c e s s a r y  to find 
solut ions fT(x, k) of Eq. (1.1) that  have an analyt ic  continuation into the upper  ha l f -p lane  of the var iab le  
s = (k, 7) for  fixed x and k •  7 , such that  as l x l -~  oo , 

]]~ (x, k) e -~*(''~') [ ~< C 

when I m s > 0  and has  an asympto t i c  for  l a rge  s, 

(2.2) 

f~  (x, k) e f~(v ~) =eWe• ~) + o (1). 
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In fact  if such se ts  of solutions fy (x, k) exis t ,  we may  verify by introducing maps  Ty  f rom ~ into 
90 by the equation 

| ~3/2 
r (x)-. r ,  = e, (x, (x, I f ,  (x,Vx (x) 

that  the o p e r a t o r s  

U v-~ T* T O 
v (2.3) 

have  the f o r m  of Eq. (2.1), where  the ke rne l  Ay(x,  y), being pe rhaps  a genera l ized  function of x• and y•  
will be a c l a s s i ca l  function of the va r i ab les  (x, 7) and (y, 7),  so that the condition according to which it 
vanishes  when (x, 7) > (Y, 7) ,  is just if ied.  

We may  a t tempt  to find solutions of the type of fT(x, k) using in tegra l  equations of the fo rm 

u v (x, k) = e t(''' ''~ q- i G~.. (x - -  y, k) :.,, (y) ttv (y, k) dy (2.4) 

for an appropr ia t e  choice of  G r e e n ' s  function Gy(x,  k) of the Helmholtz equation. In the one-d imens iona l  
case  the solutions f~(x, k) and f2(x, k) genera t ing  Vo l t e r r a  t r an s fo rma t ion  ope ra to r s  have been defined in 
p r e c i s e l y  this  way [cf. (I.1.4)]. To sa t i s fy  an analyt ici ty  condition on G r e e n ' s  function Gy(x,  k) they mus t  
sa t i s fy  the r e q u i r e m e n t  that  for  fixed Y, x, and k• they mus t  have an analyt ic  continuation into the upper  
ha l f -p lane  of the p a r a m e t e r  s = (k, 7) ,  such that  

1 
I 0,, (x, k) e -'sc~'~'~ [~< C G-t" 

Such functions in fact  exis t .  Guiding concepts  for  sea rch ing  for  them and an analogy to the functions G~(x, 
k) and G2(x, k) of See. 1 Chap. 1 were  p resen ted  in [27]. Here  we wiIt l imi t  ou r se lves  to present ing  an ex-  
p r e s s ion  for  G T in the fo rm of an in tegra l  which, unfortunately,  cannot be explici t ly calculated:  

3 ~ _ i ( l , x )  

where  (x +iOa) -1 is unders tood as (x + i0) -I for a > 0 and as (x - io) -1 when a < 0. It can be eas i ly  ve r i -  
fied that  Gy(x,  k) depends oh k only in t e r m s  of the combinations s = (k, 7) and/-t 2 = k 2 - (k, 7) 2. When 
Im s> 0, Eq: (2.5) can be r ewr i t t en  in the f o r m  

| 3 
~t + sl__{/+s?)t dl, 

which imply the analyt iei ty  and boundedness- type  p r o p e r t i e s  formula ted  above. 
Im s = 0, we have the r ea l ne s s  condition 

We fur ther  note that when 

G~. (x, k) = G v (x, - -  k). (2.6) 

One impor tan t  dis t inct ion between GT(x, k) and one-d imens iona l  Gl(x, k) and Gz(x , k) is that  it is not 
Vol te r ra .  The re fo re ,  to study Eq. (2.4) we cannot use  the method of succes s ive  approximat ions  and will 
need F r e d h o l m  theory.  Here  we find that  the solution uV(x, k) of this equation exis ts ,  is an analyt ic  func- 
tion of s = {k, 7) when Im s> 0, and sa t i s f i es  the re  a boundedness condition for all  s, such that the homo-  
geneous equation 

h (x)-- S G~ ( x - - y ,  tr, s) v (y) h (y) dy=O (2.7) 

has  no nontr ivial  solutions sa t is fying the condition 

Ih (x) e-"*"' ')l ~ C. 

Singular s such that  these  solutions exis t  a re  located discontinuously,  lack accumulat ion points when lm s > 
0, and a re  poles of finite o rder  for uy(x  , k). 
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Such s ingular  s,  in genera l ,  exist .  In fact  a compar i son  of Eqs.  (2.5) and (1.4) makes  it c l ea r  that  
when k[Iy G r e e n ' s  functions G (+) (x, ]kl) and Gv(x, k) coincide.  Thereby  the solutions u(+)(x, k) and aT(x, 
k) fa r  kII Y also  coincide. The va r i ab le  s = (k, T) under  this condition is s imply  [kl. At the end of Sec. 1 
we mentioned that  u(+)(x, k) for  fixed x has an analyt ic  contintiation into the upper  ha l f -p lane  of the va r i -  
able s = [k] and has the re  a s imple  pole at s = in .  Thus uy(x,  k) for  k• = 0 has a pole when s = in .  As ~/ 
va r i e s  or ,  what is the s ame  thing, a nonvanishing k .  appea r s ,  this  pole will move  without vanishing. Thus,  
we have ver i f ied  that  if an ope ra t o r  H has  discontinuous spec t rum,  the s ingular  values s exist .  

We cannot prove  an analog of the Kato t heo rem for  Eq. (2.4), i .e . ,  we cannot guaran tee  that this equa-  
t ion is solvable  for all  r e a l  k nor that the s ingular  values s do not leave the r e a l  axis.  We, t he re fo re ,  mus t  
r equ i r e  that  the potential  v(x) be given such that  these  solutions do not exis t .  We will r e f e r  to this r eq u i r e -  
ment  as condition C. Henceforth,  we will be able to fo rmula te  an equivalent  condition in t e r m s  of the sca t -  
t e r ing  amplitude.  When this condition holds,  Eq. (2.6) impl ies  that  

uv(x, k ) = a v ( x ,  --~). (2.8) 

Thus,  the solut ions uy(u,  k) cannot be used to de t e rmine  V o l t e r r a  t r a n s f o r m a t i o n  o p e r a t o r s  because  
of these  s ingula r i t i es .  It is,  however ,  easy  to ref ine  them.  For  this purpose  we cons ider  the r egu la r i zed  
F redho lm de te rminan t  AT(k) of Eq. (2.4). The f o r m a l  definit ion is  provided by the equation 

!n Av (k)== Tr (ln ([ - -  G v (k) V)+ G v (k) V), (2.9) 

where  we use  obvious notation Gy(k) for  an in tegra l  ope ra to r  with ke rne l  G y ( x -  y, k). The t r ace  in the 
r ight  side can be understood in an o p e r a t o r - t h e o r e t i c  sense  if the o p e r a t o r s  under  the sign of the t r a c e  a re  
s y m m e t r i z e d  by the seheme  

v = lvl '/~ Jl vl '/~, a # ) v  ~ Iv['/~a,, (k) [v['/~J. 

We will b e a r  in mind that this method can be c a r r i e d  out and hencefor th  will not r e f e r  to it. The function 
AT(k ) depends on k only in t e r m s  of the va r i ab l e s  p and s and AT(p, s) for  fixed T and # is analyt ic  with 
r e s p e c t  to s in the upper  hal f -p lane ,  there  having the asympto t i c  

Av(~, s ) = I  + o ( I )  

and vanishes  at s ingular  s. Here  the mul t ip l ic i ty  of the cor responding  ze roe s  is suff icient  for  ali  the poles 
in the product  

fv  (x, k) = tt~, (x, k) A v (k) (2.10) 

to be annihilated, so that  the se t  of solut ions fT(x, k) sa t i s f i e s  all the r e q u i r e m e n t s  desc r ibed  at the begin-  
ning of this sec t ion  and can t h e r e f o r e  be used to define Vo l t e r r a  t r a n s f o r m a t i o n  o p e r a t o r s .  

With this we conclude the descr ip t ion  of r e s e a r c h  into mul t id imens ional  Vo l t e r r a  t r a n s f o r m a t i o n  
o p e r a t o r s ,  which can in fact  be fa r  m o r e  excit ing than can be seen  f r o m  this presenta t ion .  In the next s ec -  
t ion we will begin a calculat ion of the normal iz ing  fac tor  cor responding  to these  o p e r a t o r s .  

This  sect ion we conclude with a few m o r e  r e m a r k s  on the de te rminan t  Ay(k ). The re la t ion  we have 
noted between the functions G(+) (x, [k]) and G~ (x, k) at kf[.; imply  that ~, (k) when kl]'; is the F redho lm 
de t e rminan t  A (+) ([k[) of the in tegra l  equation of s ca t t e r ing  theory  

In A (+) (tkl)=Tr (ln ([ - - G  (+) (lk[) V) + G (+) ([k]) V). 

We eas i ly  obtain f r o m  this exp res s ion  that 

d In A(+)(Vk ) = - -Tr  ((H--XI) - l - ( H  0 -  X/)-'), 

so  that  A(+)(V2 -) is a r egu la r i zed  c h a r a c t e r i s t i c  de t e rminan t  of H. In this sense  it is  analogous to the con- 
ve r s i on  fac tor  a ( l /g)  of Chap. 1. Henceforth,  we will r equ i re  the fo rmu la  

1 
arg h(+)([ k I)-~ ~-  lndet S (k2), (2.11) 
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where S(k 2) is a set  of ope ra to r s  in L2(S 2) natural ly genera ted  by the opera tor  ~. The der ivat ion of this 
re la t ion ,  which is cha rac t e r i s t i c  for  t r ace  formulas ,  can be found, for  example,  in [4]. 

3 .  N o r m a l i z i n g  F a c t o r s  f o r  t h e  S o l u t i o n  u ~ ( x ,  k) 

Equations (2.10) and (2.3) demons t ra te  that we can find normal iz ing fac tors  for the t r ans format ion  
opera to r s  Uy if we know the de te rminant  A./(k) and the opera to rs  0(v +), by means of which the solutions 
u.y(x, k) can be expressed  as a l inear  combination of the solutions u(~:)(x, k). If we assume this to be an 
integral  opera to r  whose kerne l  Q(+)(k, l) is a genera l ized  function, the corresponding formula  will have 
the form 

u, (x, k)-- I Q(~+~(k, O.~• 0 el. (3.1) 

In this sect ion we will desc r ibe  the set  of such opera to rs  ~v (+), which a re  in some sense an analog of the 
ma t r i c e s  M!~:)(k) descr ibed  in Sec. 3 Chap. I .  An appropria te  express ion  for the Fredholm determinant  
Ay (k) will be found in the next sect ion.  

Let  us compare  Green ' s  functions G(~=)(x, [k]) and Gy(x,  k) occur r ing  in the integral  equations (1.3) 
and (2.4). Equations (1.4) and (2.5) imply that 

2hi ~ ql,x) 2 O(x,  k)=O(+)(x, [ ~ I)+ v ~ l e  ~(l --kD o [if--k, 7)]dt-~ 

- a ( - > ( x ,  I k ~ -  . ~ ! .  ~ e ~(~''~ ( l ~ -  ~ )  0 [ ( k -  t, ~)1 all. - -  J (2n) -"  O - 

(3.2) 

Here  0(t) is the Heaviside function. Using the f i r s t  of these equations we can rewr i te  Eq. (2.4) for  uv(x, k) 
in the form 

2 " u, ~x, k) = e '(''x) + ~ I e'c' x-~)~ ( l ~ -  k~) 0 [(t - k, 0l  • 

X v (y) u v (y, k) dydl + I G(+)(x -- Y' [ k ]) v (y) u, (y, k) dy. 

We consider  the f i r s t  two t e r m s  in the r ight  side as a new f ree  t e rm.  Setting 

Q~+) (k, l) = ~ (k - l) -b 2=i~ (k2 -- p) 0 [(/-- k, 7)1 h v (k, l), (3.3) 

where 

(3.4) 

we can rewr i t e  them in the form 

I Q~+)(k, l) eir176 

i .e. ,  as a l inear  combination of f ree  t e rms  in Eq. (1.3) for u(+)(x, k). The integral  opera to r  in the resul t ing 
equation also coincides with the opera tor  of Eq. (1.3). We may a s se r t  based on the uniqueness theorem for 
this equation that Eq. (3.1) holds if the kerne l  Q(+)(k, l) is given by Eq. (3.3). Analogously we can find that 

q(,,-~ (k, 0 = ~ (k - 0 - 2,r (k~ - ~ )  0 [(/~ - l ,  "~)l/z~ (k, O. (3 .5)  

Equations (3.3) and (3.5) also const i tute the des i red  equations determining the opera tors  (~+-), which op- 
e r a t e  in ~0 according to the formula  

Concepts by nowquite standard he re  demons t ra te  that the opera tors  Q~+) define a factor izat ion of the scat-  
te r ing  opera tor .  Comparing Eqs.  (1.9), (1.11), and (3.1) we find that 
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--~(+)-~5(-) (3.6) 

We now note that the kernel  hy(k, l) that occurs  is Eqs. (3.3) and (3.4) is the same in these equations. We 
thus use Eq. (3.6) to uniquely determine hy(k, l) in t e rms  of the scat ter ing amplitude. In fact, we rewri te  
it in the form 

^ ( + )  ^ ^ ( _ )  q~ S=Q~ 

and then substitute Eq. (1.1I), (3.3), and (3.5) for ~ and Q~-+). We obtain the equation 

av (k, l) = f  (k, z) + 2~i i hv (k, rn) 0 [(rn- ~, ~)] ~ (rn2- k2) f (m, t) din, (3.7) 

which can be considered as a l inear  integral  equation for determining h~/(k, l) in t e rms  of given f(k, l). 
This equation involves only the angular variables  of the kernels  occur r ing  in it. The length of all equal 
vectors  occur  in it only as pa rame te r s .  In the next section we will verify that condition C is equivalent 
to a unique solvabili ty condition on this equation. 

We now note an important  p roper ty  of the functions hy(k, l) which is implied by analyticity p rope r -  
ties on the solutions uy(x, k). We consider  the integral  representa t ion of Eq. (3.4) for bw(k, l) and set (k, 
~/) = (l, y) = s in it. As a consequence of a bound of the type of Eq. (2.2), the integrand is absolutely inte- 
grable for all nonsingular s in the upper half-plane.  It therefore  follows that the function hy (k, l) when 
(k, y) = (l, y) = s and for fixed k• I• and y has an analytic continuation into the upper half-plane of the 
var iable  s and poles of finite o rde r  at s ingular  s. 

We emphasize that the locali ty of v(x) is highly important  for deriving this analyticity property.  In 
fact the growth of the solution uy(x, k) with respec t  to x at I m s  > 0 is compensated by decreas ing  e-i(/ ,  x) 
only because these functions are  multiplied within the integral  in Eq. (3.4). For  nonlocal V, the independent 
variables  x and y on which these functions will depend in an equation of the type of Eq. (3.4) will differ and 
no such compensat ion will occur .  Henceforth we will verify in studying the inverse problem that the neces-  
s a ry  analyticity condition we have obtained is essential ly also a sufficient condition on the scat ter ing am- 
plitude corresponding to a locai potential. We should now state that this condition is a general izat ion of the 
analytici ty of the foward scat ter ing amplitude noted in Sec. 2. In fact it is evident f rom Eq. (3.7) that the 
amplitudes f{k, l) andh.y(k, Z) coincide when k ]] y .  Under this condition k = l also if (k, Y) = (1, 7).  Thus, 

h~ (k. ' r 

and the analytieity we have indicated for the function on the left side implies the anatyticity of the right side, 
which was noted above. 

We present  one more  useful equation relat ing the kernels  h T(h , t) for different y .  For  this purpose 
we use the factor izat ion of Eq. (3.6) and a unitari ty condition on S. Rewrit ing the equation 

in t e rms  of Eq. (3.6), using different y in the left and right sides,  we find 

~ ( - ) ~ , ' - - ) *  ~ ( + ) , % ( + ) *  

We now set  y '  = - y  and rewri te  the resul t ing equation in the form 

(3.s) 

0 ( - ) ~ ( - ) *  (5(+)~5(+)~ 

The opera tors  Q(v +) are  vo l t e r r a ,  which is explicitly evident f rom the presence  of the Heaviside function 
in their  definition. The Vol te r ra  proper ty  of the opera tors  in the r ight arid left sides of the last  equation 
are  in opposite direct ions.  It is thus consistent  only if each side is separa te ly  a unit operator .  We have 
ar r ived at the important  equation 

Q/-+)'= (3.9) 
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We also r ewr i t e  the genera l  equation (3.8) in more  detai l  in t e rm s  of the kerne l  of the opera tors  occur r ing  
in it, 

hv (k, t) - h~, ( -  z, - k) = 

= 2 ~  I by(k, m) h,z, ( - - t ,  --m)(O [(m--k, ~)1-- 

-- 0 [(/-- m, 7")]) ~ (te~ --  rn2) dm. (3.10) 

Here  we have used also the equation 

hv( - - k ,  - - Z ) : h v ( k ,  l), 

which follows f rom the p roper ty  of Eq. (2.8) and f rom the integral  represen ta t ion  of Eq. (3.4). Equation 
(3.10) consti tutes a genera l iza t ion of Eq. (3.7)~ 

Because of Eq. (3.9) we must  solve integral  equations to de te rmine  opera to rs  inverse  to the normal iz -  
ing fac tors  Q~,+), which occur  in the construct ion of the weight opera to r  Wy. 

4 .  D i f f e r e n t i a l  E q u a t i o n s  W i t h  R e s p e c t  t o  t h e  P a r a m e t e r  

Let  us now turn to the t r ans fo rmat ion  opera to r  UT' The normalizing fac tors  corresponding to it we 
near ly  a l ready calculated; they are  constructed by means  of the opera tors  (~(v -+) and the Fredholm de t e r -  
minant &y (k). Explici t  equations can be wri t ten in the form 

1r ? (k) :  ~ ~ k) A v (l) ? (1) dl, (4.1) 

and the opera to rs  N(~ • acting in ~ are  descr ibed  by the equation 

N ( + )  'r*gr(+)'r �9 Uv=U(=)N~,e). {4.2) T =~OlVY ' lO' 

In this sect ion we will prove that the de te rminant  Ay (k) can be explicit ly expressed  in t e rm s  of the kernel  
hy(k,  l) and thereby in t e r m s  of the sca t te r ing  amplitude. 

In o r de r  to state the Ge l ' f and -Lev i t an - type  equation we must  obtain, in addition to normalizing fac- 
to r s ,  an express ion  for the genera l ized  e lement  •  which is the p r e - image  of the eigenfunction of the dis-  
continuous spec t rum u(x) under  the map Uy. This can easi ly be ca r r i ed  out on the basis of the already 
noted coinciding of the function uy(x,  k) and u(+)(x, k) for k[I y and Eq. (2.10). 

We will proceed on the basis  of the equation 

f ~(x, k)=e~(e'x) + ~ Av(x, y)e'(~'V)dy, 
(y--x,"r (4.3) 

which const i tutes a concre te  variant  of the more  abs t rac t  definition of Eqs. (2.1) and (2.3). We note its 
analogy to Eqs. (I.1.8) and (I.1.9). Setting he re  k = sy  and express ing  fT(x' k) in t e rms  of u(+)(x, k) and 
5y (k), we find 

(x, s'f) h r (s)= e ~(x'v) + e ~ A~, (x, y) eiS(Y'~)dy. it(+) 
(g--x,y):>O 

Here  we will use the a l ready noted coinciding of Av(sy) and A(+)(s). Under our assumption on the s implici ty 
of the discontinuous eigenvalue, the de te rminant  A'(+)(s) has a s imple zero  at s = i~, so that setting s = ivt 
in the las t  equation and using Eq. (1.12), we find 

u ( x ) = m ( ~ ) [  e-~(~'v) +(v_~!~)>oA~'( x, Y) e-~r 

where 

m (T)------- I ~- A ~§ (s)s=~c (7)1 -~ 
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and e(3/) was introduced in Eq. (1.13). This  equation is also the r e su l t  we requ i re ;  we vail  see  that 

u=U~,z~,; "Z'v ( x ) = m  (7) e -'"(~'~)- (4.4) 

Thus to exp re s s  all the va r i ab l e s  occur r ing  in the G e l ' f a n d - L e v i t a n  equation in t e r m s  of the sca t -  
t e r ing  ampli tude,  i t  r e m a i n s  for  us to find an expres s ion  for  @ ( k )  and c(7) .  Fo r  this purpose  di f ferent ia l  
equations for  the functions u3/(x, k), h3/(h, l), A~(k),  and c(3/) with r e s p e c t  to the p a r a m e t e r  3/ will turn out 
to be convenient.  This  va r iab le  runs  through the unit sphere  and it is t h e r e f o r e  convenient  for  d i f ferent ia-  
t ion to use  the Lie ope ra t o r  co r respond ing  to the opera t ion  of a group of ro ta t ions .  We will not have to 
wri te  explici t  equations for  these  o p e r a t o r s ,  the following single equation being suff icient :  

m~f[(-~, a) l=f ' [ ( ' r ,  a)l(a, "~x~). 

Here  (3/, a) is the s c a l a r  product  of 3/ and an a r b i t r a r y  vec tor  a, f(t) is an a r b i t r a r y  function, M~ is the 
Lie ope ra to r  cor responding  to d i f ferent ia t ion  in the d i rec t ion  of ~, and 3/• ~ is the vec tor  product  of ,/ and ~. 

Different ia t ing Eq. (3.2) we find 

z4 o,(x k)=i  ) 0 .'-ez (4.5) 

where  

%,,~ (k, l) = 2=i~ (12 --/~2) a [ ( l_  k, "3] (l--/~, ~( X ~). 

This  equation leads to a d i f ferent ia l  equation for  all the va r i ab l e s  ment ioned at the beginning of the sect ion.  
We begin with the function u~/(x, k). Different ia t ing Eq. (2.4) we find the equation 

M~u~, (x, k) = f M~G~. (x - -  y, k) v (y) u.~ (y, k) dy + 

+fO~. ( x - - y ,  k)v(y)M~uv(y,  ~)dy. 

This  equation d i f fe rs  f rom Eq. (2.4) only in a f ree  t e rm ,  which can be ~written in the fo rm of a l inear  com-  
b i n a t i o n o f  plane waves of the f o r m  

I R~,,~ (k, l) et(l,x)dl, 
(4.6) 

where  

Rv.~(k, z)=%.t(k, z)h~.(k, z). (4.7) 

The e x p r e s s i o n  for  w3/,~(k, l) includes 5-funct ions ,  so that  l 2 = k 2 and (l, 3/) = (~, 3/) in the in tegra l  of Eq. 
(4.6). We reca l l  that G r e e n ' s  function G3/(x, k) depends on k only in t e r m s  of k 2 and (k, 3/). This  toget~her 
with Eq. (2.4) impl ies  that 

M~u v (x, k) = i R m  (k, l) u~, (x, 0 all. 

Now using the definit ion of Eq. (3.4) for  the ke rne l  h3/(k, l) we have 

Mghv (k, I) ~-- i h~. (k, m) %,,r ([~, rn) h v (rn, l) dm (4.s) 

which is an in tegrodi f ferent ia l  equation for  h3/(k, l). 

We now pass  to the d i f ferent ia l  equations for  the F redho lm de te rminan t  A3/(k). A de te rmina t ion  of 
this exp res s ion  is given by Eq. (2.9). Different ia t ing it with r e s p e c t  to 7 and using Eq. (4.5), we find 

M~ In ~ (k) = --I  [h~ (Z, Z)--q] ~,~ (k, 0 dr, 
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where  the cons tant  

l 3 

is  the a sym pto t i c  of the k e r n e l  h~/(l, l) fo r  l a rge  I l ] .  The  r e su l t i ng  d i f f e r en t i a l  equat ion can be expl ic i t ly  
so lved .  We c o n s i d e r  the funct ion 

g~, (k)  = - 2=i  f [hv (z, O -  ql o [(z - k,  7)1 ~ (k -~ - l~) all. 

Dif fe ren t i a t ing  it  with r e s p e c t  to y ,  we find 

M~ g~, (k) = --  2~i f h~, (/, m) hv (m, l) ~,,~ (l, m) 0 [ ( / - -  k, 7)] X 

X ~ (k 2 - -  12) d l  - -  I [h,~ (l, l) - -  q] ~v,~ (k, l) dl. 

The  f i r s t  t e r m  h e r e  van ishes .  In fac t  the funct ion wy,~(l, m) is a n t i s y m m e t r i c  with r e s p e c t  to l and m,  
while the r e m a i n i n g  p a r t  of the in tegrand  in this  t e r m  is s y m m e t r i c ,  so that  we may  se t  (m, T) = ( / ,  Y). 
Thus ,  the d i f f e ren t i a l  equat ions  for  In AT(k) and gy(k)  co inc ide  so tha t  these  funct ions  coincide  to within 
a t e r m  independent  of y .  We h o w e v e r  know that  when k I] ~/ the d e t e r m i n a n t  Ay (k) co inc ides  with the F r e d -  
ho lm d e t e r m i n a n t  A(+)(lkl) of the i n t eg ra l  equat ion of s c a t t e r i n g  t heo ry  [Eq. (1.3)]. At the s a m e  t ime  g~(k)= 
0 when y [Ik. We a r r i v e  at the equat ion 

In A (k) = In A (+)(] k [) -- 2~i 1 hV (l, l) 0 [(/-- k, 7)] ~ ( k2 - -  12) dL 

We may analogously study the Fredholm determinant AT(k) of the integral equation (3.7) in which 
an integral operator Py (k) with kernel 

[ v (k; l, m) = 2~i0 [(/--  k, 7)1 ~ (/2 _ m 2) / (l, m) 

o c c u r s .  In this  case  we may  p r o v e  that  

In A (k) = Tr In (I - -  P (k)) = gv (k), 

so that  

a~. (k)= a(+)(] ~ I) 7~, (k). (4.9) 

On the bas i s  of the Kato  t h e o r e m  we know that  5(+7(! & ]) ~ 0  for  r e a l  ]k]. Then  Eq. (4.9) a lso d e m o n s t r a t e s  
the equ iva lence  be tween  the unique so lvabi l i ty  p r o b l e m  for  Eqs.  (3.7) and (2.4). 

Le t  us now e x p r e s s  the d e t e r m i n a n t  h v(k,l) in t e r m s  of h(+)(t k 0. F o r  this pu rpose  we r e c a l l  that  
hr k I) has  an analy t ic  cont inuat ion  in the upper  ha l f -p lane  of the va r i ab l e  ]k[ = s, t h e r e  has a unique ze ro  
at s = ix ,  and when I m s  = 0, Eq. (2.11) holds .  Suppose Q~+)(IkL) and Q(~-)([k[) a r e  o p e r a t o r s  in L2(S 2) de -  
f ined in t e r m s  of Q~,+) and Q~(-' in the s ame  way as S([k]) was def ined in t e r m s  of S. 

The  f ac to r i z a t i on  of Eq. (3.6) l eads  to the equat ion 

S (I k I) = Q~+)-z (! k 1) Q~(-)(] k ]), 

which leads  to the equat ion 

In det S (I k D = Tr In S ([ k [) = Tr [ln Q~,-)([ k ])-- In Q(~+)([ k l)], 

which impl i e s  that  

lndet S ([ k ] )=  --~fhv(l,l)~(12--1z2)dl=2iargA(+)(lkl), (4.10) 
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since all the degrees of the operators Q(~) - I in a logarithmic decomposition, other than the first degree, 

yield a null contribution to the trace as "/a consequence of the Volterra property of Q(~+) and (~(v -) . If we 

know argh(+)(I k I), we can r e c o n s t r u c t  this function using the equation 

{ ~r~(t)/s--iz 
lm s >0 ,  (4.11) 

where  

-q (t) = arg a (+) (t) + 2arctg t "  (4.12) 

Combining Eqs.  (4.10), (4.11), and (4.12), we find a explici t  exp re s s ion  for  A(+~ (Ikl) in t e r m s  of h v (k, l). 

We will now demons t r a t e  how to e x p r e s s  the function c(y) occu r r ing  in the cons t ruc t ion  of the vec tor  
•  in t e r m s  of the sca t t e r ing  ampli tude f(k, l) [cf. Eq. (4.4)]. We cons ider  the sca t t e r ing  arnplitude f(k, l ) 
as a function of the var iab le  y = l / l  II and apply to it the o p e r a t o r  M} in t e r m s  of this var iab le .  Using the 
in tegra l  r ep re sen t a t i on  of Eq. (1.7) and the analyt ic i ty  p r o p e r t i e s  of the solution u(+)(x, k), we find that  

l ike f(k, k) has  an analyt ic  continuation into the upper  ha l f -p lane  of the var iab le  s = [k! with pole at s = ix .  
It  can be eas i ly  ver i f ied  using Eq. (1.12) that  the cor responding  re s idue  has  the fo rm 

Compar ing  this equation to Eq. (1.15) we find that 

M~ In c Q~ - -  g (s. -- 7) 
l - - f (  s, --7) ~=~" 

Solving this equation, a s suming  that the r igh t  side is known, we a re  able to obtain the equation 

(4.13) 

c ( '0 - b (-;) c ( - -  q,), 

where b(y)  is e x p r e s s e d  in t e r m s  of in tegra l  of this r ight  side. Here  mult iplying both side by c(7) we find 
finally 

;. (2.~) ~ 
c 2 (7) = R e s  f (s,")l~=iu ~ b ('f), 

so that  the square  of c(y) is expl ic i t ly  e x p r e s s e d  in t e r m s  of the sca t t e r ing  ampli tude.  It is p r e c i s e l y  this 
square  that occurs  in the G e l ' f a n d - L e v i t a n  equation. We can now proceed  to a d i r ec t  formula t ion  of this 
equation. 

5 .  I n v e s t i g a t i o n  o f  I n v e r s e  P r o b l e m  

By as suming  that  the potent ial  v(x) sa t i s f i e s  the conditions 

a) v(x) is a continuous, rapidly  dec rea s ing  function, and 

b) Eq. (2.7) does not have nontr ivia l  r e s t r i c t i v e  solut ions for  all r ea l  k we have proved  tha~ the s ca t -  
t e r ing  ampli tude f(k, l) p o s s e s s e s  the p r o p e r t i e s :  

1. The in tegra l  equation (3.7) is uniquely solvable  for  any ~ 3 2  defining a fm-nily of ke rne l s  h;/(k, Z). 

2. The function Av(k), cons t ruc ted  in t e r m s  of by(k,  l) by Eqs.  (4.9), (4.10), and (4.11),has a r e s t r i c t e d  
analyt ic  continuation with r e s p e c t  to the va r i ab le  s = (k, y)  into the upper  ha l f -p lane .  

3. The function by(k, l) Av(k ) when (k, 30 = ( l ,  2s) also has such a continuation with r e s p e c t  to s = (k, 
3/) for  a r b i t r a r y  fixed l• and k•  

The las t  p rope r t y  p r e s e n t s  a r ich  col lect ion of n e c e s s a r y  conditions that  somewhat  expl ic i t ly  de-  
c r e a s e  the p a r a m e t e r s  in the sca t t e r ing  ampli tude.  It turns  out that i t  substant ia l ly  exhausts  the n e c e s s a r y  
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conditions on the sca t te r ing  amplitude, about which we spoke in the introduction.  That is, we will prove 
that if it  holds, there  exis ts  a local  potential  v(x), such that f(k, l) is the sca t te r ing  amplitude. This will 
be c a r r i e d  out using the fo rma l i sm of the inverse  problem.  

We begin by writ ing an in tegral  equation for  de termining the t rans format ion  ope ra to r  Uy. The idea 
of the proof  of this equation was a l ready set  forth in the introduction. The corresponding weight opera to r  
Wy has the ke rne l  

W, . ( x ,  y)----(~--)3fe-~'~'~ , l)eq~'U)dkdl +m ~  (7)e -~'~+u'~', (5.1) 

where 

~',(k, O----~ ! Q-~(k, m)Q-v(l, ra) dra A~(O 

In writing these equations we will use an abstract definition of the weight operator given in the introduc- 
tion, a concrete form of the normalizing factors N(~) from Eq. (4.1), and Eq. (3.9). 

Y 
The Gel'fand-Levitan equation has the form 

Av (x, y) + ~ (x, y) + ~ A~, (x, z) ~v (z, y) dz = O, 
(z--x,~)>O 

(x, ~) < (y, -~), 
(5.2) 

where 

~v (x, y) = Wv (x, y)--  ~ ( x -  y). 

The kerne l  ~27(x, y) is completely r econs t ruc ted  in t e r m s  of the sca t te r ing  amplitude f(k, /), as was dem- 
ons t ra ted  in the preceding section.  

Equation (5.2) is an equation for  Ay(x,  y) as a function of the var iable  y, while x and y play the ro le  
of p a r a m e t e r s .  The kerne l  of this equation is evidently posi t ive,  which ensures  its unique solvability.  
Thus, we will find it possible to r econs t ruc t  the t r ans format ion  opera tor  Uy in t e rms  of the sca t te r ing  
amplitude. 

We const ruct  using the t rans format ion  opera tors  we have found a family of opera tors  

t-Iv = UvHoU~, '. (5.3) 

We intend to prove that if the p roper t i e s  formulated at the beginning of this section hold, the opera tor  Hy 
is independent of y and the corresponding opera to r  V~/ = Hy - H 0 is an opera tor  for  mult ipl icat ion by the 
r ea l  function v(x), where the initial function f(k, l) is the sca t te r ing  amplitude for this potential. 

The formal  proof  scheme is significantly simplified if we assume that no discontinuous spec t rum 
exists .  We will l imit  ourse lves  he re  to a presenta t ion  of only this case, so that we will assume that the 
second t e r m  in Eq. (5.1) is absent. 

The investigation begins according to a scheme en t i re ly  analogous to the one-dimensional  case of 
Sec. 5 Chap. 1. It is possible to prove that the Vol te r ra  opera to r  

U~=I + A~,, 

constructed in t e rms  of the solution Ay(x,  y) of Eq. (5.2) sat isf ies  

U~WvU v = I, (5.4) 

which implies that Hy is self-adjoint. 

We now prove that the operator Vy = Hy - H 0 is local in the y direction, i.e., that its kernel, a gen- 
eralized function, is expressed in the form 
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vv (x, y) = ~ ((x, -f)-  (y, J )  v (x, y). 

We note for this purpose that in the identity 

HoA~ -- A~,Ho = --  V~ (I + A~,), (5.5) 

which follows f rom Eq. (5.3), the re  exis t  t e r m s  with s ingular i t ies  of various o rde r s  on the plane ix, ~/) = 
(Y, 7) .  The kerne l  AT(x, y) i t se l f  has a d iscont inui ty- type singulari ty,  

A~, (x, y) = 0 [(y -- x, 7)] A~ (x, y). 

If it commutes  with H 0 there  a r i ses  the more  sing-alar t e r m  of the form 

( 0 § ~ ~A~(x,y), 28 ((x, -,,)- (y, -,)) ~ ~ j  

which can be compensated for in the r ight  side of Eq. (5.5) only by the potential  Vy(x,  y), so that we will 
find an explici t  express ion  for  the potential  V./(x, y) in t e rm s  of the kerne l  A~/(x, y), 

V~, (x, y) = --  28 ((x, 7)-- (Y, 7)) ~ (A~, (x, Y)I(,',~)=I~,~)- 

Until now we have not used the analytici ty conditions on the kerne l  h~/(k, l). TMs proper ty  makes  it 
possible for  us to a s s e r t  that the opera tor  H~/ is independent of 3~, so that the potential  Vy is local  in every  
d i rec t ion  and Js the re fo re  a funct ion-mult ipl icat ion opera tor .  Yor this purpose we natural ly use d i f feren-  
t ial  equations with r e spec t  to the p a r a m e t e r  3'. 

We in turn note that the dif ferent ia l  equation (4.8) can be der ived  by proceeding on the basis  of the 
definition of hT(k , l) by means  of the in tegral  equation (3.7). In fact different ia t ing Eq. (8.7) with r e spec t  
to T, we find 

M~h V (k, l) =2v.i i h~ (k, nz) a [(m -- k, 7)] ~ ( k-~ -- ra2)( r n -  k, 7" X ~) X 

X f (rn, l) dtrt § 2r f M~h~ (k, m) c~ [(m --/~, 7)]~ (kz -- m e) f(m, l)dn,, 

The f ree  t e r m  he re  can be wri t ten in the form 

f R~ ~ (k, ~n) f (m, l) d.~ 

[cf. definition of Eq. (4.7) of the kerne l  of R 7,~].  On the other  hand, multiplying Eq. (3.7) by Rv,~(q, k) and 
integrat ing over  k, we obtain for  

r v (q, l) = S Rv,t (q, k) h.r (k, l) dk 

an equation with integral  t e r m  of the form 

2=i f Rv.~ (q, k) by(k, m) 0 [(m-- k, 7)18 (m ~ --  k ~) f (m, l) dkdm. 

Because  of the p r e sence  of 8 [(q-- k, 7)1 in the ke rne l  R~,~ (q, k) we can he re  rep lace  0 l(m-- k, ~)t by 
0 [(m--q, 7)]. The equations for  AI~hv(q, l) and ry(q ,  7) then coincide, so that Eq. (4.8) can now be said to 

hold for  the kerne l  h~/(k, l) r econs t ruc t ed  with r e s p e c t  to f(k, l). 

We now reca l l  that the ve ry  p rocedure  for construct ing a~/(k) in t e rm s  of h 7 (k, l) is based on Eq. 
(4.8) for  this function. The kerne l  L~/(k, l) of the opera tor  s can then be said [cf. Eqs. (4.1) and 
(4.2)] to sat isfy the di f ferent ia l  equation 

M~L v (k, l) = ~ IIv. ~ (/~, m) L~, (in, l) dm, 
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where 

By, t (k, l) = R-r,~ (k, I) - -  ~ (k - -  Z) I [h_~, (m, m) - -  q] m_v4(m, l)  drn. 

We introduce with this equation the ope ra t o r  l]v, ~ in the space  ~0. The analyt ici ty  of h2/(k, l) when 2/) 
* T ( l, 3') r educes  to the o p e r a t o r  l]v,~=T~IIv, t 0 being t r i angu la r ,  

1 8 1]~. ~(x, Y)---- (~-h-) I e-'(+"+mv'~'(k' l )e ' ( ' , v 'd led l=O,  (x, "0 >(Y, ~'). 

We also note that  

II~.~---~ - -  II_~,,~, 

which is a s imple  co ro l l a ry  of Eq. (3.9). 

Recal l ing the definit ion of W2/ we find that  

M ~ W ~  = II~4W v + WvlI_v4. 

We now prove,  proceeding  on the bas i s  of Eq. (5.4), that  

(5.6) 

M ~ U v  = -- UvIlv'~" (5.7) 

For this purpose we note that the operator M}U2/is triangular and therefore uniquely determined by the 
equation 

w ,  + uv w,,) = - u ; - ' ,  

which is obtained by dif ferent ia t ing Eq. (5.4). In fact  if we explici t ly wri te  out this equation in t e r m s  of the 
ke rne l s  of the o p e r a t o r s  occur r ing  in it, the r ight  side will vanish when (x, "3 < (Y, ";) and we will obtain a 
l inea r  in tegra l  equation for the ke rne l  of M~U~, which di f fers  f rom the G e l ' f a n d - L e v i t a n  equation only 
in the f ree  t e rm .  Using Eqs.  (5.4) and (5.6) we easi ly  find that --U~llv4 sa t i s f ies  this equation. T h e V o l t e r -  
r a  p rope r ty  of U2/ and the t r i angu la r i ty  of lIy,~ impl ies  that  UvIIv, ~ is also t r iangular .  Equation (5.7) 
m a y  the re fo re  be said,  because  of the uniqueness noted above, to be proved.  

Let  us now turn to the ope ra to r  H2/ introduced in Eq. (5.3). We have 

M~H~. = (M~U~.) H o U r  t - -  U~,HoU~ ~ (M,U~) U~ 1 = 

= U~,HoIIv,zU~ "t - -  Uv l lv ,~HoU~ I = O, 

since the ope ra to r  l]v, z commutes  with H0. We have found the p romised  constancy fae tor  on H2/ as a 
function 2/ and together  with it the local i ty  of the potential  V. 

In t r a n s f e r r i n g  this s cheme  to the case  when a discontinuous spec t rum is p resen t ,  it is n e c e s s a r y  to 
o b s e r v e  ca re  in different ia t ing the contr ibution to Eq. (5.2) f rom the i m p r o p e r  vec tor  • 2/. It is convenient 
to f i r s t  ro ta te  all  the va r i ab les  so that  a var ia t ion  in ~/ will not vary the Vol te r ra  di rect ion of the des i red  
o p e r a t o r s .  Different ia t ion with r e s p e c t  to 2/ then no longer  causes  complicat ions .  In proving an equation 
of the type of Eq. (5.6) it will be n e c e s s a r y  to use  a d i f ferent ia l  equation of the fo rm of Eq. (4.13). 

It r e m a i n s  for  us to p rove  that the initial  ke rne l  f(k, l) is the sca t t e r ing  ampli tude for  the given SchrBe- 
dinger  ope ra to r  H. We need only prove  he re  that  the solutions u2/(x, k) constructed with r e s p e c t  to the 
t r a n s f o r m a t i o n  ope ra t o r  U2/ and the de te rminan t  A2/{k) using Eqs. (4.3) and (2.10) have for l a rge  Ixl the 
asympto t ic  

uv (I x I T, k) [jxl+~o----- e~lxl{ +,~') + o (1). 

In fact  onee this equation has been proved,  we eas i ly  ver i fy  that the se t  of solutions 

.(+7 (x, k)--- S Q(+' (z, u,, (x, 0 at, 

(5,8) 

3 9 4  



which is independent of 7 because of Eq. (5.7),has the asymptotic of Eq. (1.2) in which the initial kernel 
f(k, l) occurs. We will not present the arguments proving Eq. (5,8), since they require a significant~ more 
detailed study of the kernel A T (x, y) than we have so far limited ourselves to, 

This investigation can be carried out until the formal discussions of this chapter have been made 

rigorous. The variants of it available to us are too cumbersome to fit within the present survey. We hope 
that the formal scheme for solving the multidimensional inverse scattering problem presented here will 
be a stimulus for some readers to develop better founded analytic models for its justification. 

With this we conclude the description of the state of the inverse problem of quantum scattering theory 
through the beginning of 1973. 
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