
2. B. Ya. Kazarnovskii, "On the zeros of exponential sums," Dokl. Akad. Nauk SSSR, 257, No. 
4, 804-808 (1981). 

3. A. Hovansky, "Sur les racines complexes de systemes d'equations algebriques ayant un 
petit hombre de monomes," C. R. Acad. Sci. Paris, 292, Set. I, 937-94U (1981). 

4. O. A. Gel'fond, "On the mean number of roots of systems of holomorphic almost-periodic 
equations," Usp. Mat. Nauk, 39, No. I, 123-124 (1984). 

5. A. L. Ronkin, "The distribution of the zeros of quasipolynomials in severalvariables," 
Funkts. Anal. Prilozhen., 14, No. 3, 91-92 (1980). 

6. G. De Rham, Differentiable Manifolds [Russian translation], IL, Moscow (1956). 
7. G. Buzeman, Convex Surfaces [in Russian], Nauka, Moscow (1966). 
8. R. Harvey, Holomorphic Chains and Their Boundaries [Russian translation], Mir, Moscow 

(1979). 
9. P. Griffiths and J. Kuhns, Nevanlinna Theory and Holomorphic Mappings of Algebraic Mani- 

folds [Russian translation], Mir, Moscow (1976). 
I0. A. V. Shabat, Distribution of Values of Holomorphic Mappings [in Russian], Nauka, Moscow 

(1982). 
11. D. N. Bernstein, "The number of roots of systems of equations," Funkts. Anal. Prilozhen., 

9, No. 3, I-4 (1975). 
12. P. A. Griffiths, "Complex differential and integral geometry and curvature integrals as- 

sociated with singularities of complex analytic varieties," Duke Math. J., 45, No. 3, 
427-515 (1978). 

TOPOLOGICAL PRESSURE AND THE VARIATIONAL PRINCIPLE FOR NONCOMPACT SETS 

Ya. B. Pesin and B. S. Pitskel' UDC 519 

INTRODUCTION 

The notion of topological pressure was introduced by Ruelle in [8] in the case of com- 
pact metric spaces (for homeomorphisms that separate points). In the same paper he formulated 
a variational principle for the topological pressure. According to this principle, for every 
continuous mapping f of the compact space X and every continuous function ~ on X 

where P (~) is the topological pressure, ~ are f-invariant measures, and h~(f) is the metric 
entropy of mapping f. In the particular case ~ = O, we recover the variational principle for 
the topological entropy h(f) = P(O) (see [4, 5]). 

A complete proof of the variational principle in the general case was given by Walters 
[9]. A discussion of these topics can be found in [I]. For noncompact subsets of compact 
metric spaces Bowen introduced the notion of topological entropy and proved the correspond- 
ing variational principle. Here we give a definition of topological pressure for noncompact 
subsets of compact metric spaces and prove the variational principle. Our results may be 
regarded as a generalization of the results of Walters and Bowen. Let us make some prelim- 
inary remarkS. 

I. We deal with the following situation: X is a compact metric space, Y is a (generally 
noncompact) subset of X, and f:Y ÷ Y is a continuous mapping. Generally speaking, it is not 
assumed that f can be extended to a continuous mapping of X. In this aspect our setting dif- 
fers from that analyzed by Bowen in [2] and permits us to cover the case of discontinuous 
mappings of X [where the role of Y is played by the set % ~ U f-~(Z), where Z is the set of 
discontinuity points of f]. 

In particular, we prove the variational principle for one-dimensional discontinuous map- 
pings (see Sec. 3). Our results may be used to prove the variational principle for Lorenz- 
type attractors (see [10]). 
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II. The fact that the set Y considered here is a subset of a compact metric space means 
essentially that we use only the presence of the metric structure on Y induced by the metric 
of X. An equivalent description: for every s > 0 there is a finite covering of Y by balls of 
radius ~s. The notion of topological pressure can be also defined for the general case of a 
noncompact space Y (with an arbitrary metric; see Sec. 4). However, in the general case the 
results that we prove are generally speaking no longer valid. 

III. The notion of topological pressure on Y can be defined in analogy with the notion 
of Hausdorff dimension; one introduces a special outer measure on Y, m~(Z)(ZCY,%~R), 
which is not an increasing function of % and assumes either the value 0 or ~ at all points 
(except, possibly, for one). The critical value of % is exactly the (topological) pressure. 
When formally applied to noncompact sets, the recipe for defining the pressure for compact 
sets Y given in [I] leads, generally speaking, to a finitely-semiadditive outer measure m% x 
(Z). For this reason, in this paper we give a different definition of topological pressure 
for which the corresponding outer measure is countably semiadditive (see Sec. I). In the 
case where Y is compact our definition agrees with that given in [I] (see Sec. I). An im- 
portant consequence of our approach is the following: the pressure on the union of the sets 
ZnCY, n~Z, equals the supremum of the pressure on the sets Z n- 

IV. For either definition, the pressure corresponding to function ~ = 0 must coincide 
with the topological entropy. In this way we obtain a new definition of the topological en- 
tropy of a continuous mapping of a noncompact set, and we show (see Sec. 4) that it agrees 
with Bowen's definition of topological entropy [2] (and hence, in the case where Y is compact, 
with the classical definition). Moreover, Bowen's definition, unlike ours, cannot be general- 
ized to functions ~=J=0. 

V. We show that for a noncompact set Y the inequality 

holds (see Theorem I), in which the supremum is taken over all f-invariant measures p satis- 
fying p(Y) = I, and Py (~) denotes the pressure on Y corresponding to function ~ (we assume 
that ~ is continuous on Y). 

In the compact case at least two approaches to the proof of this inequality are known. 
One of them goes back to Goodwyn [5] (who proved it for ~=0 ; a proof in the general case, 
based on the same considerations, is given in [I]) and the other -- to Dinaburg [4] (under 
the assumption that the topological dimension of X is finite). The attempts to generalize 
Goodwyn's proof to the noncompact case encounter considerable obstacles of a topological 
character. Dinaburg's idea of proof works in the noncompact case too (again under the as- 
sumption that X has finite topological dimension). In the present paper we propose another 
idea of proof (apparently mastered by Margulis) which allows us to establish the indicated 
inequality in the general case. A yet another variant of the proof, based on consideration 
made by Denker [3], is given in papers [6, 7]; the idea of this proof is, in certain respects, 
close to ours. 

In the general case strict inequality holds; we give some rather severe and, generally 
speaking, difficult to verify, supplementary conditions ensuring equality (see Theorem 2). 
Then we show that these conditions are fulfilled for one-dimensional discontinuous mappings 
(see Theorem 6); in [10] these conditions were verified for Lorenz's type attractors. Another 

variant of the variational principle is given by Theorem 3 and asserts that h~)q-I~d~= 

PG~(~) for any f-invariant measure p, where G~ is the set of typical-forward points for mea- 

sure p (see Sec. 2). 

In Sec. 3 we give sufficient conditions for the existence of equilibrium states, i.e., 
of measures ~ with the property that 

The authors became aware of the importance of the construction using the outer measure 
thanks to discussions with D. V. Anosov. He also examined carefully the manuscript and made 
many other useful remarks which contributed significantly to the effort of improving the 
paper. We express him our most sincere gratitude. We are also indebted to Ya. G. Sinai for 
the encouragement and attention given to our work. 
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I .  Definition of Topological Pressure 

I .  Let X be a compact metric space, YcX, and f:Y -~ Y a continuous mapping. Let 

be a finite open cover of X. We denote by ~m (a~) the set of collections of length m of 

elements of cover ~: U ---- Ui°Ui.. • • Uim_ I. For a continuous function %0 on X we set 

Z (U) ----- {x ~ Z: / ~ (x) ~ U ~ ,  k----- 0 . . . . .  m -- 1}, 
[~rt--I 

= s.p i Y, (t" (x)): z (u)}. 
k----0 

If Z(U) = ~, we shall consider that SmqD (U)------oo . Set ~Y (~)= ~ ~0~ (~) . We will say that 

F C-~/ff ' (~) covers Z if Z C [j Z ~). The number of element of collection U will be denoted by 
E~r 

m(U). Set 

M (~, Z, Z, ~, N) ---- inf ~2 exp (--Xm (V) + S~(m ~ (V)): 

F covers Z and for every __U ~ F,m (U_)~ N}. It is readily verified that function M (~, ~, Z, %0, 
N) increases monotonically with the growth of N. This guarantees the existence of the limit 

m (~, X, Z, ~) ---- lira M (~, X, Z, ~, N). (I) 
N-*~o 

For any X and given ~ and %0 , function m (~, %, Z, ~) is a regular outer Borel measure 
on the family of all subsets of Y. 

For fixed Z, function ra (~,~, Z, q~) has the following property: there is a X0 such that 

m ( ~ , ~ , Z ,  ~) ---- 0 f o r  X > X0, a n d  m ( ~ , 5 ~ , Z , % 0 )  ---- oo f o r  ~ < ~0 .  L e t  Pz(~,%o) = i n f  {~: m ( ° ~ , ~ ,  

Z, ~)== 0} . The quantity Pz (~, ?) enjoys the following properties: 

~) Pz (~, ~) = O; 

2) i f  Z , ~ Z ~  ~ Y ,  t h e n  Pz~(°~, %0) ~ p z , ( ~ ,  %0); 

3) if Z = [ J Z i ~ Y ,  then Pz(~ ,  %0) : s u p P z  i (~, cp). 

Proposition I. The following limit exists: 

Pz(q~)----- l i ra  Pz(~, (P). (2)  
diam qz'--~ 

The ~oof is a slightly modified version of the proof of Lemma 2.8 of [I]. 

Proposition 2. I) Let X, X' be compact spaces, Y~X, Y'~X' Borel subsets, f:Y ÷ Y, 
f':y' ÷ Y' continuous mappings. Suppose that x:X ÷ X' is a continuous mapping such that 
x(Y)  = y '  o = f '  o , X f X" Then Pz (%0) -.< Px-,(z) (~) f o r  a l l  con t inuous  f u n c t i o n s  ~ on X'  and  
Z ~ Y ' ,  where ~ (x) ---- %0 (% (x)). 

2) I f  u n d e r  t h e  c o n d i t i o n s  o f  a s s e r t i o n  1 ) ,  m a p p i n g  X i s  a h o m e o m o r p h i s m ,  t h e n  P z ( ~ ) =  
P~-,(z) @). 

Proof. Assertion I )  is an immediate consequence of the definition of topological pres- 
sure and Proposition I. Assertion 2) is a straightforward consequence of I). It says that 
topological pressure is a topological invariant. 

Now set 

2. We denote by P (%0) 
recall the definition. If 
x) 

= ~ ( ~ )  = Sup {I w (z) - ¢ (y) I: x,  v ~ u 3 .  ( 3 )  
Ui 

t h e  p r e s s u r e  f o r  f u n c t i o n  ~ on s p a c e  X d e f i n e d  i n  [ 1 ] .  L e t  us  
i s  a f i n i t e  c o v e r i n g  o f  X, we s e t  ( f  i s  d e f i n e d  e v e r y w h e r e  on 

P (~g, %0) ----- l im 1_ log Z~ (~g, @, 
m ~ o o  /T6 

w h e r e  

Z~ (~ ,  %0) ~ inf ~, exp (80%0 (U)), 
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and F runs through all possible subsets of ~Ym (~) covering X. Now P (~) is defined as 

P((p)--~ lim P(q/,(p). 
d iam qg--Oi 

Proposition 3. P (~p) = Px (¢). 

Proof. Let us show that Px (~, ~) = ff (@g, ~),. Fix some % > P (~, ~) 
> O. Pick N so large that 

m (ql, L, X, @ < M (°~, ~., X, ~p, N) -k- a. 

F r o m  t h e  a b o v e  d i s c u s s i o n  i t  f o l l o w s  t h a t  t h e r e  i s  a n  m > N s u c h  t h a t  

Hence 
Zm (og, ep) < exp [(P (~, q~) "4- e) m]., 

and an arbitrary 

Inequality (5) implies 

.M(~,~, ,X, (p ,N)= inf  {tr~rexp(--~,ra(U)-I-.Sm(rhrp(U))} < 
rc~c~t) _ - -  - -- 

< inf ~ E exp (--Lm q- Sm~ (U_U))} = exp (--Lm) Zm (U, q~) -..< exp [(--}~ -1- P (~ ,  (p) q- 8) m]. 
rc"tt'm(et) t v '~ r  

For sufficiently small e and sufficiently large m (4) yields .m (@~, L, X, ~)-~ 2s. This means 

that % ~ Px (~, (P) , whence J~ (~, ~) ~ Px (~, ~). Now let us verify the converse inequality. 

~Px (~, ~) and g > 0. There are an N and a r ~@ff(@/) covering x, such that 

~, exp ( - -Lra  (U) -f- ,.Tin(o-) (p (U)) < s. 
v-~r - -  - --  

From Lemma 2.14 of [I] it follows that exp(--~)~.~exp(--P(~,~)) . Therefore, k~P(~,~), 

and hence Px (~, e#) ~ P (~, (p). 

(4) 

(5) 

Fix 

2. The Variational Principl e 

i. Let Xbe a compact metric space, Y a Borel subset of X, and f:Y + Y a continuous mapping. 
Let M(X), Mf(X), and ,~If(Y) denote, respectively, the set of normalized Borel measures on X, 
the set of f-invariantt measures ~ EM(X), the set of measures It~Mt(X), such that ~(Y) ffi 
i, and the set of ergodic measures It E M I (Y). 

THEOREM I. If It~M!(Y) , then h~ IY) q- I ~dit~PY(~)" 
Y 

Proof. One can readily verify the following statement. 

LEMMA I. For every e > 0 there are a 6~ (0, e), a finite Borel partition ~ = {C1,..., 
Cm}, and a finite open covering ~= {/71, . .., Uk}, k~m , of X, such that 

1. d i a n a U t < e ,  d i a n a C j < e ,  i =  i , . . . , k , ]  = i , . . . , m .  

2. 0~ C C i ,  i = i . . . . .  m .  

3. I t ( C i \ , U i ) < & i = l , . , . , m .  

4. It( U U t ) < a .  

5. 2~ In m ~ e. 

Now fix an e > 0 and take the number ~, covering ~, and partition ~ provided by Lemma I. 

Let ~ and ~ be the partition and the cover of Y induced by ~ and ~ , respectively. 

We may assume that measure p is ergodic. In fact, consider the partition n of Y into 
ergodic components Ys, s~S , of measure U- Denote by Us the measure on Ys (then f'us = Us) 
and by ~ the measure on the quotient space Y/n. Then 

tMeasure U is called f-invariant if u(f-1(A)) = u(A) for every measurable subset A CY • 
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Y/n Y y/~ 

There is a component Ys such that ~s (Y,)----I, hus ~- ~ cpd~s ~ h~ ~-I~ d~ . Thus we shall assume 
that ~ ~ ~! (Y). ITs Y 

For y~ Y we denote by tn(Y) the number of integers ~, 0 ~< ~ < n, such that"/(y)~Ui, 

where i = m + 1,...,k. From Lemma I and Birkhoff's theorem it follows that there are an 
N1 > 0 and a set A ~ Y  such that ~(AI) /> I -- 6, and for all y~11~ and n > N1 

n-~t~ (y) .<: 26. (6) 

Let ~n = ~V/-~V..-V/-n~ • From the Shannon--McMillan theorem it follows that there 
are an N2 > 0 and a set A s ~Y such that ~(A2) /> I--6 and for all y~A 2 and n > N2 

(C~, (y)) .~ exp 1-- (h a (1 ] Y, ~) --  6) n]. (7) 

Finally, Birkhoff's theorem guarantees that there are an N3 > 0 and a set Aa~Y such 
that ~(A3) > I -- ~ and for all y~As and n > N3 

n - - 1  

Set 2{ = max {NI, N2, N~}, A ---- A I n As ~I A3. We have 

(A) > t -- 36. 

Pick an arbitrary k<h a(/]Y,~) ~- I ~dF--? (~) and an arbitrary n > N. 
Y 

r ~ ~ (~), covering Y such that m(U__) >i n and 

. 

(8) 

(9) 

There is a 

( 1 o )  

Let Fl C F denote the set of collections U with the properties m(U) = I and Y (U)~ A ~= 
Let Pz = card Fl, Yz = 0 Y (U). 

v~rz 

LEMMA 2.  

Pl>11~(Yz n A) exp[(h a ( / I Y ,  ~ - -  8 - -  261n m) l]. 

P r o o f .  We deno t e  by L l t h e  number of  t h o s e  e l emen t s  of  p a r t i t i o n  e l such t h a t  

C~z N Y, N A =/= ~ °  (11) 

I t  i s  r e a d i l y  checked t h a t  

~ (C~z) > F ( r ,  CI A), (12) 

where t h e  sum i s  t a k e n  over  a l l  e l emen t s  ~l which s a t i s f y  (11) .  On the  o t h e r  hand ,  s i n c e  
C~z ~ A s ~= ~J , i n e q u a l i t i e s  (7) and (12) imply 

Ll /> F (Yz N A) exp [(h~ (f I ¥ ,  [) --  6) l]. (13) 

F ix  a c o l l e c t i o n  __U ~ F z . S ince  Y (U) r~ A, =/= ~ , (6) y i e l d s  the  f o l l o w i n g  e s t i m a t e  of  t he  num- 
be r  S(U) o f  t h o s e  e l e m e n t s  C~l of  p a r t i t i o n  ~ f o r  which Y ( U ) N  C~l N A = /=~ :  

S (U) < m ~6l ---- exp (28/in m). (14) 

Now (13) and (14) yield the desired estimate for Pl. 

From Lemma 2 and inequalities (8) and (9) it follows that 

oo 

:u__~r -- -- -- l=N u__=_r I -- y 

t=,N I f  
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Here we used the fact that for sufficiently small 

h~(/[ Y, ~) + ~ ~ e ~ - - v ( ~ ) - 2 ~ - 2 ~ m m - - ~ > o .  
Y 

Prom t h i s  and i n e q u a l i t y  (10) i t  f o l l o w s  t ha t  M ( ~ , ~ , Y , ~ , n ) ~ i - - 4 6 ~  1/2  f o r  s u f f i c i e n t l y  
small  6. T h e r e f o r e ,  from the  d e f i n i t i o n  of  p r e s s u r e  i t  f o l l o w s  t h a t  Py(~g, ~ ) > ~ .  Hence 

P r ( ~ , ~ ) ~ h ~ [ Y ,  ~ - b  I ~ d ~ - - ? ( ~ ) "  Since ~ i s  a r b i t r a r y  and in view of a s s e r t i o n s  1 and 2 
Y 

of  Lenana 1, the  f o r e g o i n g  d i s c u s s i o n  impl ies  the  d e s i r e d  r e s u l t .  

2. Let z ~ Y .  Consider  the  s e q u e n c e o f  normal ized  measures 

n--1 

F=='~--'-~ n-t ~.~=~.e M'I ~ ("9' (15) 

where ~y is the normalized measure (unit mass) placed at the point y. Let V(x) denote the 
set of limit measures (in the weak topology in X) of the sequences of measures Ox,n. It is 
readily checked that V~)~Mt(X ). 

THEOREM 2. Suppose that for each z~Y the intersection V(~MI(Y) ff=~ZJ. Then 

Proof. For A C Y we denote by (A)y and (intA)y the closure and, respectively, the 
interior of the set A in the topology of Y (induced by the topology of X). It is not hard 
to verify the following statement. 

LEMMA 2. Let ~v __ {V I ..... Vt} be a finite open covering of Y, and let ~ = {DI,..., Dr} 
be a Borel partition of Y with the property that (Di)y C Vi, for i = 1,...,t. Then for 
every 8 > 0 there are a Borel partition q = {V*,...,V~} of the set Y and compact subsets K i 
of X such that 

Ki C Di ~ (int V~)~,, ! ~ (D i \ Ki) < ~, (V'~i)r C VI. 

Let g be a finite set, and let a~ = (ao,...,a~il)~E k. Define a measure ~a on E by the 
formula pa(e) = k -l× (the number of indices j such that aj = e). 

Set H(a)=-- ~, ~a(e) In~,a(e). 
- e ~ E  

Let ~ be a finite open covering of X and pick g > 0. 

LEMMA 3. Let z~Y, and pE V(x) ~ M! (Y). Then there are a number m and a sufficiently 

large number N such that one can find a collection U ~ ~ff~ (~), which satisfies the following 
conditions : 

(a) xEY (__U); (b)S~(Uj<N(~d~-F?(~)-F~); (c)U contains a subcollection of length 

km I- N -- m which, on representing it as ~_ = (~0,... ,Gk-z) ~ (~m)~ , satisfies the inequality 

rn-~H (a) ~ h~ ([ ] Y) -t- ~. (17) 

Proof. Suppose that ~ = {U s ..... Ur} is an open cover of X. There is a Borel partition 
of the set X into subsets Cz,...,Cr with Ci ~ Ui. Let ~ denote the partition of Y with 

elements Ci =Ci ~ Y and let ~ denote the covering of Y with the elements ~i=U~ ~ Y. 
There is a number m such that 

v < h (1, + ½ < ( I i r )  + 2"  

Let Dz,--.,Dt be the nonempty elements of partition ~ = ~V...V~(m+1)~. Fix B > 0 and apply 

Lemma 2 to the covering ~v=~V...V~m~)~ and the partition ~ of Y to produce the parti- 
tion q = {V~,...,V~} of Y. Now using the fact that ~x,nj ÷ ~ for some sequence nj ÷ ~ and 

repeating the arguments given in the proof of Lemma 2.15 of [I] we verify our claim. 

For each m > 0 we denote by Ym the set of these points y~Y for which the assertion 
of Lemma 3 is valid with the given m and some measure ~V(y) ~ MI(Y ) . The assumptions of 
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the theorem imply that Y = ~ Ym , Let Ym,u be the set of those points x~Ym for which 
m>O 

the assertion of Lemma 3 is valid for some measure ~ ~ V (x)~ M I (Y) that satisfies the con- 

dition I ~ db~ ~ [~ -- e' ~ 2_ ~] . Set 

"~MIC~ x 

For x~Ym, u the corresponding measure ~ satisfies the inequality h~(f[Y)<c--~-e . Let 
Pm,u denote the set of all collections U introduced by Lemma 3, taken for all points z~ Ym,~ 
and all numbers N larger than No. Set R(k,h,E)-----{a~E~: H(a)<h}. From (17) it follows 
that for each x ~ Y the subcollection constructed in Lemma 3 (see assertion 3) is contained 
in R(k, m(h + a), E m), where h = c --u + e. Therefore, the number of all possible collections 
U constructed in Lemma 3 does not exceed b(N) = ]ElmlR(k, m(h + s), Em)]. By Lemma 2.~6 of [~], 

li---m N -~ In b (N) < h -? e. 

From the above d i s c u s s i o n  i t  fo l lows  t h a t  Fm, u covers  Ym,u. Hence, by Lemma 3 and (18) 

,~vf (°~,~,,y,.n,u,~,No)~.< ~._w b(g)exp(--~,g.-]-S~r~p(U)).~ ~, b(A0exp(--)~g q- g(S ~dp...-[- ?(~)--~ ~)). 
= . -- M==N° X 

(~8) 

If No is sufficiently large, then b(N) ~< exp (N(h + 2e)). Therefore, 

M (~,  k, Ym, u, q), No) < ~N'/( 1 - -  ~), ( 1 9 )  

where ~ = exp (--~-~ h q-i ~d~ q- 7 (@~)-~ 3e) . For every ~c + ~ (~) q-4~, the last inequality 
X 

shows that m (~,)~, Fro, a, cp) ---- 0 . Consequently, 

ul, .... u r constitute an ~-net in I--l] ~[1, 11 cp~]. 

ment, L/> Prm,~i(~, ~) for some m and i. Hence 

%/>PYrn0=(~,cp). Next, suppose that the points 

I" 

Then Y = mU__ i~=iYm,~/. By the foregoing argu- 
1 

k> sup Pym, u i (~, op) = Py (~d, ~). This implies 

that c + ? (@J) q- 4~ ~ Py (0g, cp). Since ~ is arbitrary, c + ? (~) ~ PY (~). Letting diam @~ tend 
to zero, we conclude that c~ PY (~). The inverse inequality is a corollary of Theorem J. 

3. Let ~7~¢ (Y). Denote by Gp the set of typical-forward points for measure ~: these 
are defined as the points x ~ Y such that the measures ~x,n converge weakly to measure p. 
The next statement is an immediate consequence of Theorem 2. 

THEOREM 3. For every measure ~ ~ 2~/f (Y) and every function ~p ~ C (X) 

h . ( l l r  ) + ~ d p , =  Po~(q~). 
X 

Theorem 2 admits the following generalization. 

THEOREM 4. Let ZcY be an f-invariant subset and Z I~- {x~Z: V(x) N MS (Z)=J= ~} . Then 
for every function ¢p E C (X) 

sup (hw(/lZ) n u Icpd~)=Pz,(~p). 
~Mf(Z)  Z 

Proof. Repeating the proof of Theorem 2 it is readily verified that 

A =  s.p (h . (11z)+ 
I~EMI(Z) Z 

Now take  measures V~ ~ i f  (Z) such t h a t  

~n Z 

On decomposing the measures ~n into ergodic components and repeating the arguments given in 
the proof of Theorem I it is checked easily that there is a sequence of ergodic measures ~n 
with the same property. 
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Since for x~G~n we have V(x) ==~cM/(Z), Ghn~Z1. Now Theorem 3 implies that 

A ~-- sup P6f~ (f~) -~< Pz,(~)- 

4 .  N e x t ,  we g i v e  an  e x a m p l e  o f  a s e t  Y w h i c h  d o e s  n o t  s a t i s f y  t h e  c o n d i t i o n  o f  Theorem 
2 ,  and  f o r  w h i c h  e q u a l i t y  (16)  i s  n o t  v a l i d  ( f o r  %c-----0). 

Let (X, f) be a topological Bernoulli shift with two states, 0 and I (f-shift). Set 
A = ~ Ga and Y----X~A . Obviously, sup ~(IIY)= 0. Consider a Bernoulli measure 

such that ~(~0 = I) = p and ~(~0 = 0) = | -- p = q, p ~ q, and lh~(/)-- log2 ]< 6 with 6 << I. 
Consider the following partition of the integers into two subsets Q1 and Q2: k~Q, if 
(2n)! < lk ] < (2n-~ ~)! for some n i> I; and Q2 is of course the complement of Q2. Now consider 
the homeomorphism P:X + X defined by the rule 

f ~ ,  n ~ Q,, 
(V+),~-[ ~, q_ I (mod 2), n ~ Q,. 

Set Z = ~G~. 

LEMMA 4. Z~Y. 

Proof. Let X denote the indicator of the set {(0:0)0 = i} ~ X . Pick some point z ~ Z. 
Then, by Birkhoff's theorem and the definitions of measure and homeomorphism ~, 

(~+1) ! 

lira (2n q- t)l x(f(z))=p, 
(~)I 

l im . t , .  £ Z ( f  (x)) = q. 
~. . . ,~  I, z n ) l  

i..~-O 

n--x 

Since p ~ q, the sequence and---n-* ~ X(/(z)) has no limit for n + ~, which shows that zEY 
and proves the lemma, t.=0 

We denote by ~ the partition of X with the two elements A I ----- {co: ¢o 0 = O} and A~ ---- {co: 

m0 = I}. Fix an m > 0 and let ~= ~/ ]J~,~,-----~/ ]Jllm" j=-m j.-0 

LEI~A 5. For y-almost every x EG~ 

Proof. 

lira (---~-log ~ (C~ (~' (x))))=h~ (/). 

We h a v e  
m-l-n--1 

n-~e~ , n~oo j = - - m  

(20)  

w h e r e  Q (i, m, n) = Qi (7 [--m, ra q- n - -  1], i =  1, 2, 

l i = l ~  (__ lq(i,~,n)[ " t 
j~Q(i, m, n) 

and I A] denotes the number of elements of the set A. By the strong law of large numbers for 
the Bernoulli shift, 

lira (-- 1 I Q m, n)f log (cjj  (.)))) = h,,(/). 
n ~ * =  - j c - O ( i ,  ra,  n)  

| ÷ O, t a k e s  t h e  m e a s u r e  ~ i n t o  a B e r n o u l l i  m e a s u r e  w i t h  t h e  same Since the involution 0 ÷ I, 
entropy 

This yields I = h~(f). 

( 1 £ 10g p (C/j~ (~'F (X)))) = h~ (/). lira - -  [Q(i,m,n)[ 
n-.~ j~Q(i, ra, n) 

The le~ana is proved. 

314 



LEMMA 6. PZ(0) = log 2. 

Proof. Since X is endowed with the open--closed topology, partition Gm is also a finite 
open covering of X. Fix an arbitrary y > 0. Lemma 5 guarantees the existence of a set D and 
a number N > 0 such that p(D) > 1 -- y and for every x ~D and n /> N 

I* (C(nm) n (~ (x))) < exp (--n (h. (/) -- 3))). (2 ' i )  

Fix n >/ N, and choose r~ W (~m) such that 

I MOlm'~'Z'O'n)- v._er~ ~ exp( - -~n)  I < ? '  

and rn c o v e r s  Z. We w r i t e  Fn,~---- { _ U ~ r = :  m(U)----  /}, K~ i s  t h e  number  o f  e l e m e n t s  i n  Fn ,~  

and El= U Z(U). Since Z(U') ~ Z(U_")---- ~ for every choice of U_',U"~Fn, I, with U' ~ U", 
u~--rn, l 

i n e q u a l i t y  (21)  i m p l i e s  t h a t  

(~ N D) 
K~ exp (-~ ( ~  (/) -- ,~)) 

Therefore, for every X < hp(f) -- y 

exp (--~n) = ~ exp (--M). Kl ~> ~, ~ (El ~D) exp [(--X q- h~ (D -- ?)/] • (I -- ?) exp [(--~ q- h~ (f) -- ?) n] 

P a s s i n g  t o  t h e  l i m i t  n ÷ ~ ,  we g e t  m(nm, X, Z, O) = ~ ,  and h e n c e  PZ(~m, O) ~ h p ( f )  -- 
¥ ~ l o g 2  -- ~ -- y .  S i n c e  d i a m n m  ÷ 0 a s  m ÷ ~,  t h e  l a s t  i n e q u a l i t y  shows t h a t  PZ(O) ~ l o g 2  -- 

-- y. Taking into account that ~ and y are arbitrary numbers and PZ(0) ~ PX(0) = log 2 we 
obtain the needed statement. Now Lemma 6 follows from the following chain of equalities: 

log 2 = Px (0) > Pr (0) ~ Pz (0) = log 2. 

3. Equilibrium States 

I. Measure ~=~m is called an equilibrium state for function ~EC(X) on Y if ~ 
Mf(Y) and 

THEOREM 5. Suppose that mapping f satisfies the following conditions: 

I) f is a homeomorphism of Y; 

2) f separates points [i.e., there is an c > 0 such that for every x, y~Y the inequal- 
ty p(fk(x), fk(y)) ~ ~ for all k implies that x = y]; 

3) the set Mr(Y) is closed in M(X) (in the weak topology). 

Then for every function ~C(X) there is an equilibrium state. 

Proof. Let ~ be the separating constant for f. Then by repeating the proof of Proposi- 
tion 2.5 in [I] and taking into account conditions I) and 2) it is readily checked that h~ × 
(flY) = hp(flY, ~) for any measure ~ ~I]/If(Y) and any Borel partition ~ of Y with diam~ ~ ~. 
Using this fact and Lemma 4 and repeating the arguments given in the proof of Proposition 
2.19 of [I] one can prove that p ÷ hp(flY) is upper semicontinuous. This in turn implies that 

function ~--~h~(fiY) ~-I ~ d~" By condition 3), this function must attain its supremum on the 
set Mf(Y). 

The next result is a straightforward consequence of Theorems 2 and 5. 

THEOREM 6. Suppose that mapping f verifies the conditions of Theorems 2 and 5 and let 
~ be an equilibrium state for function ~ . Then: 

X 

2. We apply the results obtained above to one-dimensional discontinuous mappings. Let 
X = [0, I], and let A = {a~}~=0 define a partition of segment X by points 0 = ~0 < ~ < ... < 
aq = I. Let I~ = (~-~, ~). Suppose that T:X\A ÷ X is a mapping such that: 
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a) T is continuous and monotonic on each interval Ii, and hence extends to a continuous 
mapping of I l into X; 

b) T ( a ~ - - O ) ~ T ( a t + O ) , l = t  . . . . .  q - - t .  

Set R={zEX: T~(z)~_A for some n /> 0}. It is readily checked that T is continuous 
on the noncompact set Y = X\ R. We call the point T+(x) the right image of the point x if 
there is a sequence x,~X~A, whose terms lie at the right of x, such that Xn ÷ x and T × 
(x n) ÷ T+(x). The left image T_(x) of x is defined in the same manner. Clearly, T+(x) = 
T_(x) = T(x) whenever x~X~A. We call the sequence of points Xn, n = 1,...,p a general- 
ized periodic trajectory of period p if Ts(x n) = Xn+ I for n = 1,...,p- | and T6(x p) = xl, 
where 8 equals plus or minus. 

THEOREM 7. Suppose that mapping T satisfies conditions a), b), and 

c) the set R is dense in X; 

d) T has no generalized periodic trajectories {x n} with z,~R. 

Then for every continuous function cP on X equality (16) holds and there exists an equi- 
librium state ~ satisfying equality (22). 

Proof. The following argument was suggested by M. Lyubich. Let (Y, o) be a one-sided 
Bernoulli shift with q states, and let ~:Y + E be a mapping such that ~(x) = (~), where 
Tn(x) Cf~n, n~0. Using conditions a), b), and c) one can show that mapping ~ enjoys the 
following properties: I) it maps Y homeomorphically onto its image Q = ~(Y); 2) Q\Q is 
countable; 3) ~_l extends to a continuous mapping of Q onto x; 4){c0~}~Q~Q if and only 

if ~-i (¢0)E U Tn-+ (R). Let cp be a continuous function on X. From Proposition 2 and proper- 

erties I)-3) of ~ it follows that Py (~p) < PQ (~) < P~ (~) , where function ~p (0~) ---- cp (~-i (¢0)) 

is continuous_ on Q. Since the set Q is compact, the variational principle holds for the map- 
ping olQ, i.e., 

sup (h~(o)-~- ~d~,):- P6(~p). (23) 

From property 2) of mapping ~ we deduce the measure ~ ~/~Ic (Q ~ Q) must have a component 
supported on a periodic trajectory of mapping g, which is impossible in view of property 4) 
of P and condition d) of Theorem 7. Consequently, 

;~EM o ~ )  q ~eM a (q) x q 

Property ~) of mapping ~ implies that 

From the foregoing discussion, equalities (23)-(25), and Theorem | we obtain the variational 
principle for Py (~p). The existence of an equilibrium state ~ is a straightforward consequence 
of the fore_going discussion and the existence of an equilibrium state ~ for function ~ and 
mapping olQ (moreover, ~ ---- ~-~*~). 

We note a particular case in which condition d) of Theorem 7 is superfluous. 

THEOREM 8. Suppose that under conditions a), b), and c) function ~ is such that: 

sup ~ -- inf ~ ~ Py (0). (26) 

Then, for function ¢p equality (~6) holds and there is a measure ~p~Mf(X), satisfying (22). 

Proof. If Py(0) = 0, then ¢p =0. Since the set Q\ Q is countable, given any measure 
~M=(Q) supported on Q\Q we have hp(c) = O. Hence [cf. (24)] 

sup h ~ ( ~ ) =  sup  h~(o ) .  

From now on we repeat the proof of Theorem 7. Suppose now that Py(O) > 0 and ~p ~ C (X) sat- 
isfies condition (26). As in the proof of Theorem 7, we have that P~(O) i> Py(O) > O. Since 

is compact, there is a measure p such that hp(o) = P~(O). Pick any measure ~ supported on 
Q\ Q. Then, by (26), 
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+ + = + 0 
Q Q Q Q 

C o n s e q u e n t l y ,  e q u a l i t y  (24) h o l d s  f o r  f u n c t i o n  ~ , and to  c o m p l e t e  t h e  p r o o f  one r e p e a t s  t he  
p r o o f  o f  Theorem 7. 

Theorem 8 p e r m i t s  us  to  g i v e  a d i f f e r e n t  and y e t  e q u i v a l e n t  d e f i n i t i o n  o f  t o p o l o g i c a l  
p r e s s u r e  i n  t h e  c a s e  o f  o n e - d i m e n s i o n a l  d i s c o n t i n u o u s  mappings  c o n s i d e r e d  h e r e .  S p e c i f i c a l l y ,  
i f  mapping  T s a t i s f i e s  c o n d i t i o n s  a ) - c )  we s e t  P y ( ~ ) ~ P ~ ( ~ ) .  Th i s  i s  e x a c t l y  t h e  d e f i n i t i o n  
t h a t  was used  in  [ 1 2 ] . ~  I f  mapping  T s a t i s f i e s  c o n d i t i o n  d) o r  i f  f u n c t i o n  ~ s a t i s f i e s  
( 2 6 ) ,  t h e n  t h i s  d e f i n i t i o n  i s  e q u i v a l e n t  t o  o u r s .  I n  t h e  same manner ,  t h e  t o p o l o g i c a l  en -  
t r o p y  h y ( T )  may b e  d e f i n e d  as  h ~ ( o ) .  Th i s  i s  t h e  u s u a l  d e f i n i t i o n  of  t o p o l o g i c a l  e n t r o p y  
f o r  o n e - d i m e n s i o n a l  mapp ings  [ 1 1 ] .  

4. Topological Entropy 

I. Let Y be an arbitrary (generally speaking) noncompact metric space, f:Y ÷ Y a con- 
tinuous mapping, and ¢p a continuous function on Y. Consider an arbitrary finite open cover- 
ing ~ of Y. Define on Y an outer measure m(@~,%,Z, ~),ZcY, by formula (I), and then take 

the corresponding pressure Pz (@~, ~) as in Sec. 1, No. I. Now define the topological pressure 

on the set Z corresponding to function @, by the equality P~(~)----sup Pz (~, cp), where the 

supremum is taken over all finite open coverings 0~ of Y. If Y is a subset of the compact 
metric space X and the metric of Y is induced by the metric of X one can readily show that 
P~ (cp)= Pz(~) for all ~ ~ C (X). If Y is arbitrary the last equality does not hold in gen- 
eral and Theorems I and 2 are not valid for pressure P~{~). In what follows we confine our 
discussion to the case ~----0. 

2. We call topological entropy of the mapping f of the (noncompact) set Y the quantity 
h*(Y, f) = P~(0). In [2] Bowen gave a different definition of topological entropy. We recall 
it here. Let ~ be a finite open covering of Y, and let {Ei} be a family of set covering Y. 
We write {E~} ~(@~ whenever each set E i is included in some element of @~ . Set 

n~ (E~) = min {n: f~ (E~) ~ (  ~ for k = 0, t . . . . .  n - -  I and ]n (E~) "~ ~ ) .  

When ]~(E~)-~@~ for all k, we set nf(Ei) = o~. Next, let 

D ({Ed, ~,) - -  ~, exp (--)~n/(EO), 
I 

M(~, )~, Y, N)=inf{D({E~},)~): [ J E ~ Y ,  n/(EO> N }. 
{E i} i 

It is readily verified that function 7~ (@~, %, Y, N) does not decrease with the growth of N, 
which guarantees the existence of the limit 

(0~, X, Y) = lira ~ / ( ~ ,  ~, Y, N) .  
hr-*¢o 

F u r t h e r ,  i t  i s  r e a d i l y  v e r i f i e d  t h a t  ~ ( ~ , ~ , Y ) ,  as  a f u n c t i o n  o f  X, e n j o y s  t h e  f o l l o w i n g  
p r o p e r t i e s :  t h e r e  i s  a h0 such t h a t  m(~,~,Y)----O f o r  X > ~0 and ~ (~ , ,  ~,Y)---- ~ f o r  ~ < ~0. 
Now set 

h(~ ,  Y, 1) = inf {~: ~ (~, ~, Y) ----- 01, 

(Y, l)  = sup h (~ ,  Y, 1), 

where  t h e  supremum i s  t a k e n  o v e r  a l l  f i n i t e  open c o v e r i n g s  ~ of  Y. 

P r o p o s i t i o n  4.  h*(Y,  f )  = h(Y, f ) .  

Proof. Let us show that h* (@~, Y, ]) ---- h (6~, y, ]) for every finite covering ~ of Y. 

I) Suppose that %~(~, Y,I). Then there exists a collection of sets {E i} covering Y 
such that D({Ei} , X) < I. Now attach to each E i with nf(Ei) < oo the set Y(UI), where UZ = 
{U i, i . -- -- .... Um(ul )} is a collection with the properties m(U i) = nf(Ei) and F(E~)CU~ for k = 

0, l ..... m(U1). Also, attach to each Ei with nf(E i) = oo the set Y(ui), where_Ui = 

{U i ..... Ui(ui) } is a collection with the properties E~ C Y (U ~) and exp (--~m (Ui)) ~ exp (--i). 

~Note, however, that for arbitraryfunctions q~all results in [12] were established under condi- 
tion (26), i.e., when the two definitions are equivalent. In this case, in [12] are described 
the ergodic properties of measure ~. 
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Then it is readily checked that m(@~, %, Y, 0) •D ({Ei}, ~) ~u~ exp (--i)<oo . Therefore, 

h* (@~, Y, ]) = P~ (~, 0) < ~, and consequently h* (@~, Y,/) ~ h-(~, Y, f}. 

2) Suppose that ~ > h*(Y, f). Then for every N > 0 there is a collection r~c~@~f(@~), 

such that I) m(U) ~> N for all U~F~; 2)Ycve[JrzcY(/~) ; 3) ~, exp(--~m(U))<oo. 
u~p N 

Set E(U)_ = Y(U). Then clearly nf(EU)) >I m(U) ~> N. It is readily checked that the family 
of sets E(U) covers Y and 

D ({E (U)}, ~.) ~< ~ exp (--~.nt(E (U))) ~< ~, exp (--tm (U)) < c~. 
u_ErN _verN - -  

Therefore, ~ (~, Y, ~) < 0¢ , whence h (~, Y, ~ < % , which means that h (~,, Y,/) < h* (°k, Y, ]). 
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