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COMPLETE INTEGRABILITY OF ORDINARY DIFFERENTIAL
EQUATIONS ON SUPERMANIFOLDS

V. N. Shander UDC 517.91

We say that an ordinary differential equation is completely integrable [2] if its solution can actually be
constructed, i.e., it can be obtained by a finite number of algebraic operations, changes of coordinates, integra-
tions, and computations of partial derivatives,

1. Let .# be a supermanifold, & —time, I—the ideal generated by all the uneven functions in ¢* (%), and
write Vect, M ={DeVect MXT |D | )= 0k

THEOREM 1. Suppose that p,,D: = Vect, # satisfy D, =Damod I* Vect,#, where p(Dj) = 0(1) if
dim & = (1, 0) (respectively, if dim & = (1,1)), and let ¢; be the solution of the diiferential equation corresponding
to Dj. Then, from a given ¢, one can construct ¢,, and conversely.

COROLIARY. The integration of an even field D on .#"* reduces to the integration of the corresponding
(see [2]) field 7D on the underlying manifold M and to that of a system of linear, nonautonomous equations on RS,
In particular, the differential equations on ®%s and %.° are completely integrable. The integration of the Hamil-
tonian system defined by the Hamiltonian H with respect to the even form Zap;ay; + Ze g2, where g = +1, reduces

to the integration of the system defined by the Hamiltonian 7H with respect to the form 2 dpidg: and to that of a

system of linear nonautonomous equations having the matrix (aij), where D= 7T(D)+2aij};iaig.m0d 2, and £ are the
uneven coordinates on .. 4

Recall that the integration of an uneven equation having (1, 1)-dimensional time reduces to the integration
of an even equation [2].

As examples of systems to which the theorem and its corollary apply, we may take dynamical systems on
the orbits of the coadjoint representations of supergroups for which all invariant polynomials on their Lie super-
algebras are even (such are the simple Lie superalgebras forming the series sl, osp, SH(0| 2n), and the corre-
sponding Kac-Moody superalgebras; the corresponding dynamical systems are the super-Liouville system, the
(p, q)-dimensional top, the heavy superbody, and their generalizations [3, 4].

Let us note that the above mentioned linear system of nonautonomous equations can be solved by applying
the T~exponent, and in this way one can extend the range of applicability of our theorem to all systems having
an integrable underlying system.

2. If £du;dé; is an uneven form, then the field 7D on the underlying manifold corresponding to an uneven
Hamiltonian H=Z£;f; mod I3, has the absolutely general form Zf; (u) 8/8u;, and the integration of the field D re-
quires special methods.
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Let . be a supermanifold with canonical form w, and let {,} be the corresponding bracket. A function f is
said to be a first integral of the system with Hamiltonian H if {f, H} = 0. The functions f,,...,f, are said to be
in involution if {fj, f;} = 0 for all i, j.

THEOREM 2 (Analogue of Liouville's Theorem [1]). On the supermanifold .#™°, r+s =2n, assume that a
Hamiltonian system has n first integrals £,,..., fn which are in involution and such that df,,...,df,, are linearly in-
dependent at the point m = .#. Then there exists a neighborhood %= m with coordinates fl,...,fn, Zisvees Eno and,
in addition w = Zdf; dg;.

Proof of Theorem 1. The equalities D (¢f — ¢3) = 0mod I* Vectz it and ¢f — g5 |-=0 (see [2] for the defini-

tion of the field p_.) imply that ¢} = @3 modI?. Set ¢f = (L+ A) @], where 4:C> (#xJ) ~ C* (MXT) is an opera-
tor. Then the equation satisfied by A has the form (1 -+ 4) ¢F (D1 — Da) (¢ = [D, 4].

For our purpose it is enough to define the action of the operator A on ¢~ () inductively, and construct
A; =A mod I, starting with A, = 0. Set AD= @} (D;~D,) (¢{)~!. Then AD (¢™ (#) © T and (1 +4)AD =D 4 on
c® (), whence D Ay =(1+A;j+Aj;—A)xAD= 1+A)AD modI**! and Ajyqis found by integration; A =Agq., .

Proof of Theorem 2. Let % = %’ x? be a neighborhood of the point m, such that the given first integrals
fi,.0, £, form a system of coordinates on %7, and let hy,..., h, be coordinates on . Since w is nondegenerate,
the operator 4 :Vect % —» @%,4,D = i (D) o is an isomorphism. The collections {8/8f,,...,8/8f,} and {Di =A(;1(df_i),
1=1i=n} consists of weakly nondegenerate vector fields (the first by hypothesis, and the second due to the in-
vertibility of the operator A, ). These vector fields are actually all linearly independent (because the equality

Zkia/afi = Z‘.k!lDi =D implies D(fj) = Ek']-{fi, f:}=0and D(hy) = Ekiahi /8fi) and so they form a basis in Vect %#. By

the Poincaré Lemma for supermanifolds, w = dl, where [ = Z (ajdf; + bydhj). Define d' as the ¢*(%) -linear ex-
tension of the differential d from ¢ (#*)to €™ (%) @ (2*) @ (%); and the set Il = Zbidh; and w'=d'l'. Since i(Dj) =
w = dfj and i(8/8fj)w' =0, we have w'=0; thus I' =d'® = Zaé/ahidhi and [ =d&é + Z(ai~8<1>/8fi)dfi. We conclude that
w= Edfidgi, where g; = ai—ad)/afi, and the fact that w is nondegenerate shows that f,...,{,,, g,..., g, is a system
of coordinates.

The Corollary follows by observing that D = 7D + Zaj; (u)gia/agj modI? whenever p(D) = 0.

Theorem 2 applies, for example, to dynamical systems on the orbits of the coadjoint representation of the

] =0}, where = — (f (1)”) . The

supergroup @ (»), that represent the functor C~Q(n; C) = {X€ Mat@n; C)|[X,

invariant polynomials on 2 (n* are Hy = otr XK, where otr (‘; ﬁ) = tr B. The choice H, yields an exotic analogue

of the Toda lattice. Other examples are connected to the reduction 2 (n) — Po (0]2x 4+ 1), [5] and to the Kac— Moody
superalgebras corresponding to the series © and Po.

I am grateful to D, A. Leites for formulating this problem and for his help.
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