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ABSTRACT. The difficulty of making social choices seems to take on two forms: one 
that is related to both preferences and the method used in aggregating them and one 
which is related to the preferences only. In the former type the difficulty has to do with 
the discrepancies of outcomes resulting from various preference aggregation methods 
and the computation of winners in elections. Some approaches and results which take 
their motivation from the computability theory are discussed. The latter 'institution-free' 
type of difficulty pertains to solution theory of the voting games. We discuss the 
relationships between various solution concepts, e.g. uncovered set, Banks set, Cope- 
land winners. Finally rough sets are utilized in an effort to measure the difficulty of 
making social choices. 
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1. I N T R O D U C T I O N  

That different voting systems may produce different winning alter- 
natives for fixed voter opinions and voting strategies is not a new 
observation (see, e.g. Riker, 1982). Each voting system has a back- 
ground intuition of what constitutes a good social choice. For example, 
the plurality system is based on the idea that no alternative should be 
regarded as best or socially most acceptable unless it gets more votes 
than any other alternative when every voter can vote for one and only 
one alternative. The fact that, given fixed voter opinions, two systems 
end up with different winning alternatives can thus be regarded as an 
indication that the underlying intuitions are different. 

It would seem natural that the more often the winning alternatives 
of voting systems differ, the more different are their underlying 
intuitions. The frequency of different choice sets depends, however, on 
the distribution of voter opinions, i.e. preference profiles. Generating 
the (connected and transitive) preference ordering of each voter over 
the set of alternatives randomly and independently of the preference 
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orders of other voters, one obtains an impartial culture (IC, for 
brevity) preference profile. Given the number of alternatives and the 
size of the electorate the relative frequency of the occurrences in which 
two voting systems produce different winning alternatives gives an 
estimate of how different the intuitions underlying those systems are 
(see Nurmi, 1988a). 

One of the difficulties of making social choices is that all procedures 
in use have some plausible and some implausible properties (see e.g. 
Richelson, 1979, and Riker, 1982). So the distinct choice sets of 
procedures are not due to the fact that some procedures are bad and 
others good, simpliciter. One could argue, however, that some of the 
difficulties of social choices are procedure-related, i.e. can only be 
discussed when both the choice situation and the preference aggrega- 
tion procedure are given. I shall call this type I difficulty. 

On the other hand, there are circumstances in which all reasonable 
systems agree, i.e. produce identical choice sets. In those circum- 
stances, thus, the choice of the procedure is of no consequence. An 
example of such a circumstance would, of course, be a profile where 
each voter has an identical preference ordering over the alternatives. 
A contrast to this profile would be one in which no pair of voters 
would agree on the rank of any alternative, i.e. each alternative would 
get a different rank from each voter (e.g. the Condorcet voting 
paradox profile). The contrast between these two types of profiles 
would seem to suggest that an aspect of the difficulty of making 
social choices is related to profiles only. I shall call this type II diffi- 
culty. 

In this article I shall discuss both types of difficulty of making social 
choices. Type I difficulty is first focused upon. I review some computer 
simulations pertaining to the discrepancies of the choice sets of various 
procedures in various cultures. I shall also discuss results on the 
computational complexity of some procedures. Thereafter, I shall look 
at type II difficulty and start with a description of the relationships 
between various solution concepts in tournaments. I shall then try to 
outline an approach to type II difficulty, viz. one based on the theory 
of rough sets (see Pawlak, 1982). Finally, some concluding remarks are 
presented. 
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2. TYPE I DIFFICULTY 

2.1. Computer Simulations 

The probabilistic and simulation studies of voting procedures can be 
divided into two groups: (1) those producing probability estimates of 
the criterion violations of procedures; and (2) those looking at the 
probability that various procedures end up with different choice sets. 
Of the former group the best-known are results on the Condorcet 
efficiency of various voting procedures (see e.g. Merrill, 1988) and on 
the probability of cyclic majorities (Niemi and Weisberg, 1968; 
Gehrlein, 1981; Gehrlein, 1983; Berg, 1985). 

The computer simulations of ICs shed some light on what factors 
make social choices difficult in the sense of increasing the probability 
of different choices being made by different procedures. Obviously, if 
procedures end up with identical choices for a fixed preference profile, 
then the social choice setting is not difficult, whereas if the choice 
depends on the method chosen, then the setting is difficult. Now, in 
ICs various factors seem to be accompanied with the probability of 
discrepancies in the choice sets (see Nurmi, 1988b, 1990, 1992). 

First of all one would expect that Condorcet extension methods 
would have more discrepancies with non-Condorcet extension methods 
than with each other. It will be recalled that a method is a Condorcet 
extension if it aiways chooses the Condorcet winning alternative 
whenever one exists. A Condorcet winning alternative or Condorcet 
winner is an alternative that defeats all the other alternatives with a 
simple majority of votes, provided that each voter votes according to 
his/her (hereinafter his) preferences. An example of a Condorcet 
extension method is Copeland's rule. To determine the winner among 
k alternatives, one performs for each alternative x all (k - 1) pairwise 
comparisons and computes, on the basis of the preference profile, how 
many alternatives x defeats by a simple majority. Thus, one obtains 
the Copeland score C(x) of x. The alternative(s) with the highest score 
is (are) Copeland winner(s). Another Condorcet extension is Nanson's 
method. It is an elimination procedure based on Borda scores (see 
Nanson, 1883; Niou, 1987; Nurmi, 1989, for various interpretations of 
the method). The version we shall discuss here eliminates at each stage 



102 H A N N U  N U R M I  

the alternative that has the smallest Borda score. After the elimina- 
tion, new scores are computed for the remaining alternatives and the 
procedure is continued until only one alternative remains. 

Plurality voting, Bordal count, plurality runoff method and Hare's 
method, on the other hand, are not Condorcet extensions, i.e. they 
may exclude a Condorcet winner from the choice set. Hare's method is 
the single transferable vote (STV) method when only one candidate is 
elected. 

Tables I and II report the discrepancies expressed in percentages 
between Hare's system, on the one hand, and plurality runoff and 
Nanson's method, respectively, on the other (Nurmi, 1992). Table I 
thus gives us an idea of what is the percentage of different choices 
between two non-Condorcet extension methods, whereas Table II 

TABLE I 

The Number of Voters 

C 5 7 11 15 25 51 101 151 201 301 999 
A 
N 3 0 4 1 0 2 0 0 0 0 0 0 
D 4 6 13 10 11 11 11 12 12 12 12 13 
I 5 15 18 17 18 19 20 21 22 21 21 22 
D 6 22 22 23 25 26 27 29 29 28 29 30 
A 7 29 26 28 29 31 32 33 34 35 35 36 
T 
E 13 48 45 45 46 50 53 54 56 55 57 57 
S 15 52 50 46 52 54 56 59 59 59 61 63 

TABLE II 

The Number of Voters 

C 5 7 11 15 25 51 101 151 201 301 999 
A 
N 3 5 8 6 7 7 7 7 7 7 7 7 
D 4 11 14 13 14 14 14 14 14 14 13 14 
I 5 19 21 19 19 20 21 20 19 20 19 20 
D 6 24 26 25 25 25 25 25 25 25 24 25 
A 7 29 30 28 29 29 29 29 30 29 30 29 
T 
E 13 63 66 65 66 65 51 63 64 52 53 53 
S 15 69 72 72 72 72 54 70 70 55 56 56 
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indicates the discrepancies between a non-Condorcet extension 
(Hate 's  system) and a Condorcet extension method. Both tables are 
based on the IC assumption. Moreover, ties are broken randomly in all 
simulations. All estimates are based on 10 000 IC elections. 

The first impression one gets from these tables is that the dis- 
crepancies are roughly of the same order of magnitude. However, the 
discrepancies in Table I are generally somewhat smaller than in Table 
II. A more important observation is that the discrepancies tend to 
increase with the number of alternatives. Increasing the size of the 
electorate does not have the same effect on the discrepancies over the 
range of electorates focused upon in the above tables. 

The IC assumption is, of course, very restrictive if one wishes to 
come up with 'realistic' probability estimates. This, however, is not our 
intention. IC serves as a benchmark in assessing the impact that 
various groupings have on discrepancies. In bipolar cultures (BC, for 
short) it is assumed that there are two groups of voters, each 
comprising 1/3 of the electorate and having diametrically opposing 
preferences. Within each group the preferences of individuals are 
identical. The rest of the electorate is an IC. 

Some of the discrepancy estimates remain largely unaffected when 
the IC assumption is replaced by the BC one (see Nurmi, 1992). This 
is, for example, the case with Hate's and Nanson's systems. However, 
the discrepancies between the plurality runoff and Hate's systems 
almost vanish when BCs are considered. 

BC is, of course, a special type of culture. More reliable estimates 
concerning the robustness of the IC results can be obtained by making 
minor modifications to the IC assumption, such as assuming that there 
is a group of voters with identical preferences that consists of 10% of 
the electorate while the remaining 90% form an IC. Let us call these 
cultures UPC cultures. 

The effects of replacing ICs with UPCs on the discrepancies of 
various voting procedures are considerable. Roughly speaking, in large 
electorates the discrepancies between voting systems disappear. In 
particular, this happens to Hate's system vis-g~-vis plurality runoff and 
Nanson's methods (Nurmi, 1992). Thus, a fairly small perturbation of 
the IC assumption brings about a qualitatively different choice be- 
haviour in preference aggregation systems (see Tables III and IV). 
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TABLE III 

The Number of Voters 

C 5 7 11 15 25 51 101 151 201 301 999 
A 
N 3 1 0 0 0 0 0 0 
D 4 11 10 6 4 3 1 0 
I 5 18 16 11 7 5 2 0 
D 6 24 22 16 11 8 4 0 
A 7 28 27 19 14 I0 5 0 
T 
E 13 46 45 34 25 18 10 0 
S 15 50 46 35 26 20 11 0 

TABLE IV 

The Number of Voters 

C 5 7 11 15 25 5t 10t 151 201 301 999 
A 
N 3 7 6 5 4 3 2 0 
D 4 13 13 10 8 6 3 0 
I 5 19 17 15 11 8 4 0 
D 6 26 26 22 17 13 7 0 
A 7 32 32 28 22 17 9 0 
T 
E 13 50 50 44 37 30 19 0 
S 15 55 54 47 40 32 20 0 

T h e  c o m p u t e r  s imula t ions  referred to above thus suggest that  the 

m a i n  sources of the difficulty in making  social choices are large 

cand ida te  or  a l te rnat ive  sets and  - to a lesser ex tent  - large electorates.  

Howeve r ,  these factors lose most  of their  impor tance  in cul tures  where  

even  small  h o m o g e n e o u s  groupings  exist, su r rounded  by ICs. O n e  

could  thus argue that  the difficulty encou n t e r e d  in s imula t ion  studies 

has someth ing  to do with the under ly ing  restrictive cul ture  assump- 

t ions.  We now tu rn  to ano the r  approach to s tudying the type I difficulty 

of mak ing  social choices, viz. by looking at the computa t iona l  difficulty 

of vot ing  games.  
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2.2. Computational Difficulty of Procedures 

2.2.1. Difficulty of finding winners. The theory of computational 
complexity offers a precise way to evaluate the difficulty of various 
preference aggregation procedures. The complexity pertains to algo- 
rithms used for computing the values of functions. As preference 
aggregation methods can be viewed as functions, it is natural to look at 
their computability properties (see, e.g. Hopcroft and Ullman, 1979; 
Rogers, 1967; Salomaa, 1985, for basic concepts and results of the 
theory of computation). 

A function is (recursively) computable if there is a Turing machine 
that, given the argument of the function, computes its values. The 
basic and coarsest division of functions separates computable from 
noncomputable functions. The latter have the distinction that no 
algorithm exists for the determination of their values. A classic 
example of noncomputable functions is the halting problem. All 
distinct Turing machines can be characterized or indexed by positive 
integers. Consider an integer i, given in binary form, and function f(i) 
from positive integers to {0, 1}. The problem of whether the ith Turing 
machine computes the value of f(i), i.e. whether the ith machine halts 
after processing the input i, is undecidable. Thus, noncomputable 
functions exist. 

Of course, all voting procedures are computable in the sense that, 
given the preference profiles, the procedures determine the winners in 
finite time. An interesting problem in this context is, however, whether 
the conditions characterizing various voting procedures are sufficient to 
guarantee computability. Kelly (1988a, 1988b) discusses this problem, 
focusing on two axiomatized voting procedures, viz. the simple 
majority rule for two alternatives and the Borda count. The former 
procedure has been axiomatized by May (1952) and the latter by 
Young (1974). 

Kelly (1988a) shows that of the three individually necessary and 
jointly sufficient conditions for simple majority rule-anonymity,  
neutrality and positive responsiveness- all are needed to guarantee 
computability. The demonstration proceeds by showing that, should 
any one of the conditions not be satisfied, there would exist noncom- 
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putable functions satisfying the rest of the conditions. On the other 
hand, if all three are satisfied, the function- the simple majority 
rule - is obviously computable. 

In a similar way Kelly (1988b) discusses the consequences of 
dropping some of Young's axioms for the Borda count: faithfulness, 
consistency, neutrality and cancellation. He shows that leaving consis- 
tency aside while retaining the other conditions would allow for 
noncomputable social choice rules. The same observation holds for the 
case in which cancellation is dropped while retaining the other three 
conditions. Whether dropping the faithfulness or neutrality would have 
a similar effect on the computability is an open question. Kelly 
conjectures that if a social choice function satisfies consistency, 
neutrality and cancellation, then it will necessarily be computable. 
Similarly, he conjectures that if a social choice function is faithful, 
consistent and has the cancellation property, then it must be comput- 
able. 

Now, the above results are useful mainly in the contexts of 
axiomatized rules. They deal with properties of functions that are 
compatible or incompatible with the requirement that no noncomput- 
able choice functions be allowed. They tell us which requirements 
exclude the noncomputable functions. Of more practical nature are 
results that examine the difficulty of determining winners of elections 
from the computational complexity point of view. 

Suppose that the winner in an election is determined by the scores of 
alternatives so that the alternative(s) with the largest score is (are) 
elected. The scores may be determined by the number of first ranks 
given to each alternative, as in the plurality voting, or by the number 
of other alternatives defeated by each alternative by a simple majority 
in pairwise comparisons, as in Copeland's rule or by some other 
method. Given a preference profile, an alternative set, a fixed number 
L and the scores of each alternative, one may ask if the score of a 
given alternative is less than or equal to L. 

For a Dodgson system, answering this question is an NP-complete 
problem. This has been shown by Bartholdi et al. (1989a). Dodgson's 
system is a Condorcet extension method. The Dodgsons scores are 
determined by computing for each alternative the number of pref- 
erence changes that would be needed to make it the Condorcet 
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winner. Obviously, when a Condorcet winner exists, it is the Dodgson 
winner as well. The fact that discovering whether the Dodgson score of 
an alternative is less than or equal to a fixed number L is an 
NP-complete problem means: (i) that n o  polynomial time algorithm 
for its solution is known; and (ii) that each instance of some known 
NP-complete problem is an instance of the problem related to 
Dodgson scores. (For a discussion and an extensive list of NP-com- 
plete problems, see Garey and Johnson, 1979.) In fact, the require- 
ment (i) is redundant since (ii) already guarantees that (i) holds. 

In demonstrating that the computation of the Dodgson score is an 
NP-complete problem, Bartholdi et al. (1989a) proceed by pointing out 
first that, once a tentative answer to the question of whether the 
Dodgson score of alternative is less than or equal to L has been given, 
its correctness can be checked in polynomial time. They then demon- 
strate that each instance of a problem known to be NP-complete can 
be translated in polynomial time into an instance of the problem of 
computing the Dodgson scores. In this case the NP-complete problem 
is that of exact cover by 3-sets which Garey and Johnson (1979) have 
shown to be NP-complete. An instance of this problem is the 
following: given a set X of objects with cardinality of 3p (where p is an 
integer) and a collection Y consisting of 3-element subsets of X, is 
there a subcollection Y' of Y that would cover X in the sense that each 
element of X appears in one and only one element of subcollection 
Y'? For each instance of this problem there exists a preference profile 
such that, given a solution to the exact cover by the 3-sets problem, the 
Dodgson score problem can be computed in polynomial time. 

The computation of Kemeny scores is NP-complete as well. This has 
also been shown by Bartholdi et al. (1989a). Given a preference 
profile, Kemeny's rule produces a collective preference relation that 
can be obtained from the individual voter's preference relations with 
minimum number of pairwise preference changes. It is thus rather 
similar in spirit to Dodgson's rule, but while the latter looks at the 
number of preference changes needed to make an alternative the 
Condorcet winner, Kemeny's rule focuses on the entire preference 
relation. 

The NP-complete problem, which can be translated into the problem 
of computing Kemeny scores, is known as the feedback arc set 
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problem (Garey and Johnson, 1979): given a directed graph with R 
nodes and a positive integer L, is there a set of at most L edges that 
includes at least one edge from each cycle in the graph? 

Prima facie, it is somewhat strange that computing the Dodgson and 
Kemeny scores, and thus determining the winners, is computationally 
intractable. After all, one could envision elections where these meth- 
ods are used. For fixed numbers V and A of voters and alternatives, 
respectively, one can impose a constant upper bound on the number of 
computations needed to determine the scores (see Bartholdi et al., 
1989a). Given a preference profile, a fixed alternative x can be in one 
of A positions in a fixed voter's preference order. Thus, x can be in A v 
positions in the preference profile as a whole. For each preference 
profile, one can form an n x n matrix of pairwise comparisons with 
(i, j)  = n#, the number of individuals preferring the alternative repre- 
sented by row i to the alternative represented by column j. In 
determining x's Dodgson score one identifies those columns y whose 
entries on x's row are no larger than V/2. The necessary changes have 
to be made in the preferences of those individuals who prefer those y's 
to x. Let us denote this subset of V by Vy x . One then determines those 
individuals in Vyx whose preferences can be changed from yPx to xPy 
with minimum number of secondary changes. Continuing in this way, 
one eventually ends up with a modified preference profile where x 
defeats y with a minimal simple majority. Clearly, there is a constant 
upper limit in the number of computations needed to determine the 
Dodgson scores. 

The same is true of the Kemeny scores. Given a fixed preference 
profile, one can enumerate the A! potential collective preference 
relations, and for each one of them one may determine how many 
individuals have to make binary changes in their preferences to render 
the preference order unanimous. 

Now, even though an upper limit can be imposed on the number of 
computations needed to determine Dodgsons and Kemeny scores for 
fixed preference profiles, it is easy to see that the number of computa- 
tions can be huge. Moreover, this number tends to increase more 
rapidly with the increase of the number of alternatives than with the 
increase of the number of voters. The results on computational 
complexity are, however, typically 'worst case' ones. In other words, 
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they pertain to situations of maximal computational effort. They are 
thus not representative samples of the amount of computational effort 
one has to expend in typical circumstances. For example, in preference 
profiles where more than 50% of the voters position the same 
alternative to the first rank, it is eo ipso the Condorcet winner and can 
thus immediately be spotted. 

2.2.2. Difficulty of  resorting to strategic behaviour. The computational 
complexity considerations pertain to the difficulty of making social 
choices in other respects as well. In particular, issues of strategic 
behaviour of agenda-setters and voters have been discussed in the light 
of the amount of computation one needs in order to control the 
election (see Bartholdi et al., 1989b, 1989c; Bartholdi and Orlin, 1991). 
In this context the computational complexity is rather a virtue than a 
vice of procedures. The more difficult it is for the voters to benefit 
from strategic misrepresentation of their preferences, the more likely it 
is that they vote according to their true preferences. And this is often 
the very rationale of resorting to voting. Similarly, the more difficult it 
is for the agenda-setter to benefit from strategic behaviour, the less 
likely he is to resort to such maneuvefings. 

The difficulty of strategically misrepresenting one's preferences has 
been studied on the basis of empirical data by Chamberlin (1985). 
Hate 's  system, i.e. STV for a one-member constituency, turns out to 
be very resistant to manipulation. The amount of information about 
the preference profile as a whole one needs to benefit from preference 
misrepresentation is typically considerably larger than in positional 
systems, e.g. plurality voting (see Nurmi, 1987, pp. 118-124). Bar- 
tholdi and Orlin (1991) give an exact account of the intuitive difficulty 
of preference misrepresentation in Hate's system: the problem of 
discovering whether there is an effective preference order to get one's 
favourite elected is NP-complete. The known NP-complete problem 
used in the demonstration is 3-cover (Garey and Johnson, 1979). In 
this problem one is given a set A with cardinality a and a family of 
3-element subsets of A: A 1 , . . . ,  A~. The problem is to determine if 
there exists a subfamily of sets A i of a/3 members such that their 
union coincides with A. 

An equally important, if not more important, problem than the 
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strategic misrepresentation of preferences for democratic institutions is 
the possibility agenda manipulation. Although the theoretical results of 
social choice theory suggest that the possibilities are ubiquitous (see 
e.g. Riker, 1982) and also some laboratory evidence seems to lend 
support to this contention (see Plott and Levine, 1978), the computa- 
tional requirements for successful agenda manipulation may be 
prohibitive. Bartholdi et al. (1989c) give an interesting discussion of 
two types of voting procedures from the point of view of how much 
computational effort is needed to successfully control agendas using 
some particular techniques of manipulation. The procedures are: (i) 
Condorcet extensions in profiles where a Condorcet winner is assumed 
to exist; and (ii) the plurality voting method. 

The specific techniques discussed are: (1) those used in modifying 
the alternative set; and (2) those used in modifying the set of voters. It 
turns out that Condorcet extension methods are computationally 
resistant to manipulations through adding and deleting voters or 
through partitioning of the voter set, whereas the plurality method is 
computationally resistant to adding and deleting alternatives or parti- 
tioning of the alternative set (Bartholdi et al. ,  1989c). Moreover, 
Condorcet extensions are immune to manipulation through adding 
alternatives in profiles where a Condorcet winner exists as obviously a 
new alternative may possibly defeat the Condorcet winner, but it 
cannot make any other 'old' alternative the Condorcet winner. Delet- 
ing alternatives, on the other hand, may succeed without excessive 
computations in rendering the desired alternative the Condorcet 
winner. 

Manipulating the plurality procedure through adding suitable voters 
is, of course, computationally easy, as is the deletion of undesired 
voters. In contrast, adding voters in Condorcet extension methods may 
have surprising overall results, even though in some pairwise contests 
the added voters might make the desired change in majority pref- 
erence relation. Thus, the Condorcet extension methods are computa- 
tionally difficult to manipulate through adding or deleting voters. 

Computational complexity considerations would thus seem to affect 
the choice theoretic properties that voting procedures have. If the 
determination of winners in elections is computationally difficult, then 
it is not advisable to utilize such methods in large scale elections. In 
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interpreting those results one should, however, bear in mind that they 
pertain to worst case situations. Thus, even in elections with large 
numbers of candidates and voters, the determination of winners is not 
necessarily or even typically exceedingly difficult. As was already 
pointed out above, the determination of winners of any Condorcet 
extension m e t h o d - b e  it Kemeny's of Dodgson's or some other 
m e t h o d -  is very easy in elections where one candidate is ranked first 
by more than 50% of the voters. With a fixed number of voters and 
candidates, the amount of computations can always be bounded by a 
constant which, however, may be huge. 

It is also worth reiterating that computational complexity need not 
be an especially bad thing, if it pertains to operations needed to 
manipulate either by preference misrepresentation or by agenda 
manipulation. In these circumstances it would, ceteris paribus, be 
advisable to utilize procedures where these types of strategic behaviour 
are computationally difficult. 

3. T Y P E  II  D I F F I C U L T Y  

The above considerations on the difficulty of making social choices 
stem from the use of various preference aggregation procedures. In 
this section we focus on what have been called 'institution-free' 
properties of social choice (McKelvey, 1986). In other words, we shall 
focus on the relationships of various solution concepts of voting games, 
regardless of the procedures that could be used. 

3.1. Definitions and Solution Configurations 

The most obvious requirement to be imposed on a social choice is that 
it results in a Pareto-undominated outcome. In other words, if x is 
chosen from the set A, then it should not be the case that there exists a 
y in A that would be regarded as at least as good as x by all voters and 
strictly better than x by some voters. This requirement is in a way 
minimal and yet there are procedures that do not rule out the selection 
of Pareto-dominated outcomes. One example of such a procedure is 
the amendment method, widely used in contemporary legislatures (see 
e.g. McKelvey, 1976; Kramer, 1977). However, the conditions under 
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which the Pareto requirement is violated include the assumption that 
all voters vote myopically in all phases of the process. 

That the Condorcet winner should be elected whenever it exists, is 
often regarded as almost equally obvious requirement. It has the 
obvious virtue of being unique. In situations where majority undefeat- 
able alternatives exist, even though no alternative is the Condorcet 
winner, the subset consisting of them-cal led  the c o r e - i s  almost 
equally natural solution set. In contradistinction to the set of Pareto- 
undominated outcomes, the core may be empty. 

One generalization of the Condorcet winner concept leads to the top 
cycle set (Miller, 1977). It consists of the smallest set T of alternatives 
that has the property that each alternative in T defeats each alternative 
outside T. Obviously this set reduces to the Condorcet winner or core 
when these solutions are nonempty. However, it is possible that there 
exists a majority cycle through several alternatives that form the set T 
with the above defining properties. None of the alternatives in T is 
then undefeated. Thus, the core is empty and yet the top cycle set 
exists. 

Although the Condorcet winner is necessarily included in the Pareto 
undominated set, its generalization- the top cycle s e t -  may contain 
alternatives that are not included in the Pareto set (see Banks, 1985; 
Miller et al., 1986). The following 3-person preference profile over 
{a, b, c, d} illustrates this possibility (Nurmi, 1988b): 

person 1 person 2 person 3 

a d b 

b c d 

d a c 

c b a 

Here the top cycle consists of a, b, c and d and yet c is Pareto 
dominated by d. 

Both the top cycle and Pareto sets are often far too large to be of 
much help in specifying which alternatives should be chosen. Nor do 
we have much by way of institutional behaviour theory that would tell 
us which kinds of mechanisms would lead to outcomes in those two 
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sets. The myopic voting assumpt ion-  as was pointed out a b o v e -  in 
fact 'predicts' that the social outcomes are by no means restricted to 
those sets. In this respect a much more useful solution concept is that 
of uncovered set defined by Miller (1980). Alternative x covers 
alternative y -  in symbols x C y -  if x defeats by a simple majority 
everything that y defeats by a simple majority. If all preferences are 
strict, then xCy implies that x defeats y. 

The set UC of uncovered alternatives, i.e. those alternatives that are 
covered by no other alternative, contains all outcomes ensuing from 
sophisticated voting (Shepsle and Weingast, 1984). However, UC is in 
general too large for a complete characterization of those outcomes. A 
subset of UC currently called the Banks set contains all the outcomes 
that can ensue from sophisticated voting and only those outcomes 
(Banks, 1985). Thus we have a solution set and the corresponding 
institutional behaviour theory. 

The Banks set is defined by the following algorithm. Given a 
preference profile, choose any alternative, say x, and find out whether 
there is another alternative, say y, that defeats x by a simple majority. 
If the answer is no, then the Banks chain starting from x also ends at x. 
If such a y exists, then one determines if there is an alternative, say z, 
that would defeat all the previous alternatives in the chain starting 
from x - i.e. x and y. Supposing that no such z exists, we conclude that 
the Banks chain starting from x has the endpoint y. Otherwise, one 
continues looking for other alternatives that defeat all the preceding 
ones until no such alternative exists. The last one found is then the end 
point of the Banks chain starting from x. 

A Banks chain is constructed from each alternative. The Banks set B 
consists of the end points of all Banks chains. It is always a subset of 
UC. For alternative sets with at most six elements UC = B (Miller et 
al., 1986). For larger sets B may be a proper subset of UC (see 
Moulin, 1986). 

Another  subset of UC, viz. the set of Copeland winners CW, is also 
of some interest as a solution concept. It turns out that with small 
alternative sets the B and CW sets coincide. However, when the 
number of alternatives is at least 13, B and CW do not necessarily 
have common elements (Moulin, 1986). However, they both remain 
within UC. Thus the configuration of the above solution concepts can 
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be depicted as in Figure 1, assuming that the discrepancies between 
them are maximal (Nurmi, 1988b). 

3.2. Rough Sets and Approximate Solutions 

Suppose that - given any preference profile - one has an intuitive idea 
of which alternatives should necessarily belong to the social choice set. 
Suppose, moreover, that one has a similar intuition concerning the set 
of alternatives that could possibly be included in the social choice set. 
The former set could for example consist of alternatives that most 
voting systems would choose whenever they exist. The latter set, in 
turn, could contain alternatives that one would not outright exclude 
from further consideration, even though one would admit that the set 
may often include implausible alternatives. These two intuitions would 
enable us to approach the difficulty of making social choices from the 
perspective provided by the theory of rough sets introduced and 
elaborated by Pawlak (1982, 1984; see also Slowinski and Stefanowski, 
1989). More specifically, it would be possible to construct an approxi- 
mate classification of outcomes (alternatives) and define a measure of 
the difficulty one is confronted with when starting from a fixed 
preference profile and alternative set. 

Consider a set A of alternatives together with a binary relation S 
defined over A. The pair (A, S) = X is called the approximation space. 
The relation S is called the indiscernibility relation. Thus, aiSa i means 
that ai cannot be discerned from aj. S is assumed to be an equivalence 
relation and the classes of the relation are called elementary sets. 
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A definable set in X is any finite union of elementary sets. Consider 
now a subset Y of X. Y's upper approximation is the smallest definable 
set in X that contains Y and is denoted by y U  Y's lower approxi- 
mation, yL,  in turn, is the largest definable set in X which is contained 
in Y. Finally, the boundary of Y in X is defined as YV - yL. 

Obviously, the smaller the boundary of Y in X, the more accurate is 
the approximation. Pawlak (1984) defines the following measure of 
accuracy for the set Y in X: 

ux(Y ) = card(Y L) / card(YU). 

Clearly, the values of ux(Y ) are in the interval [0, 1]. When ux(Y ) = 1, 
the accuracy is perfect, while ux(Y ) = 0 is the case when no element of 
A necessarily belongs to Y. 

Let us apply these ideas to the social choice problem. Suppose that 
we have several plausible solution concepts, e.g. uncovered set, Banks 
set and Copeland winners. We could then view the union of these sets 
as the upper approximation yU of a good social choice. In other 
words, we could maintain that no alternative outside this union will be 
eligible. We could rest assured that we will not be left empty handed: 
these sets are never empty. On the other hand, our intuition could 
dictate that the intersection of these sets be the lower approximation 
yL of a good choice: the set of alternatives satisfying the requirements 
of all these solutions would necessarily qualify as the social choice. 

One could then use vx(Y)= 1 -  ux(Y ) as the measure of the 
difficulty of making social choices. This measure reflects the dis- 
crepancy between the various intuitions concerning plausible choices: 
the more different the solution concepts, the smaller the value of 
ux(Y ) and, consequently, the larger the value of vx(Y ). 

The measure is, of course, no better than the solution concepts used 
in its construction. As the main dividing line between various solutions 
seems to distinguish positional from binary solutions, a plausible 
measure of the difficulty would take solutions from both classes, e.g. 
Borda winners and Copeland winners. 

4. C O N C L U D I N G  R E M A R K S  

In the preceding we have reviewed approaches to difficulty of making 
social choices. As the numerous negative results of the social choice 
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theory seem to cast doubt on an effort to find optimal social choice 
procedures, it is worthwhile trying to characterize the situations in 
which one could expect the existing procedures to work without 
anomalous results. The first approach discussed above looks into the 
contexts where all 'reasonable' procedures almost always end up with 
identical outcomes. It turns out that even a relatively small degree of 
consensus among the voters is sufficient to make the discrepancies 
between methods vanish. This is perhaps what one would intuitively 
expect. The simulation results referred to above are intended to show 
that the various culture assumptions underlying various probability 
estimates should be taken seriously and the assumptions subjected to 
sensitivity analysis. 

Looking at the difficulty of making social choices from a more exact 
angle, viz. from the computational complexity perspective, reveals that 
some procedures may require an astonishing amount of computational 
effort for the winners to be determined. Although in practice these 
types of results just Show how quickly the computational work 
increases as a function of adding candidates or voters, they also show 
that in some procedures the strategic manipulation - either in the sense 
of preference misrepresentation by the voters or of agenda control by 
the agenda setters - is much more difficult than in others. These results 
are of obvious value in institutional design, even when their worst case 
nature is appreciated. 

Viewing the difficulty from the institution-free angle leads one to 
discuss the discrepancy between different solution concepts of voting 
games. The more the solutions differ, the more difficult the decision 
situation becomes. A simple measure of the difficulty was designed in 
the preceding section. There are certainly other ways of measuring the 
difficulty, but rather than insisting on a particular measure, the main 
point is to stress that the contextual difficulty plays an important role 
in the intuitive 'success' of various methods of making social choices. 
Although voting or some other preference aggregation method is often 
resorted to just because the group members have different opinions 
about the matters to be decided, it is often recognized that the 
preferences are so different that no matter which decision will be 
made, it is bound to be viewed unreasonable by some individuals. The 
importance of measuring the decision context difficulty is precisely in 
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showing us when one should not expect the social choice methods to 
work. Every institution works within some contextual limits. When 
these are exceeded, the results are more or less arbitrary. To quote 
Ordeshook (1991): 

Put simply, there are circumstances in which constitutions ought to 'fail' and in which 
such 'failures' ought to be construed as successes. If a constitution is constructed on a 
morally corrupt fou.ndation, then success is the eventual destruction of that foundation 
and it merely remains for posterity to decide whether the method of destruction 
provided the most efficient feasible route to that end. 

The study of the difficulty in choice making situations aims at outlining 
the range of reasonable behaviour of the decision methods. 
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