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Abstract. We propose a new ring ion-trapping system, that 
is advantageous for use in frequency-standard applica- 
tions and ultrahigh-resolution spectroscopy. The ring trap 
can store a large number of ions with low susceptibility to 
the second-order Doppler effect. The ring-trap electrodes 
also form a wide-band microwave cavity. Microwave radi- 
ation trapping during the probe cycle makes it possible to 
meet the Lamb-Dicke criterion more satisfactorily than 
with an rf/dc hybrid linear trap, in which traveling micro- 
wave power is used. This technique yields an increased S/N 
ratio because the microwave probing power is absorbed 
in the fundamental mode rather than in the sidebands 
induced by ion motion in the trap. This paper presents an 
analytical model of the ring-trap system and estimates of 
the main parameters of the ring trap. 

PACS: 06.00, 07.60 

Techniques for confining charged particles in a restricted 
space have many applications, particularly in ultrahigh- 
resolution spectroscopy. Of great practical interest is the 
application of the ion-confining technique to frequency 
standards [1]. The superior performance of ion frequency 
standards is due to the isolation of the ions from other 
objects, which eliminates the frequency shift due to wall 
collisions. Furthermore, one can observe the spectrum 
with a narrow linewidth, because the interaction time be- 
tween ions and the probe field can be long. The highest Q 
values of hyperfine transitions (4 x 1011 for 171yb+ [2] 
and 1 x 1012 for 199Hg+ [3]) have been obtained using 
the ion-trap technique. However, the second-order 
Doppler effect is the main limiting factor for the accuracy 
of atomic clocks based on ion traps, especially if a radio- 
frequency (rf) trap is used to store the ions. This effect is 
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due to rf heating whose magnitude increases as the density 
of the ions in the trap increases. A reduction of the rf- 
heating effect can be obtained by lowering the number of 
trapped ions, but this leads to a lower Signal-to-Noise 
(S/N) ratio of the spectrum. 

Recently, Prestage et al. developed a hybrid rf/dc linear 
trapping system that can confine 20 times as many ions as 
an ordinary 3-dimensional Paul trap with the same 
second-order Doppler effect [3-5]. Use of this trapping 
technique in the 199Hg+ frequency standard reduced the 
instability to less than 2 × 10 -Is averaged over 24000 s 
[3]. 

We propose a new ring-type ion-trapping system that 
consists of two coaxial cylindrical electrodes enclosed by 
two flat lid electrodes. Ions of the required e/m ratio can 
be stably trapped if a specific combination of ac and dc 
voltages is applied to the ring trap electrodes. The ring trap 
electrodes also form a microwave cavity. We show that it 
is possible to increase the S/N ratio by producing an 
appropriate microwave mode in the ring-trap cavity. The 
combination of ion trapping and microwave properties of 
the ring-trap model permits ultrahigh-resolution spectro- 
scopic investigations in the microwave region because of 
a highly developed optical microwave double-resonance 
technique [1-6]. 

The ring trap (consisting of 4 bar electrodes) was origi- 
nally proposed for the investigation of light atomic ions 
using an L -  C tuned circuit [7]. Presently, this ring- 
trapping system is being used for ion cooling and crystalli- 
zation experiments [8]. Simultaneous trapping of both 
ions and microwaves in the conventional Paul trap has 
also been investigated [9]. In this paper, we present the 
first proposal to trap both microwave radiation and ions 
in the ring trap and apply it to a frequency standard. As 
an example, we present an analytical model of the ring 
trap, trapping 199Hg+ ions and observing the hyperfine 
transition at 40.6 GHz. The 199Hg+ ion seems to be the 
most promising for frequency-standard applications be- 
cause of its 

--large atomic mass, which leads to a smaller second- 
order Doppler effect; 
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--large hyperfine transition frequency, which allows use 
of a higher Q factor for the clock transition; and 

- - low sensitivity to magnetic field variations. 

1 Trapping Property of the Ring Trap 

The ring trap electrode configuration can be obtained 
geometrically by rotating Fig. 1 around the z-axis of the 
cylindrical coordinate system. The electrodes thus consist 
of two coaxial cylinders with radii R1 and R2 (R1 < R2), 
and upper and lower lids. Adjacent electrodes must be 
electrically isolated. Applying the voltages 

I Vac 1 + Vdc cylinder r ----- R 1 , 

V = ~ Vac2 cylinderr = R 2 ,  

Ground upper and lower lids, (1) 

Vae i = Voi c o s  ~t-2, i ---- 1, 2 

provides a force that causes a charged particle to vibrate 
around a point where this field is the weakest. The trapping 
conditions thus obtained can be described in terms of a 
pseudopotential well [10]. To analyze the conditions re- 
quired for stable trapping of the ion, we calculated the 
trapping potential analytically, ignoring the space-charge 
effect. This analysis is also important tO find a condition 
to localize ions at a convenient place when the ring trap is 
applied for the frequency standard. 

The potential inside the ring trap consists of 

- - the  pseudopotential ~ created by a time-varying 
inhomogeneous electric field (Vat), and the 

--potential ~i,, generated by applying a dc bias to the 
inner-cylinder electrode (Vat). The potential q~i, is in- 
tended to improve the pseudopotential in the trap. The 
~u and qsi, values are calculated separately and then 
summed. 

H 

R1 

V ~ , +  Vdc 
i V a , 2  

, G r o u n d  

F 

0 R 1  R 2  

Fig. 1. Geometry of the analytical model of the trapping system. 
The rectangle in the r-z-plane should be rotated around the 
z-axis to obtain two coaxial cylinder electrodes enclosed by two 
lids. Adjacent electrodes are electrically isolated 
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1.1 Calculation of the Pseudopotential 

An expression for the pseudopotential can be derived from 
the electric field expression in the trap at a given moment 
in time. Using the method of separation of variables to 
solve the Laplace equation in cylindrical coordinates, an 
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Fig. 2. Contour plot of the ring-trap pseudopotential. Trapping 
conditions are listed in Table 1 
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analytic expression for the electrostatic potential q~ is 
obtained. Noting the rotational symmetry of the elec- 
trodes considered here, the potential does not depend on 
the angular cylindrical coordinate 0, and so the general 
solution can be written as 

qb(r,z) = ~ [Aklo(Tzkr/n) + BkKo(~kr/H)] sin(Tzkz/H) , 
k=O 

(2) 

where I o and K o are zero-order modified Bessel functions, 
and A k and B k are constants determined by boundary 
conditions. For  the geometry shown in Fig. 1 and the 
applied voltage given in (1) (with Va¢ = 0), the boundary 
conditions are 

I V a ¢ I , r = R x , O < z < H ,  

/ Vac2, r = R2 ,  0 < z < H ,  

q~(r,z)= ~ / 0 ' z = 0 ' R l < r < R a '  

LO, z = H,R 1 < r < R 2 . 

The electrostatic potential can be written as 

¢'(r, z) 

(3) 

4Va¢ 1 1 

(~ K ( I , -  "'0/((2" l,.Otn{Trkr) + (i(o2)_ r o'l(1)'K, o1,~- j//uk~ 
X 

K ( 1 ) I ( 2 )  V(2)/(1)  
0 *0 - - l X O  a0 

where y=Vo2/Vol, Kg)=Ko(TrkRdH), and Ig~-= 
IoOzkRJH), i = 1, 2. According to the theory developed by 
Dehmelt [10], one can obtain the trapping pseudopoten- 
tial by averaging the time-varying inhomogeneous field in 
the trap over one period of oscillation: 

~P = (e/4mO 2) (grad ~)2,  (5) 

where e is the elementary charge and m is the ion mass. 
The gradient of the electrostatic potential can be written 
in terms of the electric field components as 

[grad ~(r ,z)]  2 = E 2 + E 2 . (6) 

Finally, the pseudopotential inside the ring trap is ex- 
pressed as 

7J(r, z)= (e/4mg22)(E~ + Ez~), 

where 

E,(r, z) 

--  4V°1 Z 

n k =odd 

(7) 

_ _ _ ( i )  rck (?K(o 1, Kto2))ll(~kHr ) (1(o 2) ylo )K1 ( ~ r )  
× 

x sin ( ~ - z ) ,  

K ( 1 ) r ( 2 )  _ ld'(2)/(1) 
0 "tO JxO ~0 

(8) 
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Ez(r,z) 

4Vo, 

H k=odd 

+ --,I(1)~K (rCkr'~ ,,,K(o')-K(o2))lo(rc--kHr ) ,,(o 2) ,'o , o1,~ ,} 
X 

K ( 1 ) t ( 2 )  /((2)I(1) 
0 *0 - - " ~ 0  ~tO 

x cos t ~ - ) ,  (9) 

and I ( ~ and K (1~ are first-order modified Bessel functions. 
Figure 2 shows equi-pseudopotential lines inside the 

ring trap obtained by numerical calculation using the trap- 
ping parameters listed in Table 1. Figure 3 presents the 
dependence of the pseudopotential on the r-coordinate 
when z is fixed (z = HI2). It is clear that if Vo~ and Voz are 
equal (Case A), the pseudopotential minimum is not mid- 
way between the coaxial electrodes, but is shifted toward 
the inner electrode. The value of r for which the 
pseudopotential is minimum r = rmi n can be shifted by 
changing the ratio y = Vo2/Voa. Case B shows an example 
of making rm~" the preferred value for the frequency stan- 
dard as discussed in Sect. 2. 

1.2 DC-Bias Effect 

One can improve the pseudopotential-well shape by ap- 
plying a d c  bias to the inner electrode. To calculate bin, 
we use (2) and the boundary conditions with a dc voltage 
Vd¢ applied to the inner electrode of the ring trap while the 
other electrodes are grounded. The expression for the 
electrostatic potential is 

1,2,t,. {rck f ~ _  K(o2,io(rCkr) 
~bin(r,z ) -  4Vd~ r 1 0 " 0 \ ~ ' / /  't,H ] 

k --Z~oad k lr¢"-(1) I(2) fi,'-(2)l(1) = a~0 *0 "~0 a0 

 in( Z) ,10, 

Table 1. Illustrative dimensions and operating parameters for the 
mercury-ion ring-trap model 

Ion: 
Atomic weight: 
Hyperfine splitting of 6S,12 state 
(clock transition): 

Dimensions of ring trap 
Radius of inner cylinder electrode: 
Radius of outer cylinder electrode: 
Height: 
ac and dc voltages: 
Case A ac 

dc 
Case B ac 

dc 
Case C ac 

dc 
Drive frequency: 

199Hg+ 
m = 199 ainu 

v a = 40.6 GHz 

R 1 = 1.0 mm 
R 2 --- 10.0 mm 
H = 7.3 mm 

Vol = Vo2 = 250 V 
Vd¢ = 0V 
Vol = 450 V 
Vo2 -~- 150 V 
V~c - -0V 
Vol ~--- Fo2 ~-- 250 V 
G =  30v  
/2 = 2n 1.0 MHz 
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Fig. 3. The dependence of the pseudopotential on r for fixed 
z = H/2. Trapping conditions are listed in Table 1 

As shown in Figs. 2 and 3 (Case C) rmi n can be also shifted 
by providing a dc bias. Case B is better than Case C 
because the trapping force along the z-direction is small in 
Case C (Fig. 2). 

1.3 Ion Motion 

The obtained pseudopotential determines the trajectory of 
an ion with the defined e/m ratio in the ring-trap volume. 
Under certain conditions, the ion moves along the nodes 
of the trapping field without hitting the electrodes. Vibra- 
tional motion of the ion occurs in the plane transverse to 
the nodal circle [(r, z)-plane], while thermal effects cause 
the ions to diffuse along the nodal circle at r = rmi n. 

Analysis of the ion motion in the ring trap is based on 
the following equatons: 

f'~ -- (4eEr/g22m)cos 2 T = 0 ,  
(1 1) 

- (4eEz/g22m) cos 2z = 0 ,  

where Er and Ez are derived from (8) and (9). Here the 
space-charge effect is neglected. 

In general, these equations can be solved only numeri- 
cally, but at first we assume that the ion motion is har- 
monic in the close vicinity of the node. Numerical cal- 
culations following (11) show that this approximation 
is appropriate. For  simplicity we will consider the trans- 
verse potential in a 2-dimensional rectangular coordinate 
system in the plane containing the z-axis (transverse 
plane). We place the center of the coordinates at the point 
(rmin, Zmin) , whose pseudopotential is minimum (Zmi n iS 
always H/2). Thus r - rmi n is xr, and z - Zmin is Xz. The 
transverse electrostatic potential in the new rectangular 
coordinate system close to the node can be written as 

O(x,, x~) = (Vol/2r2)(~t,x 2 - Ctz x2) cos I2t, (12) 

where r o = (R2 - R1)/2 and ~ is a dimensionless coeffi- 
cient that depends on the electrodes' configuration and ~,. 
The ion motion is obtained solving Mathieu's equations: 

5~ s + 2qscos(2z)x ~ = 0 ,  s = r, z ,  (13) 

where q~ = (2~e Vol)/(I2Zr 2 m) and z = f2t/2. 
The coefficient ~s can be estimated numerically from the 

pseudopotential. For  example in Case B of Table 1, ~ and 
~, are 0.59, and q~ and qz are 0.44. The transverse 
pseudopotential close to the node is expressed as 

~U(xr, x z )  2 2 2 2 2 4 = eVol(ctrxr + ~zx~)/(4m£2 ro). (14) 

The secular frequency, o~ .... can be deduced immediately 
from the formula 

oO~,z = x/(1/m)@2U/OxZ~,zl .... =o, (15) 

where the pseudopotential energy U is expressed by U = 
e7  t, and therefore, 

cor.z = q~./2/(2v/2) • (16) 

Using the trapping parameters mentioned above, 

co, = co z = 2n 157 kHz .  (17) 

Solutions of these equations appear to be stable when 
0 < q < 0.908 [11]. For  larger oscillation amplitudes, the 
stability conditions are determined not only by q, but also 
by the values of the initial coordinates [-9]. The dependence 
of the motional stability of the ion on its initial state in the 
ring trap is obtained by numerical calculations following 
(11). Figure 4 shows the region of initial positions in which 
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Fig. 4. Diagram of the initial positions of the ion. The contour 
line separates the stable and unstable regions of ion motion. 
These contour plots are obtained by numerical calculation. If the 
ion is created inside the stable region, its vibrations are stable. 
Otherwise, the vibration amplitude increases until the ion hits 
one of the electrodes. Trapping conditions are shown in Table 1 

the ion motion is stable at 0 < T < 1000. The if-field phase 
and initial velocity of the ion are taken to be zero. 

2 The Microwave Cavity Mode 

The trapping electrodes form a microwave cavity. It is 
necessary to choose a geometry of the ring-trap cavity and 
a microwave configuration that are advantageous for ap- 
plication to a frequency standard. A frequency standard is 
obtained by stabilizing a frequency of a crystal oscillator 
on the M = 0 ~ 0 transition (called the clock transition), 
as it is independent of magnetic field to first order. Ap- 
plying a constant magnetic field (called the C-field) 
separates the clock transition from other transitions. 

The microwave mode in the ring trap cavity must satisfy 
the following two requirements: 
(i) The C-field is parallel to the magnetic component of 

the microwave mode (probe mode) throughout the 
area in which the ions are trapped; 

(ii) Both the microwave field and the C-field are uniform 
throughout the space in which the trapped ions are 
localized. 

The combination of Helmholtz coils coaxial with the ring 
trap and the TEo, 2,1 microwave mode is considered to be 
the most satisfactory since it is easy to localize ions in the 
space where the magnetic microwave vector is parallel to 
the C-field, and there is no first-order Doppler effect for 
ion motion along the nodal circle in the presence of a 
microwave field uniform in 0. 

The axial, H=, and radial, Hr, components (Fig. 5) of the 
microwave probing field for the TEo,z,x mode are ex- 
pressed as [11, 12] 
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Ion cloud 

C-field t 

r Hz 

Fig. 5. TE0, 2,1 microwave field configuration in the ring trap that 
is appropriate for exciting a magnetic dipole transition between 
the hyperfine levels of the 199Hg+ ground state 

Hz(r, z, t) = HoPo(r) sin(rrz/H) cos(2r~vt), 

Hr(r, z, t) = H i P1 (r) cos(fez~H) cos(2rtvt), 

P,,(r) = Jm(kcr) + ).Nm(kcr), 

H 1 = - (2 r t v / ckc )Ho .  (18) 

Here, Jm and Nm are Bessel functions of ruth order and v is 
the microwave frequency. Assuming perfectly conducting 
walls the constants 2 and k~ are obtained from the radial 
boundary conditions: 

PI(R1) = PI(R2) = 0 .  (19) 

There is one solution of re: 

Pl(r~) = 0,  R 1 < Q < R 2 . (20) 

The resonance frequency is expressed as 

Vo = c~/(kc/2~)  2 + (1/2H) 2 , (21) 

whre c is the velocity of light. 
Under the conditions listed in Table 1, the constants 

take on the values 

2 = 0.32, 

kc = 0.731/ram, 

rc = 5.66 m m ,  

v o = 40.6 G H z ,  

H 1 / H  o = - 1.16. (22) 

An ion-trapping system of the size indicated in Table 1 is 
appropriate for a frequency standard using 1 9 9 H g + ,  a s  V o 
coincides with the clock transition frequency. Since the 
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magnetic microwave field is parallel to the C-field at r = re, 
the ions should be localized near there. 

To obtain a stable TEo,2, ~ mode, all other modes must 
be suppressed. As the coaxial cylinders and the two rids 
are electrically isolated, all modes other than type TEo .... 
are suppressed [13]. The geometry should be such that any 
other TEo .... mode frequency is far from Vo. With the 
values shown in Table 1, the cut-off frequencies are higher 
than v o for n > 3. The resonance frequencies of the TEo, 1,1 
and TEo, L2 modes are 27.0 GHz and 44.7 GHz, respec- 
tively. Thus, the TEo,2,1 mode should oscillate without 
disturbance. 

3 First-Order Doppler Effect 

Table 2. Power-distribution spectrum for ring trap and linear 
trap 

Ring trap" Linear trap b 

Bo,o (carrier) 90.4~o B;,o (carrier) 26~ 
B2,o 0.8~o B ' z , o  2 5 ~  
B-2, 0 0.8~o B'-2,o 25~o 
Bo, x 4.0~ B~, o 5% 
B0.-l 4.0~ B'_4. o 5~ 

B;,~ 2% 
B~,_~ 2~ 

2 x 10 v ions are trapped with the condition in Table 1 (Case 
B). B~., are coefficients in (27) 
b 2 x 107 ions are trapped with the condition in the Appendix. 
B~,, are coefficients in (A3) 

The first-order Doppler effect results from the phase varia- 
tion of the probed microwave caused by the ion vibration. 
We calculate the microwave spectrum of the ions using the 
correlation-function formalism. The first-order Doppler 
effect in the ring trap should be considered only for vibra- 
tions in the r- and z-directions, since the phase distribution 
is uniform in the 0 direction for the TEo,2,1 mode. The 
spectrum of an ion in this case is expressed by 

I(o, coo)= S G(t~)exp(-icoat~)dt ~, (23) 

where co. = 2nv. and Va is the clock transition frequency. 
The correlation function G(t¢) is defined as 

T 

G(tc) = lim (1/2T) S Hz.(t)H=(t + t~)dt, (24) 
T ~ c o  - T  

where H~.(t) = H~(r, z, t) and (r, z) is the position of the ion 
in the transverse plane. 

For the calculation, we consider the ion motion to be a 
small vibration expressed as 

r = rmi n + ro COS(COrt) , (25) 

z = Zmi, + ZO COS(COzt), (26) 

where ro and zo are the amplitudes of vibrations in the 
r- and z-directions, which are assumed to be much smaller 
than the scale of the field gradient. The power spectrum 
consists of a Doppler-free carrier (co = coo) and sidebands, 
expressed as 

I(co, coa) = ~ n m ,  n(~(co  - -  ( 9  a - -  m c o  r - -  n c o z ) ,  (27) 
n l ,  n 

Bo, o denotes the carrier intensity, and the remaining B,,,, 
denote the sideband intensities. When the first-order 
Doppler effect becomes significant, the absorbed power is 
distributed mainly in the sidebands and the carrier S/N 
ratio decreases. 

To calculate the intensities of the carrier and sidebands 
we expand Po(r) and cos(~z/n) as 

Po(r) = Po(rmin) - -  Pl(rmin)k¢ro cos(coJ) 

+ (I/2)(Px (rmln)/kermin 

- Po(rmi.))(kcro) 2 cos2(cort), (28) 

cos(nz/H) = ~ Jk(nZo/H)cos(kcozt). (29) 
k = O  

Here, we consider the condition 

rmi n = r e ,  (30) 

i.e. the radial position of the minimum in the pseudopoten- 
tial (Figs. 2, 3) coincides with that of the vanishing radial 
microwave-magnetic field (20), as it was shown to be a 
desirable condition for the frequency standard in the previ- 
ous section. Since Pl(rc) is zero, (28) can be rewritten as 

Po(r) = Po(r~) [1 - (1/2)(k~ro) 2 cos2(co, t)] . (31) 

Assuming 2 x 107 ions are trapped under the conditions 
in Table 1 (Case B), the radius of the ion cloud is 0.93 mm, 
and the transverse vibrational frequencies are cot = 157 
KHz = coz. The linear trap model examined in the appen- 
dix shows a power distribution in the carrier of B~,o ~ 
26~, as compared to the ring-trap carrier power of Bo, o '~ 
90~o (see Table 2). Since the ring trap concentrates more 
power in the carrier, it provides a larger S/N ratio com- 
pared to the linear trap. 

4 Second-Order Doppler Effect 

On the basis of the analysis of the ring-trapping system, 
we conclude that its trapping conditions are similar to 
those of the rf/dc hybrid linear trapping system because 
both the rf/dc hybrid linear trap and the ring trap possess 
a line (or circle) of nodes instead of a single-point node as 
in the ordinary 3-dimensional Paul trap, and the pseudo- 
potential inside the ring trap may be considered as har- 
monic in the vicinity of nodes, as our numerical calcula- 
tions show (Figs. 2, 3). 

Taking into account these considerations, the formula 
for the second-order Doppler shift caused by the trap field 
(vibration in r- and z-directions) given in [4] is 

e 2 N 
(A---Vv)=(8neomc2)(~), (33, 

where N is the number of trapped ions, L is the length of 
the ion cloud, and eo is the permittivity of free space. 
Analysis of this formula shows that the linear trap has a 
larger ion-storage capacity for a given second-order 
Doppler effect than the 3-dimensional Paul trap. To use 
this formula for ring-trap applicatons one should replace 
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L with 2nrmi n. Using the parameters shown in Table 1, the 
second-order Doppler shift is expressed as 

(Av/v) = 1.0 × 10-19N. (34) 

The second-order-Doppler shift due to the thermal motion 
(diffusion along the nodal circle) at room temperature is 

(Av/v) = 2.2 × 10 -13 , (35) 

as shown in [3, 5]. It is reasonable to associate the thermal 
motion with the room temperature alone, because the rf 
heating in the linear trap and ring trap is much less effective 
than that in the Paul trap [14]. 

5 Conclusion 

The ring-trap model presented has large storage capacity 
and reduced susceptibility to the second-order Doppler 
effect. By introducing ac voltage signals to the vertical 
electrodes a pseudopotential distribution was derived, 
which was then optimized for applicatons involving fre- 
quency standards. The electrodes of the ring trap form a 
microwave cavity. The microwave phase is uniform with 
respect to 0. When the condition is optimized for the 
frequency standard, the absorbed power is concentrated 
mostly in the carrier. Both the linear trap and the ring trap 
show a reduced rf-heating effect, compared to the Paul 
trap, but the ring trap optimized for the frequency stan- 
dard presented here has a smaller first-order Doppler effect 
contribution, thus allowing significantly more power to be 
concentrated at the clock transition frequency than in the 
linear-trap case. 
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Appendix 

With the linear-trap model, a traveling microwave is used 
as the probe. Here, we consider the 2-dimensional (X, Z) 
model, in which X is the direction of the traveling micro- 
wave and Z is the direction parallel to the linear electrodes. 
The X-direction is perpendicular to the Z-direction. We 
assume that the ion motion is expressed as 

X = d + X ,  c o s c o x t ,  

Z = Z,  cos COzt, (A1) 
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where Xa, fO X are the secular vibration amplitude and 
frequency of the ion along the X-axis, Za, foz are the 
secular vibration amplitude and frequency of the ion along 
the X-axis, and d is the distance between the trap center 
and the microwave horn (Xa << d). 

The traveling wave from the microwave horn is ex- 
pressed as 

H z = Hzo cos(for - K o R  ) s i n ( K o b Z / 2 R ) / Z ,  (A2) 

where R = ( X 2 +  Z2) 1/2 and b is the microwave horn 
length in the Z-direction. We assume N = 2 × 107 trapped 
ions with the following conditions: 

d = 175 m m ,  Ko = 0.85/mm, 

b = 30 ram,  Za = 35mm, 

fox = 157 k H z ,  foz = arbitrary.  

The value of ~o x is assumed to be the same as for and cn z of 
the ring trap. Thus Xa is 0.65 mm. The other parameters 
are close to those used in the experiments of Prestage et 
al. [3-53. The power distribution spectrum is symmetric 
around the carrier frequency, and fO = fO, and can be 
written in a form similar to (27) as 

I (~ ,  o~,) = ~ B~,,,6(o~ - o~, - rnfo z - no, x ) .  (A3) 
rtl ,n 

Values of B~,,, are shown in Table 2. 
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