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METHOD OF ORBITS IN THE REPRESENTATION
THEORY OF COMPLEX LIE GROUPS

V. A, Ginzburg UDC 519.46

1. Introduction

The method of orbits (see [2, 3, and 13]) originated as a method of constructing a large class of unitary
representations of an arbitrary Lie group., Each representation is defined by an orbit of the group in the space
dual to its Lie algebra, and it seems that one can express in ferms of an orbit the properties of the correspond-
ing representation; to calculate its character, the spectrum of the restriction to a subgroup, ete.

In the work of the French School, the algebraic version of the method of orbits is used to study envelop-
ing algebras, their centers, and primitive ideals (i.e., the kernels of irreducible representations). In par-
ticular, for solvable Lie algebras, they have succeeded in describing the structure of the field of partial en-
velopings of the algebra, and finding all its primitive ideals (see [1, 4]}, Similar results are proved by induc-
tion on the dimension of a Lie algebra, This method runs into difficulties when the Lie algebra is unsolvable,
Sometimes these difficulties can be overcome, but the complexity of the relevant proofs increases consider-
ably, The direct methods put forward in the present article allow us both to simplify the proofs of certain
standard theorems, and to obtain new results. Our approach is intermediate between the analytic and algebraic
ones, It is close to the theory of quantization, whose connection with the method of orbits was discovered by
Kostant [3].

We briefly state our main results. We consider the set of generalized functions concentrated on the iden-
tity of a Lie group G. They form an algebra under convolution that is none other than the enveloping algebra
U (g) of the Lie algebra g corresponding to the group G. If G is R1, then the Fourier transformation estab~
lishes an isomorphism between U (g) and algebras of polynomials. It turns out that if G is arbitrary, then there
is a mapping (we denote it by J) of the algebra U/ (g) into the set C [¢*] of polynomials on the dual space g* of g
that plays the same role as the Fourier transformation in the above example. By means of J we carry over the
multiplication from U (g) into C [g*] [i.e., we define it by the formula @ o ¥ =J (J-'@ » J-'¥) ]. When G = Rn,
this operation is the usual product. In the general case it sends the space of polynomials into an algebra H
isomorphic to U (g). By going over from U (g) to H we can construct a fairly large commutative subalgebra in
U (g): the corresponding subalgebra in H consists of all polynomials constant on specified submanifolds in g*.

We illustrate the construction of these submanifolds by the example of the group G = SL (2, R). I can be
‘verified that the orbits of the action of G = SL (2, R) in g* that is dual to the associated action in g.are hyper-
boloids (or their components) in the three-dimensional space ¢*. In a suitable Cartesian coordinate system
they are defined by the equations x? + y* = z2 + ¢. We consider the domain of the hyperboloids of one sheet
{c > 0). It is a standard fact that such a hyperboloid has a system of linear generators which can be chosen in
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two ways. For each hyperboloid we fix one of these ways so that the systems chosen on near hyperboloids are
compatible, We define A as the subspace of those polynomials that are constant on each linear generator of
.each hyperboloid. It turns out that A is a commutative subalgebra in H, and the operation in H coincides in A
with the usual multiplication of polynomials. In other words, the restriction of the mapping j-!. ¢ la*] — U (@)
to A is a homomorphism of algebras,

We can choose a subalgebra A with these properties in the case of an arbitrary complex Lie group G,
As a corollary we obtain the following result of Duflo (see[1,5, and 8]): J is an isomorphism of the center of
U (g} onto a ring of polynomials on g¢* invariant under G. For semisimple Lie algebras this fact was dis-
covered by Harish~Chandra,

We consider the representation 7 of a Lie algebra ¢ that corresponds to an orbit 2 in general position,
We extend it to a representation of the algebra U7 (g) with H (by using J); we can regard n as a representation
of H. Then it turns out that the elements of the commutative subalgebra A go over into diagonal operators.,
More precisely, T can be realized in the space of cross sections of the bundle over £, and if sends a func-
tion ¥ & 4 into the operator of multiplication by ¥. In particular, the center of U (g) goes into scalar opera-
tors: T (z) = J(@)lg.

Next we consider 7 as a unitary representation of a group G. The character of 7 is a generalized func-
tion on G, which is closely connected with the o6-function of the orbit 2. For orbits in general position we shall
prove that tr mq = J"l(ég) (supporting a conjecture of Kirillov).

The material in this article is arranged as follows: the basic definitions, constructions, and theorems
(with outlines of a part of the proofs) are gathered fogether in Sec. 2. The principal results are proved in Sec.
3 by "deforming” Lie algebras and their representations, The proofs of assertions about polarization are pre-
sented in Sec. 4.

The main results of the present article were announced in [9]. The author is glad to have this oppor-
tunity to thank A. A, Kirillov for stimulating discussions on the theory of representations,

2, Definitions and Basic Results

Let G be a connected complex Lie group, and ¢ be its Lie algebra, The space g¢* dual to g splits into
orbits under the action of G dual to the associated action, Every G-orbit is a symplectic manifold. We recall
the construction of a 2-form on an orbit. In accordance with the action of G in ¢*, to an element = & g there
corresponds a vector field & (of an infinitesimal translation) touching the orbit. The value of a 2-form on the
vector fields & and gy at a point f is f([x, y]).

A subalgebra p of g that is also a maximal isotropic subspace of the form f([x, y]) (defined on g) is
called a polarization of the functional f, It is a fact that if an orbit through f has maximal dimension (in which
case f is called a regular poinf), then polarizations of f exist, If, e.g., ¢ is semisimple and f is a functional
dual to a vector in general position in a Cartan subalgebra, then p can be taken to be a Borel subalgebra,

On an orbit containing f each polarization defines a Lagrange distribution in a neighborhood of f. To de-
termine it we must consider the image of y under the mapping x —~ & (f) of the algebra g onto the tangent space
to the orbit at f, and extend the resulting subspace to other points of the orbit. It can be verified that close
to f the result does not depend on the method of extension and defines a G-invariant integrable Lagrangian
fibration in a neighborhood of f. We obtain (locally) a partition of an orbit into fibers, Another method of ob-
taining the fiber through f is to consider the orbits of f under the subgroup P corresponding to the algebra .

It turns out [13] that every fiber is "plane." More precisely, let pL be the subspace of g* consisting of
functionals that annihilate y, Then the following proposition holds,

Proposition 2.1. The fiber Pf is an open dense set in the linear manifold 7+ pL whose complement is an
algebraic submanifold in f + pt

Proof, First of all, f 4- p1 is stable under P; therefore Pf ( f - y-. We prove that Pf and f + pL have
the same dimension, For ! < ¢* we consider the form B, (z, y) = I ([z, yl), z, y = ¢ . We setn = !/, rank Bg;
then the Lagrange manifold of Pf is n-dimensional, If the dimension of the kernel By is k, then dimg = 2n -- %,
and dim y = n + %, so that dim pL = dim g — dimp = n.

In fact, the fiber Pf coincides with the set # of all those points / = f + p. for which rankB; = rank By.
For the dimension of a polarization decreases as rank By increases; hence y is a polarization of any point of ¥ .
Therefore, the P-orbits partition ¥ into open sets. But ¥ is connected since its complement is a complex
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submanifold in f -+ p+ defined by the equation B, A...AB; =0 (n factors). Consequently, ¥ consists of a single
orbit Pf. QED,

As a corollary we shall see that Pf = f 4- pL almost always (Theorem 2.2).

Now we discuss the question as to when a Lagrange distribution definednear to f can be extended to the
whole orbit, For this it is necessary and sufficient that the Lagrange subspace at f is invariant under the action
of its stabilizer G(f). This means that the subalgebra y» must be stable under the associated action of the group
G (), We call such polarizations p global. [Let us note that p is trivially invariant under a connected compo-
nent of the group G(f) since its Lie algebra is contained inp, Therefore, the problem of the global property of
polarizations only arises when G(f) is not connected.]

We consider the closed subgroup P* of those elements of G that send 7 -+ p- into itself. The Lie algebra
of P" is v , and so the group P coincides with a connected component of P#, In particular, P is closed, In the
proof of Proposition 2.1 we saw that the fiber ¥ consists of all points [ for which the rank of B; is a maximum.
Consequently, P" coincides with a subgroup of elements of G that preserve §. If ¥ is a global polarization,
then P* = G(f) - P, since P acts trivially on a fiber,

In Sec. 4 we shall prove
THEOREM 2.2, Let f be a point in general position in g¢*.
a) There is a polarization p satisfying Pukanszky's condition: pPf = 5 + p..

b) If stabilizer G(f) of f is commutative, then there is a global polarization y invariant under G(f) and
satisfying Pukanszky's condition,

It can be shown that if G is an algebraic group and f is a point in general position in ¢*, then for G(f) to
be commutative it is sufficient that the fundamental group of the orbit containing f is commutative.

From now on until the end of Sec. 3 we consider the complex Lie algebra ¢ as a real one, and denote by
g* the space of real functionals on g.

We turn to the determination of the mapping J that sends functions on G into functions on g* , and consider
the open set
{z =g:| theimaginary parts of the cigenvalues of ad z | <}

in g. Under the mapping exp: g— G this set is mapped diffeomorphically onto its image W, For a function ¢
with support in W, J(¢) is defined as follows: we need to map ¢ onto g, by using exp, and then multiply by j&) =

detS(adx), where S (1) —_—( exp (¢/2) —oxp (=1/2) >1/2. By taking the Fourier transformation of the resulting function,

we obtain a rapidly decreasing function J(¢) on g*. In a similar way the mapping J is defined for generalized
functions on W, and J sends generalized functions concentrated on the identity of the group into polynomials.

The choice of f is explained as follows. Let / < g*, p be a polarization of f, § be a fiber through f,
and 8§y and 85 be 6-functions of the manifolds P and ¥ defined by the Haar measure on P and by the Lebesgue
measure on f - p-, respectively. We consider the character xg of the group P (correctly defined on P | W),
whose differential is 2mif (z) —1/s trgp ad z. Let xg be the complex conjugate character.

Proposition 2.3. Let the point f & ¢* be regular, We can choose a solvable polarization ¥, so that J (3
8p) = 05 » and (xs-8p, 9> = <85, J (9)> for every ¢ with support in W. If the algebra g is algebraic, then for p
we can take any polarization satisfying Pukanszky's condition,

We are going to prove that J (3;-6p) = 85 (the second assertion is proved similarly). On going over to the
Lie algebra, Xi«dp goes into
exp (—2auif (z) — Yatrg,p ad z)-up (T lig (2)-Oy,

where pp and ug are the Jacobians of the transformation from P to » and from G to g , respectively. We must
multiply this function by f(x) and compare it with 7~ (65) (F stands for the Fourier transformation). Since §
is a subset of complete measure in f 4 pL , F~!(85) coincides with F~* (5,,,.), which is equal to exp (—2uif (2))-
8,. Now we only need to verify that

ug (z) = 7 (x)-up (x)-exp (—Y/s tryy ad ) for z P

We use a lemma which is proved in Sec. 4.
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LEMMA 2.4, If f is regular, then there is a solvable polarization y such that for all z & v, the nonzero
eigenvalues of the operator adx in the spaces p and .¢/b are opposite in sign (with due regard for multiplicity),

We call these polarizations admissible,

Remark., The sense of the lemma is obvious when y is the Borel subalgebra of a semisimple algebra g.
and x is an element of the Cartan subalgebra.
By using the lemma and standard expressions for ug and pp (see [2]), we find that
A2 -M/%

1—e* (d—e® (=1 2
Pp(x)'—‘-l;[ Y HG(I)‘;H R —y ), ]'(ff)zne xe ’
» »

where A ranges over the nonzero eigenvalues of adx in y, The assertion is now obvious, QED,

Now we turn to unitary representations of the group G. Let P* be a global polarization of f = ¢*. We
assume that the character y¢ is extended (from P [} W ) to the whole group P*. In this case we can define the
representation of G induced from the character x¢ of the subgroup P#, i.e., the representation in the space
of functions on G that satisfy the condition s (pg) = ¥; (p)'s (§), p &= P*#, g = G. The group G acts in this space
by right translations. We denote this representation by 77, If instead of f we take another point of the same
orbit and choose the polarization of it and character obtained from P* and Xg by conjugation, then the resulting
representation is equivalent to 7y, The representation 7f is unitary, Its geometrical meaning will be accounted
for below, but first we calculate the character of .

Let G be a complex algebraic group; f be a point of an orbit £ of maximal dimension, and G(f) be its
stabilizer. We assume that the functional 2wif on the Lie algebra of the group G(f) is extended to a character of
G(f) [since G (f) C P#*, this condition is necessary for the existence of a character x¢ of P#], Under these con-
ditions the following theorem holds (ef. [14]).

THEOREM 2.5. Let P# be a global polarization of f satisfying Pukanszky's condition; then the corre-
sponding representation 7y is defined. If ¢ is a positive definite finite function on G with support in W, and if
the integral of the restriction of J(¢) to © with respect to the measure induced by the symplectic structure
exists, then the operator 7g(¢) has the frace:

tr 7t (¢) = SJ‘ (®)- (2.5)
Q
Proof, This is based on a standard formula (see [2]) for the characters of induced representations

br a1 () = § (S % (p)- @ (upu) dp) du.
P.\G PF¥
It is not difficult to show that p#+ N W = P N W; therefore, the inner integral reduces to an integral over P,
By making the substitution w = u™'pu it reduces to {Kup Su-ipu, @), which by Proposition 2.3 is equal to (8.,

J (g)>. Thus we obtain the expression S ( S J (@)) » in which the inner integral is over fibers and the outer
PING uF

over a set of fibers, This repeated integral defines a G-invariant measure on an orbit that consequently only
differs from the symplectic measure by a multiplier. To evaluate this multiplier we compare both measures
at f, We identify the tangent space to p+\ G at f with g/p; then to the measure defined by the repeated integral
there corresponds a volume form on an orbit, which is equal fo pgy A py,. at f. Here Mgp and u,,. are
Lebesgue volume forms, and the form on j 4 pi is obtained as follows: we identify y. with the space dual to
g/p and take on it the form ) dual to pgy (this is a property of the Fourier transformation), Thus, we must

compare the form pgp /\ Mys with the symplectic volume form on the tangent space to the orbit, We choose

Zyve o s Tny Yioe - -, Yn = ¢ S0 that the functionals f([xy, +1), ..., f([yn, *1) form a symplectic basis for the tan-
gent space. Clearly, the last n of the functionals form a basis in 3/p dual to the basis Xy, . . ., Xn in g/y. There-
fore, in the coordinates qq, ..., dp, P1y . . ., Py cOrresponding to our basis on the tangent space, we have

gy = dgy /\ - .. /\ dg, and pg = dp, /\...'/\ dp, ; their product is a symplectic volume form.
Remark. In fact we have used not the algebraic nature of ¢ but the admissibility of a polarization v .

We consider a small domain consisting of points in general position in ¢*, It splits into orbits, each of
which is stratified into fibers, We choose the fibrations on orbits to be analytically dependent on an orbit (in
the domain in question), For this it is sufficient to construct an analytic mapping s;: f — »' associating with a
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point f its polarization, and compatible with the action of G; if { = gf, then p! — Ad~!z (). We consider the
manifold of pairs (f, ), where f is a regular point in ¢*, and v is a polarization of f (admissible in the sense of
Lemma 2.4) that satisfies Proposition 2.3. The projection (f, p) — j of this manifold into ¢* commutes with
the action of G. To construct the mapping s it is sufficient to take a cross section of this projection that com-
mutes with the action of G. Clearly, we can choose a sufficiently small domain U on which a cross section
exists. We obtain a partition of U into fibers. Let A denote the algebra of all polynomials on g* which are
constant on each fiber in U.

THEOREM 2.6. The restriction of the mapping J~%: C [g*] - U (g) to A is a homomorphism of algebras.
The algebra A is fairly large, it contains all invariant and semiinvariant (see [7]) polynomials,

COROLLARY (see [5, 7]). The mapping J maps the center (respectively, semicenter) of the algebra U (g)
isomorphically onto the ring of invariant (respectively, semiinvariant) polynomials on g*,

We turn the space of polynomials on g* info an algebra (denoted by H; see Sec. 1), by carrying over
multiplication from U (g) with the help of the mapping J. Theorem 2.6 can be restated as follows.

The restriction of the operation in H to the subspace A coincides with the usual multiplication of poly-
nomials. In particular, A is a commutative subalgebra in H.

Remark, The smooth functions on g* form a Lie algebra with respect to the Poisson bracket (see [6, 10]).
The bracket of the functions ¢ and ¥ is defined as the function {@, ¥}: f — f (Id®;, d¥,]) , or, alternatively, the
restriction of the function {®, ¥} to each orbit is equal to the Poisson bracket (relative to the symplectic struc-
ture on the orbit) of the restrictions of ¢ and V. The set of functions that are constant on fibers is a maximal
commutative subalgebra of the Lie algebra ¢~ (g*). The part of this subalgebra consisting of polynomials is A,

We return to representations. The action of the Lie algebra ¢ in the Garding space of the representation
7 is extended to a representation of the enveloping algebra U7 (g), which we identify with H, For every function
¥ on g* we denote by ¥ the function ¥g{g) = ¥(zf) on G.

THECREM 2.7, If ¥ & A, then the operator m¢(¥) is the same as a multiplication by ¥g.

COROLLARY (see [5]). If z is an element from the center of the enveloping algebra, then w¢(z) is the
operator of multiplication by the value of the polynomial J(z) at f.

The idea behind the proof of Theorem 2.7 is that we must check its validity not for polynomials but for the
o-functions of the separate fibers, since all functions constant on fibers are "formed" from them. By Propo-
sition 2.3, the generalized operator corresponding to 8y under the representation 7y is fn, (P)%;(p) dp. In the
next section we give a meaning to this (divergent) expression and evaluate it., »

The geometrical construction of the representation 7f was pointed out by Kostant [3]. We consider a one-
dimensional Hermitian bundle over the orbit { (containing f) with a connection V whose curvature is a sym-
plectic form on © multiplied by —27i. We define a representation of g in the space of smooth cross sections
that are covariantly constant along the fibers of t., To define a scalar product in this space it is sufficient to
take the measure on the set of fibers (= P# \ G). With an z & g we associate the skew-Hermitian operator

ng (z) = (Vy, — Vi) + 2mi-z. 2.7

The second term is the operator of multiplication by the function which is the restriction to & of a linear £unc-
tional on g* (corresponding to x). Then & is the field on the orbit corresponding to the action of x, and Vi, is
the differential operator dual to vix‘ It is easily verified that g is a representation of g, and that it is equiv-
alent to 7y,

Let, e.g., ¢ be a Lie algebra with a basis p, q, and z, where z is a central element, and [p, q] = z (the
Heisenberg algebra). To the orbit defined by the equation z = 1 there corresponds a representation in the space
of functions of q (in this case the bundle is trivial):

n (p) = 8/oq, = (q) = 2miq, = (z) = 2mi. 2.8)

Let 8 be arbitrary and Q be an orbit in g*. We introduce on the intersection of &2 with the small domain U co-
ordinates pyy . . ., Pns Qis+ . «5 dp (they exist by Darboux's theorem) in which a symplectic form has the canon-
ical form dp A dg, and the functions qy, . . ., dp are constant on fibers. Under the restriction to a small neigh-
borhood, the bundle over an orbit becomes trivial, Therefore, the representation g, can be realized in func-
tions of qi, . . ., qn. It furns out that the operator #(, (x) is defined in fact by the same formulae (2.8) as for the
Heisenberg algebra,
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Proposition 2.8, a) An element z &= g defines a function on & (the restriction of a functional on ¢* )
which in the coordinates p, g is of the first degree in p: x(p, @) = u(@p + v{g).

b) Under a suitable trivialization of the bundle, the operator w,(x) goes into

fg (z) = Yo [u (g)-8/9g + 8/8q-u (q)] — 2aiv (g), 2.9)

i.e., it is obtained from x(p, ) by replacing p by 8 /8q and by symmetrization.
This is a "physical™ explanation as to why we must consider these induced representations.

Proof, a) Under the action of the group G, functions constant on fibers go into functions constant on
fibers. Therefore, if z & g, &, is the corresponding field, and ¥ is a function of q, then & ¥ does not depend
on p, But &V = {x, ¥} = dz/dp-(6¥/dq) — (3z/9q)-(9¥/3p) = (9z/dp)-(3V (¢)/d9) . Since ¥ = ¥(q) is arbitrary we find
that 8x /8p does not depend on p.

b) We trivialize the bundle by using a cross section covariantly constant along fibers. On the field ¢ the
connection V takes the form V¢ = ¢ + a (£), where the differential 1-form « is equal to the curvature of the
bundle, In canonical coordinatesthe curvatureis —2ni dp A\ dg, so that V¢ =& —27nipdq(¢) = £6, where 0 is
some function of q. We remove 9 by changing the frivializing cross section, We express z = ¢ in terms of
coordinates: x(p, q) = u(@p + v{q); then & =u(q) -8 /9q — 9x/8q -3 /9p, and Vig = & — 2miu{g)p. It is easy to see
that operators (2.7) and (2.9) coincide on functions of q. QED.

Formula (2.9) is very important for what is to follow. The fact that it defines a representation of the
algebra ¢ can be readily verified, We remark that representation m(, defined by 2.9) is meaningful for any
orbit £; we do not need to worry about the existence of the corresponding induced representation of the group
G.

We rewrite (2.9) in the form 7o &) = u(g) 8 /8q + 27iv(g) + /2 tru'@).t
LEMMA 2.9. If the point f has coordinates (py, g¢), v is a polarization of f, and = & ¥, then tr v’ (g,) =
—1trg;p ad z.

For the proof we identify ¢/p with the factor-space of the tangent space to the orbit with respect to the
Lagrange subspace, The vectors o /aqj (of the p, q coordinate system) form a basis in it. We are going to cal-
culate the trace of the operator adx in this basis. It can be verified that the image of ¢ /9q; under adx coincides
(modulo the Lagrange subspace) with the commutator of the field & and 8 /dq; at f. By expressing & in the co-
ordinates p and q we obtain an expression for the trace — Z8u; /6qj. QED.

3. Algebra |

The aim of this section is to prove Theorems 2.6 and 2.7.

Alongside the algebra g we consider the Lie algebra g: obtained from g by multiplying the commutator
in ¢ by the number t. We construct in terms of g¢; a Lie group G, a mapping J¢, and an associative algebra H,
similar to the way this was done for the algebra g. The algebra Ht as a vector space is the space ¢ [¢*] of
polynomials, For t =0 the Lie algebra ¢; is commutative, therefore J; coincides with the Fourier transfor-
mation, and H, with the algebra of polynomials on g*. Thus, the family { Hi} is a deformation of the algebra of
polynomials H, = C [g*]. As we shall see, the dependence on t of the product of two polynomials in Hg is given
by

Do, ¥ = Q¥ L B, (D, V) + *B, (@, ¥)+ ..., {(3.1)

where the B;(®, V) are bidifferential operators on g* (i.e., combinations of derivatives of ¢ and ¥ that are
linear in ¢ and in ¥) with polynomial coefficients, and for every ¢ and ¥ the sum (3.1) contains only a finite
number of nonzero terms.

The formula (3.1) is verified most simply when & and ¥ are not polynomials but the exponentials of linear
forms on ¢*. With each z = ¢ we associate a function on g* of the form E,: f — exp 2xi ¢f, z>. The mapping
J-! sends Ex into j71 (z).8expx (exp: g — G is the exponential mapping), If z, y = g, then the convolution dexpx *
Sexpy 118 equa} to Oexpx.expy = Oexpzx,y)» Where z{x, y) is a Campbell-Hausdorff series. Therefore, Ex-

Ey =7 & 7§ ik, YNEz(x y) A similar relation is true in g;; by expanding the right-hand side as a
power series in t, it can be realized that the coefficient of a fixed power of t is a function on g¢* of the form
f— Px.y (f)EX+y(f), where Px,y is a polynomial whose coefficients are polynomials in x and y. In order to put

ftru'(g) stands for =du;/8q;.
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this expression in the form (3.1) we need to remove the dependence of the coefficients of Px,y onx andy. For
this we must replace Ex+y by products of suitable derivatives of Ex and Ey (e.g., the monomial x'ySEx.y by
9YEy /ofT - 85Ey, /5f°).

The above reasoning is not completely rigorous. A method of obtaining a rigorous proof (from other
considerations) will be mentioned later,

We call a formal power series in t whose coefficients are analytic (respectively, smooth, generalized,
ete.) functions on a set X a formal analytic (respectively, smooth, generalized, etc.) function on X. Let U be
a neighborhood of a point in general position in ¢* and H be the space of formal analytic functions on U. The
right~hand side of (3.1) is meaningful as a formal function for any formal functions @, ¥ = #. Having defined
a multiplication in H in this way, we obtain an associative algebra, which can be regarded as a deformation of
the algebra of analytic functions on U.

We fix canonical coordinates p, q on an orbit £, By associating with an analytic function ¥ on U the oper-
ator of multiplication by ¥(0, q) (we are restricting ¥ to @), we obtain a representation of the algebra of ana-
lytic functions in the space of functions constant on fibers of . Then we construct a representation of H which
is a deformation of this representation,

First we define a representation of the Lie algebra ¢, (for every t) by adjusting the formula 2.9),

;0 (x) = t-u (g)-8/0q - 2miv () + Yy tr v’ (g). (3.2)

Note that m ¢ (x) = 27x(0, q) for t = 0. A representation of the Lie algebra ¢: defines a representation of the
algebra Hy (as was explained in Sec. 2); we denote it by T, We are going to prove that for a polynomial
¥ < H,, the operator m (¥) is a polynomial in t:

e (V) =¥ (0, ) + -, (¥) + 22, (¥) + .. ., (3.3)

where 7;(¥) is a sum of expressions of the form [P(©)¥](0, q) - D. Here P(@) is a differential polynomial on g*,
and D is a differential operator in the space of functions in g that are independent of ¥, We take this formula
as the definition of the representation of the algebra H, assuming that t is a formal variable and ¥ a formal
function. The passage from the commuting operators 7,(¥) = ¢(0, q} to the noncommuting operators 7 (¥) can
be regarded as a quantization procedure; the parameter t plays the role of Planck's constant, and H an algebra

of observables.

We prove (3.3). Suppose that the polynomial ¥ = #, ; then in(\lf) is concentrated at the identity of the
group G¢, and by definition (we omit the indices t and Q) s (¥) = {a (g) J-! ¥ (g) dg (integrated over Gi). Bearing
in mind that m(expx) = exp 7{x) and that J™'(¥) = expx (~'* F~'¥), we obtain

n(¥)= S exp M (%) Ji ' (@) (&) - P WH2) dx, (3.4)
g

where uy is the Jacobian of the transformation from G to ¢. We expand the functions ji! and p¢ under the inte-
gral sign as power series in t, It is clear from the definition of these functions that the coefficient of this a
polynomial in x with homogeneous terms of degree not less than k., We call these series decreasing.

The operator exp 7(x) in (3.4) is not a decreasing series. However, we can extract from it a multiplier
exp 2mvy independent of t [the function vx(q) is defined from the expansion x =x(p, @) = ux{@)p + vx(@)] so that
the remainder is a decreasing series. For if exp 7X) = (exp2nivg) + B, where B = exp (—27ivyg) - exp 7(x), then by
the Campbell—Hausdorff formula, B = exp (—27ivg + 7T&) — 1/ [27ivg, T&®)] +. . .). The repeated commutators
of 7(x) and 2mivx that contain 27ivy (q) more than once are zero, since 7(x) is a first-order differential operator.
Commutation with 7(x) increases the degree in t and in x by 1; therefore the series under the exponential and
sothe exponential itself are decreasing. The expression for n(¥) takes the form

(%)= { (exp 2min)- B-j7* - F 1Y (2) da. 3.5
g

We group all the multipliers apart from the first and last in a single decreasing series, distinguishing its de-
pendence on t and x by writing it in the form ZtiPi(x, D), where Pj(x, D) is a differential operator in functions
of q whose coefficients are polynomials in x.

The function (exp2wivg) - F-1¥&) on g is concentrated at 0, and is therefore a combination of derivatives
of a 6-function. By applying this function to a decreasing series, we obtain a terminating sum. Consequently,
Tt .Q (¥) is a polynomial in t.
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To obtain (3.3) we now only need to replace vx(q) by x(0, @) in the equality
n (F) = 2% § (exp 2mivy)-Py (x, D)-F* ¥ (z) dz
and to apply the inversion formula of the Fourier transformation. QED.
Remark, Formula (3.1) for multiplication in H; is proved in a similar way.
We consider the subspace AinH consisting of formal functions constant along fibers.

THEOREM 3.6, If ¥ <= 4, then m () is the operator of multiplication by ¥lg,.

This means that when we substitute functions from A into the series (3.3) for my g, all the terms apart
from the first vanish, i.e,, the quantum operator m¢(¥) coincides with the classical 7y(¥). In particular, if this
function is a polynomial, then by setting t = 1 we obtain Theorem 2.7. [In fact, the operators 7¢(¥) and ¥ are
analytic, and by Theorem 3.6 they coincide on an open set, namely, the inverse image of U in G.]

To prove Theorem 3.6 we must choose canonical coordinates on different orbits compatibly. It can be
shown that there are analytic coordinates py, . . ., Pns Qis + « +» Upns Z1s » » » s Zk i U such that:

a) the orbits are defined by the equations z = const;
b) the fibers are defined by the equations z = const and q = const;
¢) the restrictions of p and q to each orbit define canonical coordinates on it,

In the new coordinates, functions constant on fibers are functions of q and z, It will be convenient to
"paste together" the representations 7 of H corresponding to different orbits { into a single representation
7 in the space of formal functions of g and z. The addition of the z variables does not lead to significant changes;
e.g., instead of [P(3)¥](0, @) in (8.3) we must now write [P(9)¥](0, q, z),

We consider a point = U, a fiber § through it, and the generalized function §; on U, Let f have canoni-

cal coordinates (pg, Qg Zy). Since the fiber ¥ is defined by the equations z = zy, g = qg, then it is reasonable to
expect that the following lemma holds.

LEMMA 3.7. In canonical coordinates §; is proportional to 6(g —dy, 2 — zg).

We introduce operator n (54), which is given by the general formula (3.3) and sends a smooth function
s{q, z) into a formal generalized function on the surface p = 0. The operation of restriction to this surface,
which is available in (3.3), is realized as follows: we replace §4 by const-o(g —qg, z =~ zg (Lemma 3,7) and
substitute into the right-hand side of (3.3), which is also expressed in the coordinates p, q, and z. Then we set
p=0.

We compare this definition of = (8y) with the heuristic formula n (65) = {%; (p)n; (p) dp (see the idea of
the proof of Theorem 2.7). We consider the Jacobian v¢ of the mapping exp: y— P, and the character
%e (x) = 2mif (x) —3/,-t-try o ad z as formal functions onp, and introduce the formal operator denoted symbolically
by § % (p) m (p) dp. This operator sends a smooth function s(g, z) into a formal generalized function on U. By
definition, its value at a finite function ¢ = ¢{q, z) is

[ex07 ) ([ exo @500, 2 dga) s, (0) o 0
»

[If we could first carry out the integration over y, then we would obtain § y (p) = (p) dp .]
LEMMA 3.8. nn 85) = | % (p) = (p) dp; in particular, the integral (3.7) exists,
The following lemma plays a decisive role in the proof of Theorem 3.6,
LEMMA 3.9. 7 (85) = const-84.

Proof of Lemma 3.7. a) First we show that the Jacobian of the transformation from linear coordinates in

to the canonical coordinates p, q, and z is a function independent of p, The elements of the group P act on

¢ by unimodular transformations, since for ey the nonzero eigenvalues of the operator adx are partitioned
into pairs of numbers of opposite sign (p is admissible). Consequently, the elements of P preserve Lebesgue
measure on g* and (as any element of G) the measure dpdgdz. Therefore, the coefficient of proportionality A
of these two measures is constant on the orbits of P and its conjugates. In particular, A is constant on fibers.
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b) We denote the function 6z in the coordinates p, q, and z by 85 (p. g. z), and a test function by ¢. Then
Bg(pr ¢y 2), 9 = By, V1) = S%"ICP. Note that A~! is constant on &, and that the integration can be with respect
F

to the measure dp, which is proportional to Lebesgue measure since p is an affine coordinate.

Proof of Lemma 3.8. This is based on the formula @ (0, ¢, z) = { F* ® (2) - exp 2niz (0, ¢, z) dx for the
restriction of a generalized function ® on g* to the surface p = 0 (see [12]). In greater detail, if v = ¢(q, z) is
a finite function, then

(D (0, g, 2), 9> =[FID (z) (§ (exp 2niz (0, g, 2)) ¢ (g, 2) dg d) da. (3.8)

To define the operator = (85) by (3.3) we can use (3.8) instead of going over to the coordinates (p, q, z) to real-
ize the restriction operation, In our case @ = P (9) 85 and F1 @ = P (z)-exp 2ni <{f, 2>-8 (z), Here the integral
(3.8) converges (this is to be expected: we know in fact that in the coordinates p, q, z the restriction exists).
Actually, the inner integral in (3.8) is rapidly decreasing along p since it is the Fourier transformation of
d(p)o(d, z) whose wave front is transversal to p.

For the proof of the lemma we write F71® (z) = P (z) F! (8) and substitute (3.8) into (3.3). The resulting
series is exactly the same as (3.5) if we set ¥ = 8 Formula (3.5) is obtained by transforming (3.4), which is
equivalent to (3.7). QED.

Proof of Lemma 3.9. Since the integrand in [¥ (p) = (p) dp is multiplicative, under the translation p — pp
the integral is multiplied by x(p{) 7(py). But from the invariance of Haar measure it follows that the integral is
unchanged under a translation. Thus, if s(g, z) is a smooth function, then its image @ = n (84)s satisfies the
equation % (py) m (p,) ® = ®. That is, for every z &y (by differentiating along x) we obtain )_(t(x)@ + mE)e = 0,
We substitute the expressions for >_<t and m¢ and set © = Zt'®;. By equating the coefficients of powers of t to
zero, we obtain

2mi [f (&) — vy (¢, D)1 D = luy (9,2)0/0g + Yytr ug (g, 2) — Yotryy ad 2] @, (3.9)

To simplify the analysis we assume that the coordinates of f are (0, 0, 0). We prove by induction that ¢y is
proportional to 6(q, z). Assume this is true for ¢ _;, then the right-hand side of (3.9) is zero. For ifz &y
then tryyad # = —tru; (0, 0) (Lemma 2.9) and ux * 6'(q, z) ==ux(q, z) * 6(d, z) [the coefficient of 86 /dq, which
is uyx (0, 0), vanishes]. Observing that fx) =x(0, 0, 0) = vx(0, 0), we rewrite (3.9) in the form [vx(q, z) — v (0,
0)]<1fk = 0, or extracting the linear part, in the form [dv¢ (0, 0) + 0(q, z)]®} = 0.

It follows from the definition of = (85) [see (3.3)] that & is proportional to some derivative of 6(q, z).
We need to show that this derivative has in fact order 0. Clearly, this will follow from the equality [dvx(0,0) +
0(q, z)]®) = 0 if the differentials dv, (0, 0), = € », generate the whole space of forms with the basis dq and dz.
Let x4, . . ., X4+ be a basis in y. It is enough to prove that the forms dvg; (0, 0) are independent. For this we
note that the functional dx(f) on ¢* coincides as an element of ¢ with x. Therefore the forms dx;(f) are inde-
pendent, but forz = b

dz (0, 0, 0) = 9z/8p-dp + 0z/8q-dq -+ Ox/dz-dz = dv, (0, 0),
since 3x /9p (0, 0) = ux(0, 0). QED,

Proof of Theorem 3.6. We rewrite the differential polynomials P(9) in the formula (3.3) for a represen-
tation 7, in the coordinates p, q, and z. Obviously, from Lemma 3.9 it follows that each term in the resulting
expression for m(¥) either contains a differential of ¥ with respect to p, or does not contain derivatives of ¥
at all, Therefore, if ¥ does not depend on p, then n(¥) = ¥ Zt'D;. In particular, a(l) = EtiDi. But 1 "arises"
from the identity in the enveloping algebra U (a,) , and so (1) =1,

THEOREM 3.10. The restriction of multiplication in Hto A is the same as the usual multiplication, In
particular, A is a commutative subalgebra in H.

Essentially, this asserts that if @, ¥ = 4, then in the series (3.1) for the product $°¥ there remains
only the first term. When & and ¥ are polynomials, by setting t = 1 we obtain Theorem 2.6.

Proof of Theorem 3.10. Let ¥, ¥,= A4 and ®= ¥-¥, — ¥,¥,. By Theorem 3.6, n (¥,o¥,) =a(¥;) X
 (Fy) =¥, ¥; = n (V,¥,); therefore, m($) = 0, If & = =tid{, then the coefficient of the zeroth power of t in m4(2)
is my(®g) = @40, q, z). Hence &, vanishes on the surface p = 0. Since this is true for an arbitrary canonical co-
ordinate system p, q, z, we have ¢, = 0, Now we divide ¢ by t. By repeating this argument we obtain ¢, = 0,
®, = 0, etc, Hence, ® =0,

Thus, the structure of the algebra H is described completely by:
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THEOREM 3.11, The mapping 7 is an isomorphism of the algebra H onto the algebra of formal differen-

tial operators of the form X @;-(¢-9/3g)* (the £; are formal functions of q and z) that send the subalgebra A
1==0
into operators of zero order.

To prove that the mapping is an epimorphism it is enough to construct functions #; such that n (P;) =
t-8/6q; . These can be easily chosen in the form $ =XY¥; (¢, 2) o z; + @ (g, z), where z; = g [then n (P) = Ny,
@, z) o mx;) + ®(g, z), where the w(xj) are known operators of the first order], The conclusion that 7 is a mono~
morphism follows from the next assertion, whose proof is omitted,

Proposition 3.12, a) If the orbit © is defined by the equation z = z,, then the kernel of the representation
mt,5 is the ideal in H generated by z — z.

b) The intersection of the kernels of LI (with respect to all &) is zero, QED.

4, Polarizations

In this section we are going to prove the various properties of polarizations used earlier., We discuss
the case of points in general position, i,e., points lying in the complement of some submanifold in ¢* (depend-
ing on the problem being considered). The set of these points is open and dense in g*

The proof of Theorem 2.2 is based on the following important result,

Proposition 4,1 (see [11])., If ¢ is an algebraic Lie algebra whose radical is nilpotent, then there exists
in the space g* an open everywhere dense G-invariant set consisting of closed orbits of maximal dimension.

COROLLARY 4.2, If g is an algebraic Lie algebra whose radical is nilpotent, then any polarization of
points in general position in g* satisfies Pukanszky's condition,

For suppose that f lies in a closed orbit and that y is a polarization of f; then the intersection of the orbit
with f + yL is closed in f 4 pi., But this intersection contains a fiber Pf dense in f 4 yL, QED,

Proof of the First Part of Theorem 2.2, Let 8 be a Lie algebra; then [g, ¢] is an algebraic Lie algebra
whose radical is nilpotent, The theorem holds for it. We take in g a chain of ideals

lg, 8] =60 T 81 T --- T8 T8 =8

such that dim g./8:., = 1. Let f & ¢*, and fj be the restriction of f to g;, where f;, is a point in general position
in g% We can choose a polarization p of f such that » ) ¢;is a polarization of f; for all i (see [7]). We prove
by induction on dim g; that the polarization p, = pNg, satisfies Pukanszky's condition.

Inductive Transition from g, to g. Let n: g* — g7 be a projection; then 7(f) = £, Since y, C p we have
a (f +pL) C f, + vi. Therefore, if I is some point of f + yL, then by the inductive hypothesis its projection is
carried into f; by an element from P;. Hence there is an element p such that pl — f,, = 0, i.e. (g, — an ideal
of codimension 1) x = p/— f is a character of g, and we need to send { + x into {.

Note that p sends 7 + pL into itself;therefore, pl = f -+ p+. Hence the functional x vanishes ony , and
consequently it is representable in the form x &) = f([a, x]), where ¢ = y. (Since by is a Lagrange subspace of g
relative to the form x, y = i([x, y1), every functional that vanishes on p has this form,)

The inductive step is completed by:
LEMMA., letae=yg, f = ¢*, and x(x) = £([a, X]) be a character on ¢, Then expa sends f into f + y.

For, (expa)f =f+af + /2a*f + ... =f+x +/2ay +... . Since y is a character, it is mapped into itself
under the action of a Lie algebra, Therefore, in the last sum there are only two summands. QED.

We do not give the proof of the second part of Theorem 2.2 because it is too involved,
The subsequent arguments are based on the following result of Duflo [5].

Proposition 4.3. Let P be a polarization of f < g*. If it satisfies Pukanszky's condition, then any torus
(algebraic) in P is conjugate to a torus lying in the stabilizer G(f) of f.

Proof. Under the action of the linear manifold f + L the torus T must have a fixed point. By Pukanszky's
condition there is an element from P that sends this point into f. Therefore, its stabilizer, which contains T, is
sent by conjugation into G(f). QED.,
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COROLLARY 4.4 (See [5]). Let 8 be algebraic and f be a regular point in g*, A solvable polarization of
f satisfying Pukanszky's condition is admissible (see Lemma 2.4).

Let P be a solvable polarization; clearly, it is enough to verify the condition for admissibility for semi-
simple elements, which by Proposition 4.3 can be assumed to lie in G({f). The algebra ¢(/) of the group G(f) is
commutative [1]; therefore, for z &= ¢ (f) , the nonzero eigenvalues of adx on » and y/g (f) coincide. To com-
pare the eigenvalues on g/y and p/g (f) we note that the form x, y — £([x, y]) defines a nonsingular duality be-
tween these spaces, and for z & ¢ (f) the operator adx preserves this form. QED,

COROLLARY 4.5. Let g be arbitrary. Every regular point in ¢* has an admissible polarization,

For the proof we consider the algebraic hull § of the algebra g. Let fbe a point in general position in
8*, and f be its restriction to g. We saw in the proof of Theorem 2.2 that we can construct a polarization »
of f satisfying Pukanszky's condition such thaty = $¢ is a polarization of f. Then (see Corollary 4.4), for all
z & p the nonzero eigenvalues of adx in §/f and § are of opposite sign. But adx sends § into g, therefore we
can replace g/% by ¢/» and i by ». Thus, p is admissible.

Now let f be an arbitrary point of g*. There is a sequence fj of points in general position that converges
to f. Every point fj has an admissible polarization p;. By going over to a subsequence, we may assume that v;
converges to some subalgebra p. If f is regular, then by dimensionality arguments p is a polarization of f,

Let z =y, and Q, () and @y (#) be characteristic polynomials of the operator adx in y and g¢/p, respec-
tively. The admissibility of y means that Q, (—t) = ¢"-Qy (). This property is preserved when we take the
limit,
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