
4. 

5. 

6o 

7. 

8. 
9. 

V. F. Gaposhkin (Gaposkin), " C r i t e r i a  for  the s t rong  law of la rge  numbers  for  some  c l a s s e s  of second-  
o rde r  s t a t ionary  p r o c e s s e s  and homogeneous r a n d o m  f ie lds ,"  Teor .  Veroyatn .  Ee P r i m e n . ,  2__~2, No. 2, 
295-319 (1977). 
V. F. Gaposhkin (Gaposkin), "A theorem onthe convergence  a lmos t  eve rywhe re  of a sequence of m e a -  
su rab le  functions,  and its appl icat ions to sequences  of s tochas t ic  in tegra l s ,  ~ Mat. Sb., 104 (16), 3-21 
(1977) [MATH. USSR Sb., 3_33, 1 (1977)]. 
R.  Duncan, "Pointwise  convergence  t heo rems  for  se l f -ad jo in t  and uni tary  con t rac t ions , "  Ann. P robab . ,  
5,  No. 4, 622-626 (1977). 
D. Burkholder  and Y. Chen, " I t e r a t e s  of conditional expectat ion o p e r a t o r s , "  P roc .  Am. Math. Soc. ,  1..~2, 
No. 3, 490-495 (1961). 
E.  Hille and R. S. Phi l l ips ,  Funct ional  Analys i s  and Semigroups ,  Am.  Math. Soc. Coll.  Publ . ,  3._~1 (1957). 
V. F. Gaposhkin (Gaposkin), "The local ergodic  t h e o r e m  for  groups of uni tary  o p e r a t o r s  and second-  
o r d e r  s t a t iona ry  p r o c e s s e s , "  Mat. Sb., 111, 249-265 (1980). 

METHOD OF ORBITS IN THE REPRESENTATION 

THEORY OF COMPLEX LIE GROUPS 

V. A .  G i n z b u r g  UDC 519.46 

1 .  I n t r o d u c t i o n  

The method of orbi ts  (see [2, 3, and 13]) or ig ina ted  as a method of cons t ruc t ing  a la rge  c lass  of uni tary  
r ep re sen t a t i ons  of an a r b i t r a r y  Lie group.  Each  r e p r e s e n t a t i o n  is defined by an orb i t  of the group in the space  
dual to its Lie a lgebra ,  and it  s e e m s  that  one can exp res s  in t e r m s  of an orb i t  the p rope r t i e s  of the c o r r e s p o n d -  
ing r ep resen ta t ion :  to ca lcula te  its c h a r a c t e r ,  the s p e c t r u m  of the r e s t r i c t i o n  to a subgroup,  etc.  

In the work  of the F rench  School,  the a lgebra ic  ve r s i on  of the method of orbi ts  is used  to study envelop-  
ing a l g e b r a s ,  the i r  c e n t e r s ,  and p r imi t ive  ideals  (i.e.,  the kerne ls  of i r r educ ib le  r ep resen ta t ions ) .  In p a r -  
t i cu la r ,  for  so lvable  Lie a l g e b r a s ,  they have succeeded  in desc r ib ing  the s t r u c t u r e  of the field of pa r t i a l  en-  
velopings of the a lgebra ,  and finding all i ts  p r imi t ive  ideals  (see [1, 4]). S imi la r  r e su l t s  a r e  p roved  by induc- 
tion on the d imension  of a Lie a lgebra .  This  method runs into diff icul t ies  when the Lie a lgeb ra  is unsolvable .  
Somet imes  these  diff icult ies  can be o v e r c o m e ,  but the c o m p l e x i t y  of the r e l evan t  proofs i n c r e a s e s  c o n s i d e r -  
ably. The d i r ec t  methods put fo rward  in the p r e sen t  a r t i c l e  al low us both to s impl i fy  the proofs of ce r t a in  
s t andard  t h e o r e m s ,  and to obtain new r e su l t s .  Our approach  is i n t e rmed ia t e  between the analyt ic  and a lgebra ic  
ones.  It is c lose  to the theory  of quantizat ion,  whose connection with the method of orb i t s  was d i scovered  by 
Kostant  [3]. 

We br ie f ly  s ta te  our main  r e su l t s .  We cons ider  the se t  of genera l i zed  functions concen t ra ted  on the iden-  
t i ty of a Lie group G. They f o r m  an a lgeb ra  under  convolution that is none o ther  than the enveloping a lgeb ra  
U (~) of the Lie a l geb ra  ~ co r re spond ing  to the group G. If G is R n, then the Fou r i e r  t r a n s f o r m a t i o n  e s t ab -  

l i shes  an i s o m o r p h i s m  between U (~) and a lgebras  of polynomials .  It turns out that  if  G is a r b i t r a r y ,  then there  
is a mapping (we denote it  by J) of the a lgeb ra  U (g) into the s e t  E [~*] of polynomials  on the dual space  g* of 
that  plays the s a m e  ro le  as the F o u r i e r  t r a n s f o r m a t i o n  in the above example .  By means  of J we c a r r y  over  the 
mul t ip l ica t ion f r o m  U (~) into E [~*] [i.e.,  we define it  by the fo rmula  ~ o ~F =.7 (j-loll . .7-1~) ]. When G = R n, 
this opera t ion  is the usual  product .  In the gene ra l  case  it sends  the space  of polynomials  into an a lgebra  H 
i somorph ic  to U (~). By going over  f r o m  U (g) to H we can cons t ruc t  a fa i r ly  la rge  commuta t ive  s u b a l g e b r a  in 
U (~): the co r respond ing  suba lgeb ra  in H cons i s t s  of al l  polynomials  cons tant  on spec i f ied  submanifolds  in 6".  

We i l lus t ra te  the cons t ruc t ion  of these  submanifolds  by the example  of the group G = SL (2, R). It can be 
v e r i f i e d  that  the orbi ts  of the act ion of G = SL (2, R) in g* that  is dual to the a s soc i a t ed  act ion in g a r e  h y p e r -  
boloids (or the i r  components)  in the t h r ee -d imens iona l  space  ~*. In a sui table  Ca r t e s i an  coord ina te  s y s t e m  
they a re  defined by the equations x 2 + y2 = z 2 + c. We cons ider  the domain  of the hyperboloids  of one shee t  
(c > 0). It is a s t andard  fac t  that such  a hyperboloid  has a s y s t e m  of l inear  g e n e r a t o r s  which can be chosen in 
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two ways. For each hyperboloid we fix one of these ways so that the systems chosen on near hyperboloids are 
compatible. We define A as the subspace of those polynomials that are constant on each linear generator of 

each hyperboloid. It turns out that A is a commutative subalgebra in H, and the operation in H coincides in A 

with the usual multiplication of polynomials. In other words, the restriction of the mapping y-~: C [S*] -+ U (S) 

to A is a homomorphism of algebras. 

We can choose a subalgebra A with these properties in the case of an arbitrary complex Lie group G. 
As a corollary we obtain the following result of Dufio (see [I, 5, and 8]): J is an isomorphism of the center of 
U (S) onto a ring of polynomials on S* invariant under G. For semisimple Lie algebras this fact was dis- 

covered by Harish-Chandra. 

We consider the representation ~2 of a Lie algebra ~ that corresponds to an orbit ~ in general position. 
We extend it to a representation of the algebra U (S) with H (by using J); we can regard ~ as a representation 
of H. Then it turns out that the elements of the commutative subalgebra A go over into diagonal operators. 
More precisely, ,v~2 can be realized in the space of cross sections of the bundle over ~, and it sends a func- 
tion ~ ~ A into the operator of multiplication by ~. In particular, the center of U (S) goes into scalar opera- 

tors: ~2(z) = J(z)I~2. 

Next we consider ,~Z as a unitary representation of a group G. The character of ~ is a generalized func- 
tion on G, which is closely connected with the b-function of the orbit ~. For orbits in general position we shall 
prove that tr ;~2 = j-I (5~) (supporting a conjecture of Kirillov). 

The material in this article is arranged as follows: the basic definitions, constructions, and theorems 
(with outlines of a part of the proofs) are gathered together in Sec. 2. The principal results are proved in Sec. 
3 by "deforming" Lie algebras and their representations. The proofs of assertions about polarization are pre- 
sented in Sec. 4. 

The main results of the present article were announced in [9]. The author is glad to have this oppor- 
tunity to thank A. A. Kirillov for stimulating discussions on the theory of representations. 

2. Definitions and Basic Results 

Let G be a connected complex Lie group, and ~ be its Lie algebra. The space ~* dual to ~ splits into 
orbits under the action of G dual to the associated action. Every G-orbit is a symplectic manifold. We recall 
the construction Of a 2-form on an orbit. In accordance with the action of G in ~*, to an element x ~ ~ there 
corresponds a vector field ~x (of an infinitesimal translation) touching the orbit. The value of a 2-form on the 
vector fields ~x and ~y at a point f is f([x, y]). 

A subalgebra ~ of ~ that is also a maximal isotropic subspace of the form f([x, y]) (defined on ~) is 
called a polarization of the functional f. It is a fact that if an orbit through f has maximal dimension (in which 
case f is called a regular point), then polarizations of f exist. If, e.g., ~ is semisimple and f is a functional 
dual to a vector in general position in a Cartan subalgebra, then ~ can be taken to be a Borel subalgebra. 

On an orbit containing f each polarization defines a Lagrange distribution in a neighborhood of f. To de- 
termine it we must consider the image of ~ under the mapping x ~ ~x(f) of the algebra ~ onto the tangent space 
to the orbit at f, and extend the resulting subspace to other points of the orbit. It can be verified that close 
to f the result does not depend on the method of extension and defines a G-invariant integrable Lagrangian 
fibration in a neighborhood of f. We obtain (locally) a partition of an orbit into fibers. Another method of ob- 
taining the fiber through f is to consider the orbits of f under the subgroup P corresponding to the algebra ~. 

It turns out [13] that every fiber is flplane." More precisely, let ~± be the subspaee of ~* consisting of 
functionals that annihilate ~. Then the following proposition holds. 

Proposition 2.1. The fiber Pf is an open dense set in the linear manifold ] -5 ~± whose complement is an 
algebraic submanifold in f -5 p± 

Proof. First of all, / -5 ~± is stable under P; therefore Pf ~__ f -5 ~i. We prove that Pf and / -5 ~ have 
the same dimension. For l~_~* we consider the formB z(x,y) ~ l([x,y]),x,y~. We setn=I/2rankBf; 
then the Lagrange manifold of Pf is n-dimensional. If the dimension of the kernel Bf is k, then dim ~ ~ 2n -5 k, 
and dim ~ ~ n-5 k, so that dim~± ~ dim~-- dim~ ~ n. 

In fact, the fiber Pf coincides with the set ~- of all those points / ~ / -5 ~± for which rankB/-> rankBf. 
For the dimension of a polarization decreases as rank Bf increases; hence ~ is a polarization of any point of ~-. 
Therefore, the P-orbits partition ~- into open sets. But ~- is connected since its complement is a complex 
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submanifold in f + ~± defined by the equation Bg/~.../~B¢ =0  (n factors) .  Consequently, 9- consists  of a single 
orbi t  Pf. QED. 

As a co ro l l a ry  we shall see that P~ ~ / 4- ~± almost  always (Theorem 2.2). 

Now we discuss the question as to when a Lagrange distribution definednear  to f can be extended to the 
whole orbit .  For  this it is neces sa ry  and sufficient that the Lagrange subspace at f is invariant  under the action 
of its s tabi l izer  G(f). This means that the subalgebra  ~ must  be stable under the associa ted action of the group 
G (f). We call such polarizations ~ global. [Let us note that ~ is t r ivial ly invariant  under a connected compo-  
nent of the group G(f) since its Lie algebra is contained in ~. Therefore ,  the problem of the global p roper ty  of 
polar izat ions only a r i ses  when G(f) is not connected.] 

We consider  the closed subgroup P# of those elements of G that send / + ~± into itseif. The Lie algebra 
of P# is ~ , and so the group P coincides with a connected component of P#. In par t icu lar ,  P is closed. In the 
proof of Proposi t ion 2.1 we saw that the fiber 9- consis ts  of all points l for which the rank of B l is a maximum. 
Consequently, P# coincides with a subgroup of elements of G that p rese rve  ~-. If ~ is a global polarizat ion,  
then P~ = G (f) • P, since P acts t r ivial ly on a fiber.  

In Sec. 4 we shall  prove 

THEOREM 2.2. Let f be a point in general  position in 8*. 

a) There is a polarization ~ sat isfying Pukanszky 's  condition: p~ = / 4- I~ a. 

b) If s tab i l izer  G (f) of f is commutat ive,  then there is a global polarizat ion ~ invariant  under G(f) and 
satisfying Pukanszky ' s  condition. 

It can be shown that if G is an algebraic  group and f is a point in general  position in 8",  then for G (f) to 
be commutat ive it is sufficient that the fundamental group of the orbit  containing f is commutative.  

F r o m  now on until the end of Sec. 3 we consider  the complex Lie a lgebra  .¢ as a rea l  one,  and denote by 
8" the space of real  functionals on 8 • 

We turn to the determinat ion of the mapping J that sends functions on G into functions on 8" ,  and consider  
the open se t  

{ x ~  g:  I the imaginary parts of the eigenvalues of adz  [ ~ }  

in g. Under the mapping exp: 8 --~ G this set  is mapped diffeomorphically onto its image W. For  a function ~o 
with support  in W, J(q)) is defined as follows: we need to map q) onto 8, by using exp, and then multiply by j (x) = 

detS (adx), where S (t) ----- ( exp (t/2) - exp ( -  t/2) )'o. t- By taking the Four ie r  t ransformat ion  of the result ing function, 

we obtain a rapidly decreas ing  function J(~o) on 8". In a s imi la r  way the mapping J is defined for general ized 
functions on W, and J sends general ized functions concentrated on the identity of the group into polynomials.  

The choice of f is explained as follows. Let / ~ 8*, ~ be a polarizat ion of f, 9- be a fiber through f, 
and 6e and 6~-be 5-functions of the manifolds P and ~- defined by the Haar measure  on P and by the Lebesgue 
measure  on ] 4- ~±, respect ively .  We consider  the charac te r  )~f of the group P (correct ly defined on P f~ W), 
whose differential is 2~i] (x) 1 / g  trg/~ ad x. Let ~f be the complex conjugate character .  

Proposi t ion 2.3. Let  the point ] ~ 8" be regular .  We can choose a solvable polarizat ion ~, so that J (~]. 
6p) = 6~-, and (~i.6p, q~> = <6o-, Y (qQ)> for every ~o with support  in W. If the algebra 8 is a lgebraic ,  then for 
we can take any polarizat ion sat isfying Pukanszky 's  condition. 

We are  going to prove that J (~f.6p) = 6~r (the second asse r t ion  is proved s imilar ly) .  On going over to the 
Lie a lgebra ,  ~f .  6p goes into 

exp (--2:~/] (x) -- i/2tr~/~ ad x).~p (x)/~t~ (x).6~, 

where p p  and tz G are  the Jacobians of the t ransformat ion  f rom P to ~ and f rom G to 8 ,  respect ively .  We must  
multiply this function by f(x) and compare  it with F -~ (6~) (F stands for the Four ie r  t ransformation) .  Since 
is a subset  of complete measure  in / ÷ ~2 , F-t  (6~) coincides with F -~ (6]+~±), which is equal to exp (--2~i] (X)). 
By. Now we only need to ver i fy  that 

~ta (x) = ? (x).~p (x).exp (--i/2 tr~/~ ad x) for x ~ .  

We use a lemma which is proved in Sec. 4. 
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LEMMA 2.4. If f is regular, then there is a solvable polarization ~ such that for all x ~ ~ , the nonzero 
eigenvalues of the operator adx in the spaces ~ and ~/~ are opposite in sign (with due regard for multiplicity). 

We call these polarizations admissible. 

Remark. The sense of the lemma is obvious when ~ is the Borel subalgebra of a semisimple algebra g, 

and x is an element of the Cartan subalgebra. 

By using the lemma and standard expressions for #G and #p (see [2]), we find that 

, t% ( z ) =  ~ (I ( ~  - ~) ~ ,  ~ ~,~ ~ , ](~)=H 

w h e r e  X r a n g e s  o v e r  the n o n z e r o  e igenva lues  of a d x  in ~. The a s s e r t i o n  is now obvious.  QED. 

Now we tu rn  to un i t a ry  r e p r e s e n t a t i o n s  of the g roup  G. Le t  P~ be a global  po l a r i za t ion  of ] ~ g*. We 
a s s u m e  tha t  the c h a r a c t e r  ×f is ex tended  ( f rom P (} W ) to the whole g roup  P#. in this ea se  we can define the 
r e p r e s e n t a t i o n  of  G induced  f r o m  the c h a r a c t e r  Xf of the subgroup  P# ,  i . e . ,  the r e p r e s e n t a t i o n  in the space  
of funct ions  on G that  s a t i s fy  the condi t ion  s (pg) = gf (P)'S (g), p ~ P %  g ~_ G. The g roup  G ac t s  in this space  
by r i gh t  t r a n s l a t i o n s .  We denote  this r e p r e s e n t a t i o n  by ~f. If i n s t ead  o f f  we take ano ther  point  of the s a m e  
o rb i t  and choose  the po l a r i z a t i on  of  i t  and c h a r a c t e r  obtained f r o m  P# and ×f by conjugat ion ,  then the r e su l t i ng  
r e p r e s e n t a t i o n  is equ iva len t  to wf. The  r e p r e s e n t a t i o n  ,~f is un i t a ry .  Its g e o m e t r i c a l  meaning  will  be accoun ted  
fo r  below,  but f i r s t  we ca l cu la t e  the c h a r a c t e r  of  ,~f. 

Le t  G be a com p lex  a l g e b r a i c  group~ f be a point  of an o rb i t  a of m a x i m a l  d imens ion ,  and G(f) be its 
s t a b i l i z e r .  We a s s u m e  that  the funct ional  2~if on the Lie a l g e b r a  of the g roup  Gff) is extended to a c h a r a c t e r  of 
G(f) [s ince G (/) C p c ,  this condi t ion  is n e c e s s a r y  for  the ex i s t ence  of a e h a r a e t e r  ×f of P'~]. Under  these  con-  
di t ions the fo l lowing t h e o r e m  holds (of. [14]). 

T H E O R E M  2.5. Le t  P# be a global  po l a r i za t i on  of f s a t i s fy ing  PukanszkyTs condit ion;  then the e o r r e -  
sponding representation ~f is defined. If 9~ is a positive definite finite function on G with support in W, and if 
the integral of the restriction of J(@ to f~ with respect to the measure induced by the symplectic structure 

exists, then the operator 7rf@) has the trace: 

tr ~] (qo) = ~ Y (qo). (2.5) 

P roo f .  This is based  on a s t a n d a r d  f o r m u l a  (see [2]) fo r  the c h a r a c t e r s  of  induced r e p r e s e n t a t i o n s  

br0" t f (q) )=  ~f ( S~,(p).~p(u-,pu,)dp)dtt. 
P . , \G  P ~  

It is not  d i f f icul t  to  show that  p~ ~_ W = P N W; t h e r e f o r e ,  the inner  in t eg ra l  r e d u c e s  to an i n t eg ra l  ove r  P.  
By making  the subs t i tu t ion  w -- u -  pu it  r e d u c e s  to (X~¢.Su-~p~, ~>, which  by P r o p o s i t i o n  2.3 is equal  to < 5 ~ ,  

Thus we obtain the express ion  S (S in whieh the inner integral is over fibers and the outer 
P=~-~G uO" 

over  a s e t  of  f ibe r s .  This  r e p e a t e d  i n t eg ra l  def ines  a G - i n v a r i a n t  m e a s u r e  on an o rb i t  that  consequen t ly  only 
d i f fe rs  f r o m  the s y m p l e c t i c  m e a s u r e  by a mu l t ip l i e r .  To evalua te  this mul t ip l i e r  we c o m p a r e  both m e a s u r e s  
at  f. We ident i fy  the tangent  space  to P~ \ G at  f with a/b; then to the m e a s u r e  def ined by the r e p e a t e d  in t eg ra l  
t h e r e  c o r r e s p o n d s  a vo lume  f o r m  on an orb i t ,  which  is equal  to ~ ,/~ ~i+~: at  f. He re  ~a,,~ and ~+~. a r e  
L e b e s g u e  vo lume  f o r m s ,  and the f o r m  on ] ÷ ~ '  is  obta ined  as fo l lows:  we identify ~- with the space  dual to 
~/~ and take on it  the f o r m  ~ t~  dual  to ~a/~ (this is a p r o p e r t y  of the F o u r i e r  t r a n s f o r m a t i o n ) .  Thus ,  we m u s t  

c o m p a r e  the f o r m  ~,~ A ~ wi th  the s y m p l e c t i c  vo lume f o r m  on the tangent  space  to the orbi t .  We choose  
xt . . . . .  x~, g~ . . . . .  y ,  ~ ~ so  that  the func t iona ls  f([xi, "]),  . . . .  f([Yn, "]) f o r m  a s y m p l e c t i c  bas is  fo r  the t an -  

gent  space .  C l e a r l y ,  the l a s t  n of the funct ionals  f o r m  a bas i s  in g/'~ dual  to the bas i s  x l ,  . . . .  Xn in a/~. T h e r e -  
fo r e ,  in the c o o r d i n a t e s  ql ,  • • • ,  qn,  Pl, • • • ,  Pn c o r r e s p o n d i n g  to our  bas is  on the tangent  s p a c e ;  we have 
p~s/~ = d q ~ / \ . . .  / \  dq~ and ~t~U ~- = dp~ / \ . . .  : /~  dp,~ ; the i r  p roduc t  is a s y m p l e c t i c  vo lume  fo rm.  

R e m a r k .  In fac t  we have used  not the a l g e b r a i c  na tu re  of g but the admis s ib i l i t y  of  a po la r i za t ion  V • 

We c o n s i d e r  a s m a l l  domain  c o n s i s t i n g  of  points  in g e n e r a l  pos i t ion  in g*.  It sp l i t s  into o rb i t s ,  e ach  of 
which  is s t r a t i f i e d  into f i be r s .  We choose  the f ib ra t ions  on orb i t s  to be ana ly t i ca l ly  dependent  on an o rb i t  (in 
the domain  in ques t ion) .  F o r  this it is su f f i c i en t  to  c o n s t r u c t  an ana ly t ic  mapping  s: ] ~ ~f a s s o c i a t i n g  with a 
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point  f i t s  p o l a r i z a t i o n ,  and c o m p a t i b l e  wi th  the a c t i o n  of G; i f  l = gf ,  then ~z = Ad- ig  (~!). We c o n s i d e r  the 
man i fo ld  of  p a i r s  (L ~), w h e r e  f is  a r e g u l a r  po in t  in 8", and ~ is  a p o l a r i z a t i o n  of f ( a d m i s s i b l e  in the s e n s e  of 
L e m m a  2.4) tha t  s a t i s f i e s  P r o p o s i t i o n  2.3.  The p r o j e c t i o n  if, ~) ~ / of th is  m a n i f o l d  in to  8" c o m m u t e s  wi th  
the  a c t i o n  of G. To c o n s t r u c t  the m a p p i n g  s i t  is  s u f f i c i e n t  to t ake  a c r o s s  s e c t i o n  of th is  p r o j e c t i o n  tha t  c o m -  
m u t e s  wi th  the a c t i o n  of  G. C l e a r l y ,  we can  c h o o s e  a s u f f i c i e n t l y  s m a l l  d o m a i n  U on wh ich  a c r o s s  s e c t i o n  
e x i s t s .  We ob ta in  a p a r t i t i o n  of U into  f i b e r s .  L e t  A deno te  the a l g e b r a  of a l l  p o l y n o m i a l s  on 8" which  a r e  
c o n s t a n t  on e a c h  f i b e r  in U. 

T H E O R E M  2.6.  The r e s t r i c t i o n  of the m a p p i n g  J-~: C [~*] -+ U (8) to A is  a h o m o m o r p h i s m  of a l g e b r a s .  

The a l g e b r a  A is  f a i r l y  l a r g e ,  i t  c o n t a i n s  a l l  i n v a r i a n t  and s e m i i n v a r i a n t  (see [7]) p o l y n o m i a l s .  

COROLLARY (see  [5, 7]). The mapp ing  J m a p s  the c e n t e r  ( r e s p e c t i v e l y ,  s e m i c e n t e r )  of  the  a l g e b r a  U (~) 
i s o m o r p h i c a l l y  onto the r i n g  of i n v a r i a n t  ( r e s p e c t i v e l y ,  s e m i i n v a r i a n t )  p o l y n o m i a l s  on ~*. 

We tu rn  the s p a c e  of p o l y n o m i a l s  on g* into  an a l g e b r a  (denoted by H; s e e  Sec .  1), by c a r r y i n g  o v e r  
m u l t i p l i c a t i o n  f r o m  U (8) wi th  the he lp  of the  ma pp ing  J .  T h e o r e m  2.6 can  be r e s t a t e d  as  fo l l ows .  

The r e s t r i c t i o n  of the o p e r a t i o n  in H to the s u b s p a c e  A c o i n c i d e s  wi th  the u s u a l  m u l t i p l i c a t i o n  of p o l y -  
n o m i a l s .  In p a r t i c u l a r ,  A is  a c o m m u t a t i v e  s u b a l g e b r a  in H. 

R e m a r k .  The  s m o o t h  func t ions  on 8" f o r m  a L ie  a l g e b r a  wi th  r e s p e c t  to the P o i s s o n  b r a c k e t  (see  [6, 10]). 
The b r a c k e t  of the func t ions  • and  '~ i s  de f ined  a s  the func t ion  {q), T}: / ~+ / ([d(I) s, dT'j]) , o r ,  a l t e r n a t i v e l y ,  t h e  
r e s t r i c t i o n  of  the func t ion  {alP, W} to e a c h  o r b i t  i s  equa l  to the P o i s s o n  b r a c k e t  ( r e l a t i v e  to the s y m p l e c t i c  s t r u c -  
t u r e  on the o rb i t )  of the r e s t r i c t i o n s  of  • and ~.  The s e t  of func t ions  tha t  a r e  c o n s t a n t  on f i b e r s  is  a m a x i m a l  
c o m m u t a t i v e  s u b a l g e b r a  of  the L ie  a l g e b r a  Ca (8*)" The  p a r t  of this  s u b a l g e b r a  c o n s i s t i n g  of p o l y n o m i a l s  is  A.  

We r e t u r n  to r e p r e s e n t a t i o n s .  The a c t i o n  of the L ie  a l g e b r a  8 in the G ~ r d i n g  s p a c e  of the r e p r e s e n t a t i o n  
7rf is  e x t e n d e d  to a r e p r e s e n t a t i o n  of  the e n v e l o p i n g  a l g e b r a  U (8), w h i c h  we iden t i fy  wi th  H. F o r  e v e r y  func t ion  
q, on 8" we denote  by ~G the func t ion  ~G(g) = q~(gf) on G. 

T H E O R E M  2.7.  If  W ~ A ,  then the o p e r a t o r  ~f(~) is  the s a m e  as  a m u l t i p l i c a t i o n  by ~G.  

C O R O L L A R Y  (see  [5]). If z is  an  e l e m e n t  f r o m  the c e n t e r  of the e n v e l o p i n g  a l g e b r a ,  then ,xf(z) is  the 
o p e r a t o r  of  m u l t i p l i c a t i o n  by the va lue  of  the p o l y n o m i a l  J(z)  a t  f. 

The i d e a  behind  the p r o o f  of  T h e o r e m  2.7 is  tha t  we m u s t  c h e c k  i t s  v a l i d i t y  not  for  p o l y n o m i a l s  but  fo r  the 
5 - f u n c t i o n s  of  the s e p a r a t e  f i b e r s ,  s i n c e  a l l  func t ions  c o n s t a n t  on f i b e r s  a r e  " f o r m e d "  f r o m  them.  By P r o p o -  
s i t i o n  2 .3 ,  the g e n e r a l i z e d  o p e r a t o r  c o r r e s p o n d i n g  to 5s  u n d e r  the r e p r e s e n t a t i o n  ~rf is  ~ n l ( p ) ~ 1 ( p ) d p .  In the 
nex t  s e c t i o n  we g ive  a m e a n i n g  to th is  (d ivergen t )  e x p r e s s i o n  and e v a l u a t e  i t .  P 

The  g e o m e t r i c a l  c o n s t r u c t i o n  of the  r e p r e s e n t a t i o n  ,7f was  po in ted  out  by K os t a n t  [3]. We c o n s i d e r  a o n e -  
d i m e n s i o n a l  H e r m i t i a n  bundle  o v e r  the o r b i t  ~ (con ta in ing  f) w i th  a c o n n e c t i o n  ~7 whose  c u r v a t u r e  is  a s y m ,  
p l e c t i c  f o r m  on ~2 m u l t i p l i e d  by - 2 ~ i .  We def ine  a r e p r e s e n t a t i o n  of  ~ in the s p a c e  of s m o o t h  c r o s s  s e c t i o n s  
tha t  a r e  c o v a r i a n t l y  c o n s t a n t  a long  the f i b e r s  of ~ .  To de f ine  a s c a l a r  p r o d u c t  in th is  s p a c e  i t  is  s u f f i c i e n t  to 
t ake  the m e a s u r e  on the s e t  of f i b e r s  ( ~  Pv  \ G). Wi th  an  x ~ 8 we a s s o c i a t e  the s k e w - H e r m i t i a n  o p e r a t o r  

~ (x) = ( V ~ -  V~*) -~ 2~i . x .  (2.7) 

The s e c o n d  t e r m  is  the o p e r a t o r  of m u l t i p l i c a t i o n  by the func t ion  w h i c h  i s  the r e s t r i c t i o n  to ~ of  a l i n e a r  f u n c -  
t i o n a l  on $* ( c o r r e s p o n d i n g  to x) .  Then  ~x i s  the f i e ld  on the o r b i t  c o r r e s p o n d i n g  to the  a c t i o n  of x ,  and  ~7" x i s  
the d i f f e r e n t i a l  o p e r a t o r  dua l  to ~7~x. It  is  e a s i l y  v e r i f i e d  tha t  7r~2 is  a r e p r e s e n t a t i o n  of g ,  and tha t  i t  is  e q u i v -  
a l e n t  to ~f. 

Le t ,  e . g . ,  g be a L ie  a l g e b r a  wi th  a b a s i s  p,  q ,  and z ,  w h e r e  z i s  a c e n t r a l  e l e m e n t ,  and [p, q] = z (the 
H e i s e n b e r g  a l g e b r a ) .  To the o r b i t  de f ined  by the equa t ion  z = 1 t h e r e  c o r r e s p o n d s  a r e p r e s e n t a t i o n  in the s p a c e  
of  func t ions  of q (in th is  c a s e  the bundle  i s  t r i v i a l ) :  

(p) = O/Oq, zc (q) = 2~iq, n (z) = 2:~i. (2.8) 

L e t  8 be a r b i t r a r y  and ~ be an  o r b i t  in  8" .  We i n t r o d u c e  on the i n t e r s e c t i o n  of ~l w i th  the s m a l l  d o m a i n  U c o -  
o r d i n a t e s  pt ,  . . . ,  Pn, q l ,  . . . .  qn (they e x i s t  by D a r b o u x ' s  t h e o r e m )  in w h i c h  a s y m p l e c t i c  f o r m  has  the  c a n o n -  
i c a l  f o r m  dp /% dq,  and the func t ions  q~ . . . . .  qn a r e  c o n s t a n t  on f i b e r s .  U n d e r  the r e s t r i c t i o n  to a s m a l l  n e i g h -  
b o r h o o d ,  the  bundle  o v e r  an  o r b i t  b e c o m e s  t r i v i a l .  T h e r e f o r e ,  the  r e p r e s e n t a t i o n  ~rit c a n  be r e a l i z e d  in  f u n c -  
t ions  o f q t ,  . . . .  qn. I t  t u r n s  out  tha t  the o p e r a t o r  n~t(x) i s  de f i ne d  in f ac t  by the  s a m e  f o r m u l a e  (2.8) a s  fo r  the  
H e i s e n b e r g  a l g e b r a .  
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Proposition 2.8. a) An element x ~ g defines a function on ~ (the restriction of a functional on g* ) 

which in the coordinates p, q is of the first degree in p: x(p, q) = u(q)p + v(q). 

b) Under a suitable trivialization of the bundle, the operator ~(x) goes into 

~ (x) = i/2 [u (q).&~Oq ~,- O/Sq.u (q)] -- 2~iv (q), (2.9) 

i.e., it is obtained from x(p, q) by replacing p by 0/aq and by symmetrization. 

This is a "physical" explanation as to why we must consider these induced representations. 

Proof. a) Under the action of the group G, functions constant on fibers go into functions constant on 

fibers. Therefore, if x ~ g, ~ is the corresponding field, and ~ is a function of q, then ~x ~ does not depend 
on p. But ~ F  ~ {x, ~}  = Ox/Op.(~W/Oq) --  (c~x:Oq).(O~F/Op) = (~)x/Op).(OT(q)/@) . Since  4, = ~2(q) is  a r b i t r a r y  we f ind 

tha t  a x / a p  does  not  depend  on p. 

b) We t r i v i a l i z e  the bundle  by us ing  a c r o s s  s e c t i o n  c o v a r i a n t l y  c o n s t a n t  a long  f i b e r s .  On the f i e ld  ~ the 
c o n n e c t i o n  ~7 t a k e s  the f o r m  ~ = ~ + c~ (~), w h e r e  the d i f f e r e n t i a l  1 - f o r m  ~ is  equa l  to the  c u r v a t u r e  of the 
bundle .  In c a n o n i c a l  c o o r d i n a t e s  the  c u r v a t u r e  is  - 2 ~ i  dp / \  dq,  so  tha t  ~7~ = ~ - 2 ,~ip dq(4) -- ~ ~, w h e r e  0 is  
s o m e  func t ion  of q. We r e m o v e  0 by chang ing  the t r i v i a l i z i n g  c r o s s  s e c t i o n .  We e x p r e s s  x ~ ~ in  t e r m s  of 
c o o r d i n a t e s :  x(p ,  q) = u(q)p + v(q); then ~x = u(q) .  ~ / Ù q -  3 x / a q .  ~ / 3 p ,  and ~7~x = ~ x -  2~iu(q)p.  I t  is  e a s y  to s e e  
tha t  o p e r a t o r s  (2.7) and (2.9) c o i n c i d e  on func t ions  of q. QED. 

F o r m u l a  (2.9) is  v e r y  i m p o r t a n t  fo r  wha t  is  to fo l low.  The f ac t  tha t  i t  d e f i ne s  a r e p r e s e n t a t i o n  of the 
a l g e b r a  ~ can  be r e a d i l y  v e r i f i e d .  We r e m a r k  tha t  r e p r e s e n t a t i o n  ~ de f ined  by (2.9) is  mean ing fu l  fo r  any 
o r b i t  ~ ;  we do not  need  to w o r r y  about  the e x i s t e n c e  of the c o r r e s p o n d i n g  i nduced  r e p r e s e n t a t i o n  of the group  

G. 

We r e w r i t e  (2.9) in  the f o r m  ~ ( x )  = u(q) a / a q  + 2~iv(q) + 1/2 • t r  u ' (q) ,  t 

LEMMA 2.9. If the poin t  f has  c o o r d i n a t e s  (P0, q0), ~ is  a p o l a r i z a t i o n  of f ,  and x ~ ~, then  tr u'  (%) = 

--tr~/~ ad x. 

F o r  the p r o o f  we iden t i fy  ~/~ wi th  the f a c t o r - s p a c e  of the t angen t  s p a c e  to the o r b i t  wi th  r e s p e c t  to the 
L a g r a n g e  s u b s p a e e .  The  v e c t o r s  3 / S q j  (of the p, q c o o r d i n a t e  s y s t e m )  f o r m  a b a s i s  in i t .  We a r e  going  to c a l -  
c u l a t e  the t r a c e  of the o p e r a t o r  a d x  in th is  b a s i s .  I t  can  be v e r i f i e d  tha t  the i m a g e  of 5 / 3 q i  u n d e r  a d x  c o i n c i d e s  
(modulo  the  L a g r a n g e  s u b s p a c e )  wi th  the c o m m u t a t o r  of  the f i e ld  ~x and ~ / 0 q i  a t  f. By e x p r e s s i n g  ~x in the c o -  
o r d i n a t e s  p and q we ob ta in  an e x p r e s s i o n  fo r  the t r a c e  - EOui /Oqi .  QED.  

3 .  A l g e b r a  ~t 

The  a i m  of th is  s e c t i o n  is to p r o v e  T h e o r e m s  2.6 and 2.7. 

A l o n g s i d e  the a l g e b r a  9 we c o n s i d e r  the L ie  a l g e b r a  ~t ob ta ined  f r o m  9 by m u l t i p l y i n g  the c o m m u t a t o r  
in ~ by the n u m b e r  t. We c o n s t r u c t  in t e r m s  of  9t a L ie  g r o u p  Gt ,  a m a p p i n g  J t ,  and an a s s o c i a t i v e  a l g e b r a  Ht,  
s i m i l a r  to the  way  th is  was  done fo r  the  a l g e b r a  9 • The a l g e b r a  H t as  a v e c t o r  s p a c e  i s  the s p a c e  C [~*] of 
p o l y n o m i a l s .  F o r  t = 0 the L ie  a l g e b r a  ~t i s  c o m m u t a t i v e ,  t h e r e f o r e  J0 c o i n c i d e s  wi th  the F o u r i e r  t r a n s f o r -  
m a t i o n ,  and H 0 wi th  the  a l g e b r a  of p o l y n o m i a l s  on ~*. Thus ,  the f a m i l y  {Ht} is  a d e f o r m a t i o n  of the a l g e b r a  of 
p o l y n o m i a l s  H0 = C [~*]. As  we s h a l l  s e e ,  the d e p e n d e n c e  on t of  the p r o d u c t  of  two p o l y n o m i a l s  in Ht is  g iven  
by 

(I) °t ~F --  ~ W  Jr tB~ (~,  W) + t2B~ (cI), ~)  ~- . . . .  (3.1) 

w h e r e  the  B i (¢  , q() a r e  b i d i f f e r e n t i a l  o p e r a t o r s  on g* ( i . e . ,  c o m b i n a t i o n s  of d e r i v a t i v e s  of ¢ and ~ tha t  a r e  
l i n e a r  in • and in ~) wi th  p o l y n o m i a l  c o e f f i c i e n t s ,  and  for  e v e r y  ¢ and ~ the s u m  (3.1) c o n t a i n s  only a f in i t e  
n u m b e r  of  n o n z e r o  t e r m s .  

The f o r m u l a  (3.1) is  v e r i f i e d  m o s t  s i m p l y  when • and • a r e  not  p o l y n o m i a l s  but  the e x p o n e n t i a l s  of l i n e a r  
f o r m s  on 9*. Wi th  e a c h  x ~ 9 we a s s o c i a t e  a func t ion  on 9* of the f o r m  E~: [ ~ exp 2hi <f, x ) .  The mapp ing  
J - t  s e n d s  E x in to  ]-~ ( x ) . 5 ~  (exp: 9--~ G is  the e x p o n e n t i a l  mapp ing) .  If x, g ~ g,  then  the convo lu t i on  b e x p x *  
6 e is  equa l  to o x p y  6 e x p x . e x p y  = 6 e x p z ( x , y ) ,  w h e r e  z(x ,  y) i s  a C a m p b e l l - H a u s d o r f f  s e r i e s .  T h e r e f o r e ,  E x 
E y  = j - l (x )  • j - l ( y ) . j  (z(x, y ) ) E z ( x , y  ). A s i m i l a r  r e l a t i o n  is  t r ue  in 9t; by expand ing  the r i g h t - h a n d  s i d e  as  a 
power  s e r i e s  in t ,  i t  c an  be r e a l i z e d  tha t  the c o e f f i c i e n t  of  a f ixed  p o w e r  of  t is  a func t ion  on ~* of the f o r m  
f ~ Px,y(f )Ex+y(f)  , w h e r e  P x , y  i s  a p o l y n o m i a l  whose  c o e f f i c i e n t s  a r e  p o l y n o m i a l s  in x and y.  In o r d e r  to put  

$ t ru ' ( q )  s t a n d s  fo r  E 0 u i / S q i .  
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this e x p r e s s i o n  in the f o r m  (3.1) we need to r e m o v e  the dependence  of the coef f ic ien ts  of  Px ,y  on x and y. F o r  
this we mus t  r ep l ace  Ex+y by p roduc t s  of  sui table  de r iva t ives  of E x and E y  (e.g., the monomia l  x rySEx+y  by 
0rE x/0f r • ~SEy/3fs). 

The above reasoning is not completely rigorous. A method of obtaining a rigorous proof (from other 
considerations) will be mentioned later. 

We call a formal power series in t whose coefficients are analytic (respectively, smooth, generalized, 
etc.) functions on a set X a formal analytic (respectively, smooth, generalized, etc.) function on X. Let U be 
a neighborhood of a point in general position in ~* and H be the space of formal analytic functions on U. The 
right-hand side of (3.1) is meaningful as a formal function for any formal functions qb, W ~/I. Having defined 
a multiplication in fl in this way, we obtain an associative algebra, which can be regarded as a deformation of 
the algebra of analytic functions on U. 

We fix canonical coordinates p, q on an orbit ~. By associating with an analytic function • on U the oper- 
ator of multiplication by ~(0, q) (we are restricting ~ to fD, we obtain a representation of the algebra of ana- 
lytic functions in the space of functions constant on fibers of g~. Then we construct a representation of fl which 
is a deformation of this representation. 

First we define a representation of the Lie algebra 9t (for every t) by adjusting the formula (2.9), 

~t,~ (x) = t . u  (q).O/Oq -~- 2niv (q) ~- t.1/2 tr u' (q). (3.2) 

Note that  ~t ~2 (x) = 27fix(0, q) fo r  t = 0. A r e p r e s e n t a t i o n  of the Lie a l geb ra  9t defines a r e p r e s e n t a t i o n  of  the 
a l g e b r a  H t ~as was  explained in Sec.  2); we denote  i t  by '~t,~2. We a r e  going to prove  that  for  a polynomial  
W ~ H t ,  the o p e r a t o r  '~t,~ (~) is a po lynomia l  in t: 

gt,~ (T) = ~F (0, q) q- t.g~ (~F) + t2.~2 (~F) + . . . .  (3.3) 

w h e r e  ~i(~) is a s u m  of e x p r e s s i o n s  of the f o r m  [P(0)~](0,  q) • D. Here  P(3) is a d i f fe ren t ia l  po lynomia l  on 9" ,  
and D is a d i f fe ren t ia l  o p e r a t o r  in the space  of funct ions in q that  a r e  independent  of  ~. We take this f o r m u l a  
as the def ini t ion of  the r e p r e s e n t a t i o n  of the a l g e b r a  H, a s s u m i n g  that  t is a f o r m a l  va r i ab le  and ~ a f o r m a l  
funct ion.  The pa s s age  f r o m  the c o m m u t i n g  o p e r a t o r s  7r0(~') = ~(0, q) to the noncommut ing  o p e r a t o r s  ,~t(~) can 
be r e g a r d e d  as  a quan t iza t ion  p r o c e d u r e ;  the p a r a m e t e r  t plays the ro l e  of  P l a n c k ' s  cons tan t ,  and ~I an a lgeb ra  
of  o b s e r v a b l e s .  

We prove  (3.3). Suppose that  the po lynomia l  ~F ~ H t ; then j [ l ( ~ )  is c o n c e n t r a t e d  at the ident i ty  of the 
g roup  Gt, and by def ini t ion (we omi t  the indices  t and ~2) u (T) = .I~ (g) J-~ ~F (g) dg ( integrated over  Gt). Bea r ing  
in mind that  u(expx) = exp ~(x) and that  j- l(~,)  = exp .  ( j - l .  F - I ~ ) ,  we obtain 

(W) = I exp nt (x). j7 i (x). ~t (x). F-i~F~(x) dx, (3,4) 
S 

w h e r e  Pt  is the J acob ian  of the t r a n s f o r m a t i o n  f r o m  G t to 9 .  We  expand the funct ions j [ l  and P t  under  the in te -  
g r a l  s ign  as power  s e r i e s  in t. It is c l e a r  f r o m  the defini t ion of  these  funct ions that  the coef f ic ien t  of t k is a 
po lynomia l  in x with homogeneous  t e r m s  of deg ree  not  l ess  than k. We cal l  these  s e r i e s  d e c r e a s i n g .  

The o p e r a t o r  exp ~t(x) in (3.4) is not  a d e c r e a s i n g  s e r i e s .  However ,  we can e x t r a c t  f r o m  it a mul t ip l i e r  
exp2~iv  x independent  of  t [the funct ion vx(q) is defined f r o m  the expans ion  x = x(p,  q) = ux(q)P + vx(q)] so  that  
the r e m a i n d e r  is a d e c r e a s i n g  s e r i e s .  F o r  if  exp ~(x) = (exp2~ivx) • B, whe re  B = exp ( -2~ivx)  • exp ~(x), then by 
the C a m p b e l l - H a u s d o r f f  f o r m u l a ,  B = exp ( - 2 ~ i v  x + ~ ( x ) -  ~/2[2,Vivx, ~(x)] + . . .  ). The r e p e a t e d  c o m m u t a t o r s  
of  ~(x) and 2~ivx that  conta in  2~ivx(q) m o r e  than once a r e  z e r o ,  s ince  ~{x) is a f i r s t - o r d e r  d i f fe ren t ia l  o p e r a t o r .  
C o m m u t a t i o n  with ~(x) i n c r e a s e s  the deg ree  in t and in x by 1 ; t h e r e f o r e  the s e r i e s  under  the exponent ia l  and 
s o t h e  e x p o n e n t i a l i t s e l f a r e  d e c r e a s i n g .  T h e  e x p r e s s i o n  for  ~(~) takes the f o r m  

(~F) - -  ~ (exp 2~iv~).B-]~i. t~t .f-i~F (x) dx. (3.5) 

We g roup  all  the mul t ip l i e r s  a p a r t  f r o m  the f i r s t  and las t  in a s ingle  d e c r e a s i n g  s e r i e s ,  d i s t inguish ing  its de -  
pendence  on t and x by wr i t ing  it in the f o r m  z t iP i (x ,  D), whe re  Pi(x,  D) is a d i f fe ren t ia l  o p e r a t o r  in funct ions 
of q whose  coef f ic ien t s  a r e  po lynomia l s  in x.  

The funct ion (exp 2~iv x) • F - t~ (x )  on 9 i s  c o n c e n t r a t e d  at  0, and is t h e r e f o r e  a combina t ion  of de r iva t ives  
of a 5- funct ion .  By apply ing  this funct ion to a d e c r e a s i n g  s e r i e s ,  we obtain a t e rmina t i ng  sum.  Consequen t ly ,  

~rt, ~ (~) is a po lynomia l  in t. 
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To obtain (3.3) we now only need to replace Vx(q) by x(0, q) in the equality 

(iF) = ~ t  ~ ~ (exp 2niv~).P~ (x, D).F -1 tF (x) dx 

and to a p p l y  the i n v e r s i o n  f o r m u l a  of the F o u r i e r  t r a n s f o r m a t i o n .  QED.  

R e m a r k .  F o r m u l a  (3.1) fo r  m u l t i p l i c a t i o n  in H t i s  p r o v e d  in a s i m i l a r  way .  

We c o n s i d e r  the s u b s p a c e  ,~ in ~t c o n s i s t i n g  of  f o r m a l  func t ions  c o n s t a n t  a long  f i b e r s .  

T H E O R E M  3.6. If  F" ~ A ,  then  nt,~Z(~') is  the o p e r a t o r  of m u l t i p l i c a t i o n  by ~ l ~ .  

Th is  m e a n s  tha t  when we s u b s t i t u t e  func t ions  f r o m  A into  the s e r i e s  (3.3) fo r  ~ t ,~ ,  a l l  the t e r m s  a p a r t  
f r o m  the f i r s t  v a n i s h ,  i . e . ,  the  q u a n t u m  o p e r a t o r  ~t(~) c o i n c i d e s  wi th  the c l a s s i c a l  ~0(~). In p a r t i c u l a r ,  i f  th is  
func t ion  i s  a p o l y n o m i a l ,  then  by s e t t i n g  t = 1 we ob ta in  T h e o r e m  2.7.  [In fact ,  the o p e r a t o r s  ~f(~) and ~G a r e  
a n a l y t i c ,  and by T h e o r e m  3.6 they  c o i n c i d e  on an open s e t ,  n a m e l y ,  the i n v e r s e  i m a g e  of U in G.] 

To p r o v e  T h e o r e m  3.6 we m u s t  c h o o s e  c a n o n i c a l  c o o r d i n a t e s  on d i f f e r e n t  o r b i t s  c o m p a t i b l y .  I t  can  be 

shown tha t  t h e r e  a r e  a n a l y t i c  c o o r d i n a t e s  Pl, • • • ,  Pn, q l ,  • • • ,  qn,  z ; ,  . . . ,  z k in U s u c h  tha t :  

a) the o r b i t s  a r e  de f ined  by the equa t i ons  z = cons t ;  

b) the f i b e r s  a r e  de f ined  by the equa t i ons  z = c o n s t  and q = cons t ;  

c) the  r e s t r i c t i o n s  of p and q to e a c h  o r b i t  de f ine  c a n o n i c a l  c o o r d i n a t e s  on i t .  

In the new c o o r d i n a t e s ,  func t ions  c o n s t a n t  on f i b e r s  a r e  func t ions  of q and z .  I t  w i l l  be c o n v e n i e n t  to 
" p a s t e  t o g e t h e r "  the  r e p r e s e n t a t i o n s  '~t,~ of  fI c o r r e s p o n d i n g  to d i f f e r e n t  o r b i t s  ~Z into  a s i n g l e  r e p r e s e n t a t i o n  

in the s p a c e  of  f o r m a l  func t ions  of q and z .  The  a d d i t i o n  of the  z v a r i a b l e s  does  not  l e ad  to s i g n i f i c a n t  c h a n g e s ;  
e . g . ,  i n s t e a d  of [P(3)q'](0,  q) in (3.3) we m u s t  now w r i t e  [P(~)q] (0 ,  q,  z).  

We c o n s i d e r  a po in t  / ~  U, a f i b e r  ~- t h r o u g h  i t ,  and the g e n e r a l i z e d  func t ion  5~ on U. Le t  f have  c a n o n i -  
c a l  c o o r d i n a t e s  (P0, q0, z0). S ince  the  f i b e r  ~- is  d e f i n e d  by the equa t ions  z = z0, q = q0, then  i t  i s  r e a s o n a b l e  t o  
e x p e c t  t ha t  the  fo l lowing  l e m m a  ho lds .  

L E M M A  3.7.  In c a n o n i c a l  c o o r d i n a t e s  5~- i s  p r o p o r t i o n a l  to 6 ( q -  q0, z - z0). 

We i n t r o d u c e  o p e r a t o r  n (5~-), w h i c h  i s  g i v e n  by the g e n e r a l  f o r m u l a  (3.3) and s e n d s  a s m o o t h  funct ion  
s (q ,  z) in to  a f o r m a l  g e n e r a l i z e d  func t ion  on the s u r f a c e  p = 0. The o p e r a t i o n  of  r e s t r i c t i o n  to th is  s u r f a c e ,  
w h i c h  is  a v a i l a b l e  in  (3.3), i s  r e a l i z e d  as  fo l l ows :  we r e p l a c e  5~r by c o n s t .  0(q - q0, z - z 0) ( L e m m a  3.7) and 
s u b s t i t u t e  in to  the  r i g h t - h a n d  s i d e  of (3.3), w h i c h  is  a l s o  e x p r e s s e d  in the c o o r d i n a t e s  p,  q,  and z.  Then  we  s e t  

p = 0 .  

We c o m p a r e  th i s  d e f i n i t i o n  of n (5~-) w i th  the h e u r i s t i c  f o r m u l a  n (5~) = ~'X~ (p)n s (p) dp (see  the  i d e a  of 
the  p r o o f  of T h e o r e m  2.7) .  We c o n s i d e r  the J a c o b i a n  ~t of the mapp ing  exp: ~--~ Pt and the c h a r a c t e r  
Zt (x) =, 2~i/(x) --U 2. t.tr~/~ ad x as  f o r m a l  func t ions  on ~ ,  and i n t r o d u c e  the f o r m a l  o p e r a t o r  deno ted  s y m b o l i c a l l y  

by t' ~ (P) ~ (P) dp. This  o p e r a t o r  s e n d s  a s m o o t h  func t ion  s (q ,  z) in to  a f o r m a l  g e n e r a l i z e d  func t ion  on U. By 
d e f i n i t i o n ,  i t s  va lue  a t  a f in i t e  func t ion  ~ = ~(q, z) is  

f e x p , ,  (x ) ( !  exp ~ (x)s.~(q, z)dqd~)% (x)dx. (3.7) 

[If we cou ld  f i r s t  c a r r y  out  the  i n t e g r a t i o n  o v e r  p,  then  we would  ob t a in  ~ ~ (p) n (p) dp .] 

L E M M A  3.8.  n (5~) = iT. (p) n (p) alp; in p a r t i c u l a r ,  the  i n t e g r a l  (3.7) e x i s t s .  

The  fo l lowing  l e m m a  p l a y s  a d e c i s i v e  r o l e  in  the  p r o o f  of T h e o r e m  3.6.  

L E M M A  3.9. ~ (Sin) = const-Sm. 

P r o o f  of  L e m m a  3.7. a) F i r s t  we show tha t  the J a c o b i a n  of the  t r a n s f o r m a t i o n  f r o m  l i n e a r  c o o r d i n a t e s  in  
to  the  c a n o n i c a l  c o o r d i n a t e s  p,  q,  and z is  a func t ion  i n d e p e n d e n t  of p. The  e l e m e n t s  of the g r o u p  P a c t  on 

by u n i m o d u l a r  t r a n s f o r m a t i o n s ,  s i n c e  fo r  x ~ ~ the n o n z e r o  e i g e n v a l u e s  of  the  o p e r a t o r  a d x  a r e  p a r t i t i o n e d  
in to  p a i r s  of  n u m b e r s  of o p p o s i t e  s i g n  ( ~ i s  a d m i s s i b l e ) .  C o n s e q u e n t l y ,  the  e l e m e n t s  of  P p r e s e r v e  L e b e s g u e  
m e a s u r e  on ~* and (as any  e l e m e n t  of  G) the m e a s u r e  dpdqdz .  T h e r e f o r e ,  the c o e f f i c i e n t  of  p r o p o r t i o n a l i t y  
of t h e s e  two m e a s u r e s  i s  c o n s t a n t  on the o r b i t s  of P and i t s  c o n j u g a t e s .  In p a r t i c u l a r ,  h is  c o n s t a n t  on f i b e r s .  
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b) We denote the funct ion 5o- in the c oo rd ina t e s  p, q,  and z by 5~- (p, q, z),  and a t e s t  funct ion by ~. Then  

<5~(p, q, z), 9>----<5~, ~-l(p> __ ~ - 1 ~ .  Note that  h-1 is cons tan t  on 5", and that  the in t eg ra t ion  can  be with r e s p e c t  

to the m e a s u r e  dp, which is p ropo r t i ona l  to Lebesgue  m e a s u r e  s ince  p is an affine coord ina t e .  

P r o o f  of L e m m a  3.8. This is based  on the f o r m u l a  ¢p (0, q, z) ~ ./' F-1 (I) (x) • exp 2~ix (0, q, z) dx for  the 
r e s t r i c t i o n  of  a g e n e r a l i z e d  funct ion G on g* to the s u r f a c e  p = 0 (see [12]). In g r e a t e r  deta i l ,  if ¢ = ~(q, z) is 
a f inite funct ion,  then 

<(]) (0, q, Z), q)} = ~F-I(~ ) (x) (~ (exp 2~ix (0, q, z)) q~ (q, z) dq dz) dx. (3.8) 

To define the o p e r a t o r  n (~x) by (3.3) we can use  (3.8) in s t ead  of going ove r  to the c o o r d i n a t e s  (p, q, z) to r e a l -  
ize  the r e s t r i c t i o n  opera t ion .  In our  c a s e  qb = p (0) 6x and F -1 (I) = P (x).exp 2hi <f, x>.6~ (x). Here  the i n t e g r a l  
(3.8) c o n v e r g e s  (this is to be expec ted :  we know in fac t  that  in the c o o r d i n a t e s  p, q ,  z the r e s t r i c t i o n  exis t s ) .  
Ac tua l ly ,  the inne r  in teg ra l  in (3.8) is r ap id ly  d e c r e a s i n g  a long ~ s ince  it  is the F o u r i e r  t r a n s f o r m a t i o n  of 
6(p)~(q, z) whose  wave f ron t  is t r a n s v e r s a l  to ~. 

F o r  the p roo f  of the l e m m a  we wr i te  F - ~  (x) ~ P (x) F -~ (6x) and subs t i tu te  (3.8) into (3.3). The r e s u l t i n g  
s e r i e s  is exac t ly  the s a m e  as (3.5) if we se t  T = 6x.  F o r m u l a  (3.5) is obtained by t r a n s f o r m i n g  (3.4), which  is 
equ iva len t  to (3.7). QED. 

P r o o f  of  L e m m a  3.9. Since the in t eg rand  in ~X(p) n (p) dp is mul t ip l i ca t ive ,  under  the t r an s l a t i o n  p ~ PiP 
the i n t eg ra l  is mul t ip l ied  by ×(pl)~(pl). But f r o m  the i n v a r i a n c e  of  Haa r  m e a s u r e  it  fol lows that  the in t eg ra l  is 
unchanged  under  a t r ans l a t ion .  Thus ,  if s(q,  z) is a s m o o t h  funct ion,  then its image  ¢p = g (6~-)s s a t i s f i e s  the 
equat ion ~ (p,) g (Pl) q) = q~. That  i s ,  fo r  e v e r y  x ~ ~ (by d i f f e r en t i a t i ng  along x) we obtain Xt(x),P + ~t(x)G = 0. 
We subs t i tu te  the e x p r e s s i o n s  fo r  ~t and  ut and s e t  • = z t iGi .  By equat ing the coe f f i c i en t s  of  powers  of t to 
z e r o ,  we obtain 

2hi [ f ( x ) -  v~ (q, z)] (1)~ = lug: (q, z).O/Oq q- l/2 tr u~ (q, z ) -  i/o.tr~/~ ad x] qb~_ i. (3.9) 

To s impl i fy  the ana lys i s  we a s s u m e  that  the c o o r d i n a t e s  of f a r e  (0, 0, 0). We prove  by induct ion that  • k is 
p ropo r t i ona l  to" 5(q, z). A s s u m e  this  is t rue  fo r  Gk_l, then the r i g h t - h a n d  s ide  of  (3.9) is z e r o .  F o r  if x ~ 
then tr~/~ ad x = - - t r  u~ (0, 0) ( L e m m a  2.9) and u x • 5 ' (q ,  z) = - U x ( q ,  z) • b(q, z) [the coe f f i c i en t  of ~ 5 / 8 q ,  which  
is Ux(0 , 0), van i shes ] .  Obse rv ing  that  f(x) = x(0,  0, 0) = Vx(0, 0), we r e w r i t e  (3.9) in the f o r m  [vx(q, z) - Vx(0, 
0)]O k = 0, o r  ex t r ac t i ng  the l i nea r  pa r t ,  in the f o r m  [dvx(0, 0) + o(q, z)]G k = 0. 

It  fol lows f r o m  the def ini t ion of g ( ~ )  [see (3.3)] that  ~k is p ropo r t i ona l  to s o m e  de r iva t ive  of  5(q, z). 
We need to show that  this de r iva t ive  has in fac t  o r d e r  0. C l e a r l y ,  this wil l  fol low f r o m  the equal i ty  [dvx(0,0) + 
o(q, z)]G k = 0 if the d i f fe ren t ia l s  dv~ (0, 0), x ~ ~, g e n e r a t e  the whole  space  of  f o r m s  with the bas i s  dq and dz.  
Le t  x l , . . . ,  Xn+ k be a bas i s  in ~. It is enough to prove  that  the f o r m s  dvxi(0,  0) a r e  independent .  F o r  this we 
note that  the funct ional  dx(f) on 9. co inc ides  as  an e l e m e n t  of ~ w i t h x .  T h e r e f o r e  the f o r m s  dxi(f) a r e  inde-  
pendent ,  but f o r x  ~ 

dx (0, O, O) = Ox/Op .dp -~- Ox/Oq.dq -+ Ox/az.dz = dr:, (0, 0), 

s ince  3x /Op (0, 0) = Ux(0, 0). QED.  

P r o o f  of  T h e o r e m  3.6. We r e w r i t e  the d i f f e ren t i a l  po lynomia l s  p(0) in the f o r m u l a  (3.3) fo r  a r e p r e s e n -  
ta t ion  u, in the c o o r d i n a t e s  p, q,  and z. Obvious ly ,  f r o m  L e m m a  3.9 it  fol lows that  e a c h  t e r m  in the r e s u l t i n g  
e x p r e s s i o n  fo r  ~(~) e i the r  conta ins  a d i f fe ren t i a l  of  • wi th  r e s p e c t  to p, o r  does  not  conta in  d e r i v a t i v e s  of  ¢ 
at  all .  T h e r e f o r e ,  if  • does  not depend on p, then u(~) = ~ .  ZtiDi . In p a r t i c u l a r ,  ,v(1) = ZtiD i. But 1 " a r i s e s "  
f r o m  the ident i ty  in the enveloping  a l g e b r a  U (gt), and so  u(1) = 1. 

T H E C ~ E M  3.10. The r e s t r i c t i o n  of mul t ip l i ca t ion  in ft to  A is the s a m e  as the usua l  mul t ip l ica t ion .  In 
p a r t i c u l a r ,  .~ is a c o m m u t a t i v e  s u b a l g e b r a  in ~I. 

Es sen t i a l l y ,  this a s s e r t s  tha t  if  d), ~I' ~ A, then in the s e r i e s  (3.1) fo r  the p roduc t  ¢ o ~ t he re  r e m a i n s  
only the f i r s t  t e r m .  When G and • a r e  p o l y n o m i a l s ,  by se t t ing  t = 1 we obtain  T h e o r e m  2.6.  

P r o o f  of T h e o r e m  3.10. Le t  W,, ~F~ ~ A and (I) = i l I ¢ l O W  2 - -  WllI~ 2. By T h e o r e m  3.6,  ~ (TlOW~) : g(~Fi) × 
n ( ~ )  : W I T :  g (~',~F~); t h e r e f o r e ,  u(G) = 0. If  G = z t i ¢ i ,  then the coe f f i c i en t  of  the z e r o t h  power  of  t in ut(G) 
is r0(G0) = G0(0 , q ,  z). Hence • 0 van i shes  on the s u r f a c e  p = 0. Since this is t rue  fo r  an  a r b i t r a r y  canon ica l  c o -  
o rd ina te  s y s t e m  p, q,  z ,  we have G 0 = 0. Now we divide ¢ by t. By r epea t i ng  this a r g u m e n t  we obta in  ~l = 0, 
~2 = 0 ,  e tc .  Hence ,  G = 0 .  

Thus ,  the s t r u c t u r e  of the a l g e b r a  ~t is d e s c r i b e d  comple t e ly  by:  
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THEOREM 3.11. The mapping ~ is an isomorphism of the algebra ~I onto the algebra of formal differen- 

tial operators of the form ~, cD~-(~.~/~) ~ (the @i are formal functions of q and z) that send the subalgebra 
~0 

into operators of zero order. 

To prove that the mapping is an epimorphism it is enough to construct functions ~ such that ~ (~) = 

.~/~. These can be easily chosen in the form ~ -----~ (g, z) o ~ ÷ ~D (g, z), where z~ ~ ~ [then = (~) = ~:F~ 

(q, z) o ~(x i) + ~(q, z), where the ~(x i) are known operators of the first order]. The conclusion that ~ is a mono- 

morphism follows from the next assertion, whose proof is omitted. 

Proposition 3.12. a) If the orbit ~ is defined by the equation z = z0, then the kernel of the representation 

~t,~ is the ideal in ~I generated by z - z 0. 

b) The intersection of the kernels of ~t,g (with respect to all ~z) is zero. QED. 

4. Polarizations 

In this section we are going to prove the various properties of polarizations used earlier. We discuss 
the case of points in general position, i.e., points lying in the complement of some submanifold in ~* (depend- 
ing on the problem being considered). The set of these points is open and dense in ~* 

The proof of Theorem 2.2 is based on the following important result. 

Proposition 4.1 (see [ii]). If ~ is an algebraic Lie algebra whose radical is nilpotent, then there exists 
in the space ~* an open everywhere dense G-invariant set consisting of closed orbits of maximal dimension. 

COROLLARY 4.2. If ~ is an algebraic Lie algebra whose radical is nilpotent, then any polarization of 
points in general position in ~* satisfies Pukanszky's condition. 

For suppose that f lies in a closed orbit and that ~ is a polarization of f; then the intersection of the orbit 
with f q- ~± is closed in / -~ ~±. But this intersection contains a fiber Pf dense in / ~- ~±. QED. 

Proof of the First Part of Theorem 2.2. Let ~ be a Lie algebra; then [~, g] is an algebraic Lie algebra 
whose radical is nilpotent. The theorem holds for it. We take in g a chain of ideals 

[~, ~] ~ ~C~-i~.-. C~iC~0 = 

such that dim ~/~+: = i. Let / ~ ~*, and fi be the restriction of f to ~, where fn is a point in general position 
in ~*. We can choose a polarization ~ of f such that ~ N ~i is a polarization of fi for all i (see [7]). We prove 
by induction on dim ~i that the polarization ~ = ~N~ satisfies PukanszkyVs condition. 

Inductive Transition from.~1 to ~. Let =: ~* -~ ~ be a projection; then ~(f) = fl. Since ~: C ~ we have 
(f ÷ ~±)~ f: ÷ ~i L. Therefore, if ! is some point of f ÷ ~-, then by the inductive hypothesis its projection is 

carried into fl by an element from Pi. Hence there is an element p such that ~Z --/]~ = 0, i.e. (~: - an ideal 
of codimension i) X = P!- f is a character of g, and we need to send f + X into f. 

Note that p sends / + ~± into itself; therefore, pZ ~ / ÷ ~±. Hence the functional X vanishes on ~ , and 
consequently it is representable in the form ×(X) = f([~, x]), where ~ ~ ~. (Since ~ is a Lagrange subspaee of 
relative to the form x, y ~ f([x, y]), every functional that vanishes on ~ has this form.) 

The inductive step is completed by: 

LEMIVIA. Let~, /~*, and×(x) =f([~,x]) be a character on~. Thenexp~sends fintof+x; 

For, (exp ~)f = f + ~f + i/~2f + . . . = f + X + i/2~X + .... Since X is a character, it is mapped ~nto itself 
under the action of a Lie algebra. Therefore, in the last sum there are only two summands. QED. 

We do not give the proof of the second part of Theorem 2.2 because it is too involved. 

The subsequent arguments are based on the following result of Duflo [5]. 

Proposition 4.3. Let P be a polarization of / ~ ~*. If it satisfies Pukanszky's condition, then any torus 
(algebraic) in P is conjugate to a torus lying in the stabilizer G(f) of f. 

Proof. Under the action of the linear manifold ~ ÷ ~± the torus T must have a fixed point. By Pukanszky's 
condition there is an element from P that sends this point into f. Therefore, its stabilizer, which contains T, is 
sent by conjugation into G(f). QED. 
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COROLLARY 4.4 (See [5]). Let g be algebraic and f be a regular  point in ~*. A solvable polarization of 
f sat isfying Pukanszky ' s  condition is admissible (see Lemma 2.4). 

Let P be a solvable polarization; c lear ly ,  it is enough to verify the condition for admissibi l i ty  for semi -  
simple elements ,  which by Proposi t ion 4.3 can be assumed to lie in G(f). The a lgebra  ~(/) of the group G(f) is 
commutat ive [1]; therefore ,  for x ~ ~ ({) , the nonzero eigenvalues of adx on ~ and ~/~ (/) coincide. To com-  
pare the eigenvalues on ~/~ and ~/~ (]) we note that the f o r m  x, y --  f([x, y]) defines a nonsingular duality be- 
tween these spaces ,  and for x ~ ~ (]) the opera tor  adx p rese rves  this form. QED. 

COROLLARY 4.5. Let  ~ be a rb i t r a ry .  Every  regular  point in $* has an admissible  polarization. 

For  the proof we consider  the algebraic  hull ~ of the a lgebra  g. Let f be a point in general  position in 
~*, and f be its r es t r i c t ion  to 3. We saw in the proof of Theorem 2.2 that we can cons t ruc t  a polarization 
of f s a t i s fy ing  Pukanszky 's  condition such that~ ---- ~n~ is a polarizat ion of f. Then (see Coro l la ry  4.4), for all 
x ~ ~ the nonzero eigenvalues of adx in ~/~ and ~ a re  of opposite sign. But adx sends ~ into ~, therefore  we 
can replace ~/~ by ~/~ and ~ by ~. Thus, ~ is admissible.  

Now let f be an a rb i t r a ry  point of $*. There  is a sequence fi of points in general  position that converges  
to f. Every  point fi has an admissible  polarizat ion ~ .  By going over to a subsequence,  we may assume that ~ 
converges  to some subalgebra  ~. If f is regular ,  then by dimensionali ty arguments  ~ is a polarizat ion of f. 

Let  x ~ ~, a n d 0 ~  (t) and 0~/~ (t) be cha rac te r i s t i c  polynomials of the opera tor  adx in ~ and g/~, r e spec -  
tively. The admissibi l i ty  of ~ means that 0~ (--t) = t ~.(2~/~ (t). This proper ty  is p reserved  when we take the 
limit.  
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