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Abstract. The concept of a doubly resonant frequency 
doubler can be used for a variety of experiments concerning 
both classical phenomena like efficient frequency doubling 
at low power levels and quantum effects like squeezed states 
of light or Quantum Non Demolition (QND) measurements. 
In many of these experiments the strength of the nonlinear 
coupling of fundamental and second-harmonic modes is 
of crucial importance. First we treat the general theory 
for the calculation of the coupling parameter ~c, which 
depends not only on properties of the nonlinear material 
but also on resonator geometry and some optical phases. 
On this basis we discuss in detail the situation for two 
different monolithic resonator geometries, namely a linear 
(standing-wave) and a ring (travelling-wave) cavity. Finally 
we compare theoretical predictions for these resonators to 
the experimentally achieved results. 

PACS: 42.65.Ky, 42.50.Dv 

Second-harmonic generation is one of the most basic pro- 
cesses in nonlinear optics. It was realized early that the ef- 
ficiency of a continuously operating frequency doubler can 
be greatly improved by resonant enhancement of the funda- 
mental wave [1, 2], the second-harmonic wave, or both [3]. 
In the last case we speak of a doubly resonant frequency 
doubler. While singly resonant doublers can be very effi- 
cient at relatively high input-power levels [4], doubly reso- 
nant devices are significantly better at low powers. Recently, 
we have demonstrated a versatile doubly resonant frequency 
doubler which yields more than 50% efficiency with only a 
few milliwatts of input power [5]. 

The first quantum-mechanical treatment of the doubly 
resonant frequency doubler has been presented by Drum- 
mond et al. in 1980 [6]. In the meantime this system has 
developed to one of the most paradigmatic systems of quan- 
tum optics. It was shown that both fundamental and second- 
harmonic output can be squeezed [7, 18], and, indeed, inten- 
sity fluctuations below the shot-noise level could be demon- 
strated experimentally [8-11]. In addition, both waves show 

significant quantum correlations [12], and interesting QND 
properties have been predicted [13]. 

Good conversion efficiency at low powers, but, partic- 
ularly, the demonstration and application of the predicted 
quantum effects require a strong nonlinear coupling of the 
modes and low losses. In recent years monolithic-resonator 
concepts have been developed which meet both require- 
ments. Here, the modes are confined by the surfaces of 
a single crystal; reflection is achieved by dielectric mirror 
coatings or total internal reflection. It is important to cal- 
culate the strength of the nonlinear coupling, so that one 
can optimize the resonator design and check whether the 
theoretical potential has been realized experimentally. It is 
also important to learn about the degradation effects of inho- 
mogeneities and phase changes upon reflections in the res- 
onator. In this paper we give the theoretical framework, use 
the results to discuss two particularly interesting practical 
cases, and present experimental results which show that the 
theoretically possible figures have now been reached in ex- 
periments. We also discuss methods to measure the strength 
of the nonlinear coupling. 

1 General Theory 

Drummond et al. have introduced a simple model for a 
doubly resonant frequency doubler. The two modes for the 
fundamental and second-harmonic wave are described by 
two mode amplitudes % and c~ 2, which are normalized so 
that ]cq ]2 is the photon number in mode i (i = 1, 2). Then the 
time evolution of the system is governed by the equations 
[6]: 

& l  = - -  ( 7 1  ÷ iAl)c~l ÷ t;c~°~2 + e, (1) 

1 ~ce~ (2) d2 = -- (q/2 + iA2)ct2  -- ~ • 

The parameters ?i are the reciprocal damping times of the 
modes, A i the detunings of both modes relative to the 
carrier frequency of the pump, and e is proportional to the 
amplitude of the pump wave. This model has been used to 



l 18 R. Paschotta et al. 

calculate both the classical and quantum properties of the 
light resulting from this process. 

In this paper we concentrate on the parameter ~, which 
expresses the strength of the nonlinear coupling between 
the waves. The goal is to calculate ~ in dependence of the 
experimental parameters. 

We describe the spatial dependence of the modes by 
complex functions ~l(r)  and ~2(r), which are proportional 
to the complex electrical field amplitudes /)~(r) and are 
normalized by the condition 

f Ig,~[2dV -- 1, (3) 

where the integration expands over the full resonator vol- 
ume, including parts of the resonator which are not filled 
with a nonlinear medium. 

In SI units the power transfer between both modes caused 
by the nonlinearity is given by 

Pl~2 = < - / dP2(r't) E2(r't)dV~at / t  (4) 

with complex electric field amplitudes 

Ei(r  , ~) = Re(/)i(r)ei~'it), (5) 

approximately only by a few resonances. We choose the 
index N = 0 for the resonance with the strongest coupling. If 
we switch to one of the adjacent modes for the fundamental 
wave, we will obtain nearly the same series of values ~N, 
only shifted by two resonances of the second-harmonic 
wave. 

For the experiment, we will in general select only the 
double-resonance with the strongest coupling by starting 
at the phase-matching temperature of the nonlinear crystal. 
The detailed pattern of values ~;X can, however, provide 
useful information for the characterization of the resonator, 
obviously much more than the comparison of a single 
number. 

2 Theory and Experiment for Particular Resonators 

In our experiments we have used two different resonator 
geometries. One of them is a standing-wave resonator with 
dielectric mirror coatings. We also have investigated a mono- 
lithic ring-resonator geometry with frustrated input/output 
coupling, which allows one to adjust the reflectivities for 
both modes in the experiment. In the following we look in 
detail at the nonlinear coupling for these geometries. 

and nonlinear polarization P2(r, 0, which finally results in 

iD1--+2 = CO deffk)l J E2(r) )~  (r) dV (6) 

for the case that the phases between both modes are opti- 
mal for energy transfer from the fundamental to the second- 
harmonic wave. def t is the relevant component of the nonlin- 
ear tensor of the crystal in units of m/V. On the other hand, 
from (1) and (2) we obtain 

/O1-+2 = 2he01 ~1°~2%1 (7) 

for the same situation. Comparison of (6) and (7) leads to 
the general formula 

1 

2deff (~°°~ ~ ~ 
~ = - ~ - \  e0 / 

which was already given in [6] and [14] in a similar form. 
Here, the integration is restricted to the nonlinear medium 
with effective nonlinearity def t in the cavity, n is the index 
of refraction which is assumed to be equal for both waves 
(type-I phase matching). 

Now we have to note that the integral depends on the 
particular set of modes chosen for the fundamental and 
second-harmonic wave. We only consider axial and no 
higher-order transverse modes. If we use different axial 
modes of the second-harmonic wave together with one fixed 
mode of the fundamental wave, we obtain a series of values 
~N with an integer index N indicating the particular double- 
resonance (the slight change of ec over the width of one 
double-resonance can in general be ignored). Only a limited 
number of double-resonances will have a nonlinear coupling 
of considerable strength, since for the others the integrand in 
(8) oscillates rapidly. This can be expressed by the phase- 
matching condition k 2 - 2/c 1 = 0, which can be fulfilled 

2.1 Monolithic Standing-Wave Resonator 

The simplest case is that of a symmetrical standing-wave 
resonator consisting of a nonlinear crystal of length L. Di- 
electric mirror coatings are directly evaporated onto the 
curved end faces with radius of curvature /~. This leads 
to Gaussian modes [15] with a focusing parameter ~ = 
( 2 R / L  - 1) 1/2 and beam waists Wo~ = (LAJ27rn~)  1/2, 
where n is the refractive index (which is approximately the 
same for both waves, since we assume type-I phase match- 
ing). The standing-wave fields consist of two components 
travelling in opposite directions, where the phase relations 
between those waves depend on the properties of the mirror 
coatings and is, in general, different for the fundamental and 
second-harmonic mode. One of the components is described 
by a complex field distribution 

1 eikZ ( r2 ) 
E ~ 1 + i z / z  R exp w2(1 ~_-iz/zR) (9) 

(low round-trip losses are assumed) with the Rayleigh length 
z R = L /2~ .  We denote the phase changes upon reflection 
at both sides of the resonator as ~A~, @Z~ and define the 
relative phase changes A~ A = 2 ~ A 2  - -  q/SA1 and Ag5 B = 
2~5B2- ~BI" For double-resonances, the total phase changes 
per round trip must fulfil the conditions 

2kiL - 4 arctan~ + @Ai + ~SB~ = Mi27r, (10) 

where the integers M 1, M 2 are related to N by N = 2M 1 - 
M 2 + const. The term with arctan ~ results from focusing 
[15]. When evaluating the overlap integral in (8), we note 
that the mixed terms between different counterpropagating 
components are oscillating rapidly and therefore do not 
significantly contribute to the integral. 
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Finally, we end up with the result 

1 

~N -- T \e~o-o V) ~ I H ( ° w '  ~)1 

1 

(again in SI units) with the function 

e ic~r 
H(~7, () = ~ d r ,  (12) 

defined as in [16]. The appearance of the mode volume 
V = 7rw~L/2 results from normalization. The parameter 

arctan 
cr N = A k N Z  R - 

1 
+ ~-~ [2rrN - ( A ~  A + A~B)]  (13) 

indicates the deviation from the phase-matching condition 
Ak  :=  2k 1 - k 2 = 0 for the particular double-resonance N.  
Z ~  A and A ~  B, which are unique only modulo 2rr, should 
be chosen so that ~0 is the maximum of all t~ N. 

The last two factors in (11) do not appear in a result given 
in [14], where obviously the back-propagating components 
have been ignored. 

A discussion of (11) is instructive. The properties of  the 
nonlinear medium (apart from inhomogeneities) appear in 
the first factor only. The following terms reflect essentially 
the geometric factors and also depend on N via cr N. The 
last factor shows an interference between the contributions 
from both counterpropagating waves; for some double- 
resonances it may become very small. For equal relative 
phase changes at both mirror coatings one sees that there is 
totally destructive interference for all resonances with odd 
N.  

The relative contribution of  infitesimal cross sections of 
the crystal (perpendicular to the axis of beam propagation) 
to the nonlinear coupling is plotted in Fig. 1 (N = 0) and 
Fig. 2 (N = 2) for zero phase changes upon reflections. 
It is basically given by the real part of  the integrand in (8), 
integrated over the beam cross-sections, if the phase between 
~Pl and ~2 is chosen so that the integral is real and positive. 

The optimum of t% with respect to the focusing factor 
is in general not achieved with the well-known value 2.84 
derived in [16] for single-pass Second-Harmonic Generation 
(SHG), unless ~r 0 is optimized by proper choice of the 
relative phase changes ACbA, B at the mirrors. 

For reasonable parameters we have found that the opti- 
mum for A¢~A, B lies near zero. On the other hand, we have 
seen from numerical evaluation that the influence of these 
phase changes is not crucial - even without optimization of 
the phase changes one would loose less than about a third of  
the optimum coupling in most cases. This was not obvious 
but can be explained by the fact that if the coupling for one 
particular double-resonance is reduced by more than about 
one third due to large phase changes at the mirrors, the cou- 
pling for some other resonance will increase and overtake 
the optimum. 

100 
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Fig. 1. Local contributions to ~;0 (solid line, arbitrary units) in a 
standing-wave resonator. The horizontal axis gives the normalized 
position in the resonator. The dotted line is the beam radius (in btm). 
The dashed line is the relative phase between fundamental and second- 
harmonic wave (in degrees), which is optimal at the beam waist and 
nearly optimal everywhere else 
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Fig. 2. The same diagram as in Fig. 1, but for ~;2. The relative phase 
is optimal only near the beam waist. The ends of the resonator give 
negative contributions, and the resulting nonlinearity is quite small 
(only 3% compared to ~0) 

The measurement of ec for a monolithic resonator is, in 
general, not trivial. In our experiments we have developed a 
method which relies on the back-action of  second-harmonic 
generation on the fundamental wave and also provides infor- 
mation about the losses of  the second-harmonic wave. We 
scanned the resonator through a resonance by the use of an 
electric field; crystal temperature and laser frequency were 
adjusted so that resonances of  the fundamental and second- 
harmonic wave coincided. Due to the higher finesse and 
higher electro-optic coefficient (known from SHG measure- 
ments at different temperatures and voltages) of  the second- 
harmonic wave, the peak in the transmitted fundamental in- 
tensity had a narrow dip at the centre caused by the losses by 
SHG (see Fig. 3). The width and height of this dip could be 
used to determine both the absorption losses of the second- 
harmonic and the nonlinear coupling. This required the nu- 
merical solution of  (1) and (2) for arbitrary detunings with 
the coefficients of absorption and nonlinear coupling as fit 
parameters. 

We have plotted the calculated and the measured pattern 
of values t~ N as histograms in Figs. 4 and 5 for a monolithic 
standing-wave resonator made of MgO:LiNbO 3, which has 
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Fig. 3. Intensity of the fundamental wave transmitted by a monolithic 
standing-wave resonator while the resonator is scanned through a 
double-resonance with an electric voltage. The dip at the centre is 
due to losses of the fundamental wave by second-harmonic generation. 
Curves of this kind have been used for the measurement of the losses 
of the second-harmonic light and the nonlinear coupling constants 

between theory and experiment, and also the assumption of 
different phase relations at the mirrors could not explain the 
experimental result. This shows that there are considerable 
inhomogeneities in the crystal, though not strong and rapid 
enough to degrade ec 0 seriously: ~0 is only by 10% lower 
than predicted. It might also be that the nonlinearity of  
the material is slightly higher than given in literature for 
similar materials (the histogram in Fig. 4 was calculated with 
def f = 4.7 pm/V [17]). It is clear that because of  the observed 
phase changes due to inhomogeneities, the optimization of 
the phase properties of the mirrors is irrelevant. 

To our knowledge it was for the first time that the non- 
linearity in a doubly resonant frequency doubler has nearly 
reached the theoretical limit; in our earlier experiments as 
well as in experiments done by other groups [8] the ex- 
perimental values were too low by more than a factor 3, 
sometimes by more than one order of  magnitude. Both the 
use of the best material and special care at the production 
process of  the mirror coatings, done in the Laser Zentrum 
Hannover, was crucial. 

N =-6 -4 -2 0 2 4 6 

Fig. 4. Calculated nonlinear coupling ~N as a function of N for 
our monolithic standing-wave resonator. The phase changes upon 
reflections are assumed to be zero. The maximum coupling is ~0 = 
24 x 103/s. Resonances with odd index have zero coupling 

N =-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

Fig. 5. Measured nonlinear coupling ~v for our standing-wave res- 
onator (same vertical scale as in Fig. 3). The maximum coupling is 
~0 = 22 x 103/s 

been used in a squeezing experiment. Zero phase changes 
at the mirrors are manufacturer specified and are assumed 
for the theoretical calculation. The focusing was somewhat 
weaker than required for optimum non-linear coupling in 
order to keep the beam waist larger; we use L = 7.5 mm and 
/~ = 10 ram, so that ~ = 0.775. The figures show that the 
relative heights of  the bars in the patterns are not consistent 

2.2 Monolithic Ring Resonator 

The second system which we have investigated is a 
MOTIRR (MOnolithic Total Internal Reflection Resonator), 
a monolithic ring resonator, where the modes are confined by 
total internal reflection and input/output coupling is achieved 
by frustrated total internal reflection with prisms approached 
to the crystal to within a few hundred nanometers. This res- 
onator concept has been explained in detail in [5, 19, 20]. 
Recently, we have demonstrated efficient frequency doubling 
at power levels of a few milliwatts with such a device [5]. 
Its high versatility and flexibility results mainly from the 
fact that one can adjust input and output coupling for the 
fundamental and second-harmonic wave independently by 
varying the air gaps between the prisms and the crystal. 

The calculation of ~c N for the MOTIRR differs from 
that for the standing-wave resonator in a few points. We 
have now four paths instead of  two forming one round 
trip, and there is no significant spatial overlap between 
those paths. The phase relations between the paths are 
governed by the boundary conditions at the total internal 
reflection. It is important to note that fundamental and 
second-harmonic wave differ in polarization; the polarization 
vector of  the fundamental mode lies in the plane of the ring 
(p-polarization), whereas for the second-harmonic mode it is 
perpendicular to the ring (s-polarisation). The phase changes 
for p-polarized and s-polarized waves are given by [21] 

t a n ~ S p / 2 = -  ( s i n 2 q S - ~ ) l / 2 / ( ~ c o s 4 ~ )  

(fundamental wave),  (14) 

I ) i /2/  
t a n 6 s / 2 = - -  sin 2 ~ - ~  cos4~ 

(second-harmonic wave),  (15) 

and thus known in our experiment. The angle of incidence 
is ~ = 45 °. We have neglected the small influence of the 
coupling prisms on the phase changes. Deviations between 
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Fig. 6. Beam path in the MOTIRR with two beam waists (beam radii 
in both directions given for the fundamental wave). Crystal length is 
5 mm. The two prisms are approached to the crystal to a distance of a 
few hundred nanometers 
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Fig. 7. Local contributions to ~0 (solid line, a.u.) in the MOTIRR. 
The letters along the z axis denote the positions as defined in Fig. 6. 
The dotted line is the mean beam radius (in gin, averaged over both 
transverse directions). The dashed line is the relative phase between 
fundamental and second-harmonic wave (in degrees). Note the phase 
jumps upon reflections which prevent the relative phase from being 
optimal all over the mystal 

the measured and calculated pattern of  ~N can be explained 
only by inhomogeneities in the crystal since there are no 
other unknown parameters. 

Another difference to the standing-wave resonator is that 
the modes are astigmatic; this is due to the reflection at 
the two spherically curved surfaces of  the crystal under 
oblique incidence. It can be shown that the effect of  the 
astigmatism causes the factor ( l + i r )  -1 in (12) to be replaced 
by [(1 + it/3)(1 + il-//3)] -1/2, where /3 = Wox/Woy is the 
ratio of  the beam waists in the two perpendicular directions, 
and we replace w 0 by (WozWoy) 1/2 everywhere. 

Our MOTIRR has two curved sides (neighbouring each 
other, R = 19 mm) and two fiat sides, each 5 mm long. 
The beam has two astigmatic focal points (see Fig. 6); 
Fig. 7 shows the mean beam radius w o along the four paths 
in the crystal, together with relative phases and the local 
contributions to ~; for N = 0. Each path leads to an integral 
of  the form [20] 

f e i~r 
[(1 + it/3) (1 + ir//3)]l/2 dr ,  (16) 

121 

and we have to add phase factors according to the relative 
phase changes given in (14) and (15). 

The experimental determination of ~ is somewhat diffi- 
cult, basically because of the thermal drift of the size of the 
air gaps between crystal and prisms. We have tried two dif- 
ferent methods to solve the problem. First, we determined 
the conversion efficiency of the device with optimized ad- 
justment of  the prisms. The second method was similar to 
the one applied for the standing-wave resonator which was 
explained above. Here we used two prisms which couple 
only the fundamental wave. The first prism was kept at a 
relatively large distance from the crystal, so that the funda- 
mental losses were dominated by the second prism, used as 
output coupler to detect the circulating power and the dip 
occurring at the onset of  second-harmonic generation. The 
width and height of the total peak and of the dip were used 
to determine the position of  the prisms, the second-harmonic 
absorption losses and finally the nonlinearity ~. Both meth- 
ods lead to approximately the same results; the accuracy is 
estimated to be ± 20% in both cases. 

The theoretical and experimental result we have obtained 
for our resonator are given as histograms in Figs. 8 and 
9. Note that in theory only every forth double-resonance 
leads to significant nonlinear coupling; this is due to the 
interference of the contributions of the four paths in the 
crystal. In the experiment this structure can be recognized, 
but again we see significant deviations between theory and 
experiment, which can be explained by inhomogeneities. 

N'--9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 

Fig. 8. Calculated nonlinear coupling ~N for the MOTIRR. The 
maximum coupling is n 0 = 17 × 103/s. The structure is caused by 
the interference of the contributions of the four paths in the crystal 

F--  

N=-9 -8 -7 -6 -5 -4 -3 -2 -I 0 1 2 3 4 5 6 7 8 9 
Fig. 9. Measured nonlinear coupling for the MOTIRR (same vertical 
scale as in Fig. 3). The maximum coupling is ~0 = 7.9 x 103/s. For 
positive N there is at least some resemblance to Fig. 7. The deviations 
are due to inhomogeneities in the crystal 
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Another observation indicating inhomogeneities was that 
we could excite TEM10 transverse modes in the second- 
harmonic wave, which should normally have zero coupling 
to all fundamental modes since the integral in (8) vanishes. 

In contrast to the case of  the standing-wave resonator, the 
maximum ~ is lower than predicted by approximately one 
half. In addition, the theoretical value is about 30% lower 
than that for the standing-wave resonator with approximately 
the same round-trip length, mainly owing to the phase 
changes at total internal reflection. Although the standing- 
wave resonator allows for a higher effective nonlinearity, the 
MOTIRR is still much better than discrete setups (using a 
crystal and conventional mirrors) with respect to nonlinearity 
and losses. 

3 Conclusion 

We have presented the theoretical background for the calcu- 
lation of the nonlinear coupling constant of doubly resonant 
frequency doublers in general and discussed in detail two 
particular cases which have been realized in our experiments. 
Our theory allows to calculate the strength of the nonlinear 
coupling for a series of double-resonances; comparison of  
the pattern of t; N between theory and experiments provides 
additional information about the homogeneity of the nonlin- 
ear material. 

Experimentally we have realized a monolithic frequency 
doubler in standing-wave geometry which has nearly the 
full nonlinearity predicted by theory and a very versatile 
monolithic ring resonator with frustrated total internal re- 
flection which has about 70% of the predicted nonlinearity. 
Both resonators have considerable inhomogeneities, though 
not strong and rapid enough to degrade the nonlinear cou- 
pling seriously. The optimization of the phase properties of  
the mirrors is not necessary in this situation, and even in 
the worst case the wrong phase relations would degrade the 
nonlinear coupling by about one third only. 
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