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Abstract. Multiple-scattering LIDAR return calculations 
obtained by seven different models for the same specified 
numerical experiment are compared. This work results 
from an international joint effort stimulated by the work- 
shop group called MUSCLE for MUltiple SCattering 
Lidar Experiments. "['he models include approximations 
to the radiative-transfer theory, Monte-Carlo calcula- 
tions, a stochastic model of the process of multiple scat- 
tering, and an extension of Mie theory for particles illu- 
minated by direct and scattered light. The model solu- 
tions are similar in form but differ by up to a factor of 
5 in the strength of the multiple-scattering contributions. 
Various reasons for the observed differences are explored 
and their practical significance is discussed. 

PACS: 42.60 

In many applications, light propagation in aerosol media 
can be described with acceptable accuracy by single-scat- 
tering methods. However, if the particles are dense 
enough, a sufficient number of scattered photons as- 
sumed to be lost in the single-scattering framework can 
reach the target or enter the receiver aperture by rescat- 
terings. Depending on geometry and aerosol properties, 
this multiple-scattering effect can contribute significantly 
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to the measured transmitted and backscattered radiation 
and give rise to adverse but, in some cases, potentially 
useful signals. 

Multiple-scattering effects on LIDAR returns were 
demonstrated by the pioneering work of Donchenko et 
al. [1] and Kaul and Samokhvalov [2], and on laser 
transmission by Bucher and Lerner [3] and Mooradian 
et al. [4]. The latter two groups measured effects such as 
pulse delay, pulse stretching, off-axis detection and at- 
tenuation coefficient dependent on the receiver field of 
view. The evidence of multiple-scattering contributions 
in cloud LIDAR returns was also shown by Allen and 
Platt [5] with a center-blocked field stop to restrict the 
receiver field of view to a region outside of the trans- 
mitted beam, and by Pal and Carswell [6] through detec- 
tion of the cross-polarized component of the LIDAR 
signals. Systematic measurements of multiple-scattering 
LIDAR returns were subsequently made by Bissonnette 
and Hutt [7] and Werner et al. [8]. Multiple scattering was 
also observed to cause spatial frequency fading of images 
[9, 10], and reduction of the apparent extinction in snow- 
falls [11-13]. 

Atmospheric measurements are often flawed by a 
poor knowledge of and control on the governing pa- 
rameters. As a result, the early atmospheric experiments 
were soon followed by a multiplicity of laboratory sim- 
ulations to separate the various effects and study their 
dependence on the particle properties and application 
geometry. For example, the multiple-scattering contribu- 
tions to transmission and backscatter were extensively 
studied in laboratory-generated water droplet clouds 
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[14-17]. Similarly, pulse delay and pulse stretching were 
carefully measured in well-characterized aqueous suspen- 
sions of particles by various groups [18-20]. The reduc- 
tion due to multiple scattering of the apparent particulate 
extinction derived from transmittance and target-reflec- 
tance measurements was investigated in laboratory ex- 
periments by Ivanov and Khairullina [21], Khairullina 
and Ivanov [22], Battistelli et al. [23], and Smith and dn 
Carswell [24]. Finally, the multiple forward-scattering dr 
effect on image transmission was studied in detail by the 
Modulation Transfer Function (MTF) measurements 
through aqueous suspensions of polystyrene micro- 
spheres [25]. 

All these measurements clearly demonstrate the diver- 
sity and importance of the multiple-scattering effects and 
the necessity of adequate modeling, either to predict the 
various contributions described above or to make use of 
them to derive information on the aerosol parameters. 
A great deal of progress has been made over the past 
15-20 years. In this respect, it is important to recall the 
early work performed in the Former Soviet Union on 
Monte-Carlo and asymptotic methods, as described, for 
example, in [26-28]. However, a complete review of all 
theoretical models is beyond the scope of this article. 
Instead, we want to report on a concerted research effort 
initiated under a bilateral German-Israeli cooperation 
that has since evolved into an informal but more interna- 
tional group. The group holds the annual MUSCLE 
workshops. Its aim is to stimulate experimental as well 
as theoretical work to better understand and make use 
of the measured multiple-scattering LIDAR contribu- 
tions for maximizing our information on lidar probing 
of cloud and fog microphysical parameters. 

Various theoretical approaches are currently being 
pursued within the MUSCLE group. One common fea- 
ture is that they all need some form of approximation or 
specialization to make the solution computionally possi- 
ble or affordable. Validation is therefore necessary. Most 
models have already been compared to experimental 
data or other theoretical calculations but, since these 
comparisons generally address different aspects of multi- 
ple scattering, it is difficult to appreciate the relative 
performance of the models. Confronted with this dif- 
ficulty, the group has decided to apply all models and 
algorithms to a common problem. The area of interest 
is LIDAR backscatter and, in the absence of a sufficiently ~ss(z) 
complete set of experimental multiple-scattering LIDAR 
data at the time of definition of the task, a numerical 
experiment was chosen as a valid and convenient alter- 
native. All participants were to calculate the LIDAR 
returns for the same specified cloud, instrument and 
geometrical parameters. The purpose of this and the 
other articles in this Feature Issue of Applied Physics B 
is to report on the results of the exercise. The direct 
problem was chosen because few multiple-scattering in- 
version methods exist yet; in fact, they depend on the 
successful test of the direct methods. 

The common problem is defined in Sect. 1. Section 2 
gives a brief outline of the individual theoretical models, 
which are described at length in the remaining articles of 
this issue. The comparison results are presented and 
discussed in Sect. 3. 

1 Numerical experiment 

The numerical experiment consists in calculating the 
LIDAR returns from a 300 m thick, uniform density, 
Deirmendjian [29] C. 1 cloud defined by the droplet-size 
distribution 

- -  Cr 6 exp ( -  1.50, (1) 

where r is the droplet radius and C is a constant. The 
cloud is at a height H of 1000 m from the LIDAR trans- 
ceiver and the atmosphere below does neither absorb nor 
scatter. 

The LIDAR transmitter is a pulsed Nd :YAG 
1.064/zm laser. The beam has a Gaussian profile of van- 
ishing beam waist and a divergence equal to 0.1 mrad full 
angle. It is directed perpendicularly to the base of the 
cloud. The pulse length Y- is 40 ns for a spatial resolution 
cY-/2 of 6 m, where c is the speed of light. 

The receiver is coaxial with the laser. The LIDAR 
returns are to be calculated per unit aperture area for a 
vanishingly small aperture size. Two fields of view are 
specified: 1 and 10 mrad full angle. 

The cloud's scattering properties were calculated with 
Mie theory. The particle refractive index was taken as 
m = 1.325 + 0i and the constant C of (1) was adjusted to 
give an extinction coefficient of 17.25 km -1. The size 
distribution was cut off at 0.001/zm at the low end and 
20/zm at the high end. The angular phase function was 
calculated with a resolution of 1 ° and distributed to all 
participants. To minimize discretization errors and to 
satisfy their model needs, the Florence group recal- 
culated the full scattering matrix at 1000-point resolu- 
tion. The other groups used interpolation except for the 
Swiss group whose model calculates the scattering contri- 
butions from the analytic size distribution directly, i.e., 
(1). Summation or integration was performed to com- 
pute the LIDAR return over the 40 ns length of the laser 
pulse. 

The calculated multiple-scattering (all considered 
orders) LIDAR returns per unit receiver aperture area is 
normalized by the single scattering return Lfss per unit 
area given by 

1 c J -  

A (H+z) 2 2 
a~P(n) exp (-2aez) ,  (2) 

where A is the aperture area, z is the range inside the 
cloud, H =  1000 m is the distance to the base of the cloud, 
cJ-/2 = 6 m is the spatial resolution of the lidar, a~ is the 
cloud-scattering coefficient equal here to the extinction 
coefficient ae = 17.25 km -1, and P(zc)= 0.0555058 is the 
scattering phase function at 180 ° . The phase function is 
normalized such that 

1 
j P(O) sin 0 dO 1. 

2o 
(3) 

Model permitting, the lidar returns for the first two 
orders of scattering are also computed for evaluation of 
the relative importance of the higher scattering orders. 
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2 Models 

The models used in this numerical experiment fall under 
four main categories: numerical Monte-Carlo calcula- 
tions, stochastic description of photon scattering, analy- 
tical extension of the Mie theory, and approximations to 
the radiative-transfer equation. 

2.1 Florence group's Monte-Carlo model 

photon is reduced. The sum over all scattering events for 
all photons represents the LIDAR signal. The first thirty 
orders of scattering were included in the calculations 
presented below. Two million photon trajectories were 
constructed for each case, producing returns to a depth 
of several hundred meters with acceptably low noise. It 
was found that the first 4 orders of scattering were suf- 
ficient to describe the 1 mrad case and 10 orders were 
required for the 10 mrad case. 

The model used by the Florence group [30] is a semi- 
analytic Monte-Carlo method in which the contributions 
of the different orders of scattering to the LIDAR returns 
are calculated separately. The polarization of the return- 
ed radiation is taken into account by using the Stokes 
vectors and scattering matrices to represent the probabil- 
ity of photon scatterings in the different spatial direc- 
tions. 

The variance of the results is reduced by one of the 
following techniques. In the first technique, relations are 
established to scale the calculations of LIDAR returns 
made at different extinction coefficients for different scat- 
tering orders to a common extinction value. The second 
technique is based on the use of a distorted phase func- 
tion according to a method first proposed by Platt [31]. 
The distorted phase function, which is made symmetrical 
about the scattering angle of 90 ° , increases the probabil- 
ity of photons scattered in the backward direction near 
the reversed axis of the laser beam. For the results 
presented here and in their paper [30], the Florence group 
used the second variance-reduction procedure. Regard- 
ing polarization, some second-order Monte-Carlo cal- 
culations were also compared with an analytic integra- 
tion formula [32]. 

Although this is not of direct interest to the present 
comparison of homogeneous cloud calculation results, 
some simple cases of inhomogeneous cloud geometry can 
be dealt with by the Florence group Monte-Carlo code. 

2.2 NASA Langley group's Monte-Carlo model 

The approach used by the NASA group [33] is a Monte- 
Carlo simulation of the physical scattering process [34]. 
Unlike the Florence group, no variance-reduction tech- 
niques are used. While inefficient for problems where the 
dimensions of the scattering volume are less than the 
length of the photon mean free path, the procedure is 
straightforward and can be used as a check against more 
sophisticated approaches which may be subject to statis- 
tical bias. The only inputs required are the volume ex- 
tinction cross section and single-scatter albedo of the 
medium, and the single-scatter phase function. Photon 
trajectories are constructed and the path of each trans- 
mitted photon is followed from the transmitter through 
multiple scatterings in the cloud. To improve computa- 
tional efficiency to the point where the calculation is 
practical, each time a photon scatters, the probability of 
the photon scattering directly back to the receiver is 
computed analytically. This probability value is added to 
the detector signal and the statistical weight of the 

2.3 Munich group's stochastic model 

The model of the Munich group [35] starts from a de- 
scription of the process of multiple scattering by a sto- 
chastic model from which a general formula for the 
multiply scattered LIDAR return signal is derived. In 
principle, the terms describing the contributions of the 
different scattering orders of this formula may be cal- 
culated by analytical methods (for lower scattering 
orders only), or by Monte-Carlo simulation of the physi- 
cal process. 

The main drawback of the "physical" Monte-Carlo 
method is often too expensive cost for calculations with 
desired accuracy. This is not connected with the slow 
convergence of the method, but because a great part of 
computational capacity is wasted for the simulation of 
unimportant or statistically insignificant events. The 
means to make the Monte-Carlo method interesting for 
calculations is to concentrate on the significant aspects 
of the problem. Such a technique reduces the statistical 
variance for the same amount of computer time, i.e., it 
increases the efficiency of the computational scheme. 

For reducing the variance-weigth Monte-Carlo 
algorithms are used with "non-physical" probability dis- 
tributions. These distributions are constructed properly 
from the a-priori information of the photons' impor- 
tance. Simultaneously, weigth multipliers are introduced 
correcting the bias of the estimators. Each photon his- 
tory is marked with its weight, which, in some sense, 
represents the number of simulated photons. The vari- 
ance-reduction computational schemes are based on the 
simulation of the transport of a large number of photons 
with relatively low weights in interesting regions, and the 
introduction of only a small number of photons with 
relatively high weights in unimportant regions. 

2.4 Israel group's Monte-Carlo model 

The geometry for the Israel group's Monte-Carlo meth- 
od is discussed in [36]. The sum of all possible multiple- 
scattering events resulting in a simultaneous signal at the 
receiver is evaluated by using the Monte-Carlo statistical 
technique. The number N of randomly chosen scattering 
positions inside the clouds are selected by the computer. 
All multiple-scattering contributions for which the sum 
of all distances from the source through the N scatterers 
to the receiver is constant within the time and spatial 
resolutions of the system are then added for simul- 
taneous collection. 
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2.5 Swiss group's analytical extension of Mie theory 

The approach adopted by the Swiss group [38] is based 
on an analytical extension of Mie theory to include the 
effects of multiple scattering. As it is well known, Mie 
theory describes the field arising from the scattering of 
a plane wave incident upon a sphere [37]. Depending on 
the density of the medium, the scattered field can be 
rescattered by other particles. We have then double scat- 
tering. In the approach described in [38], the spherical 
wave scattered by the first particle is considered as the 
field impinging on the second one. This procedure can be 
repeated at all scattering orders. Notice that in the case 
of higher scattering orders, the incident field is a super- 
position of spherical waves. Following analytically this 
process step by step we construct the n-fold electromag- 
netic field scattered by an ensemble of particles. The 
physical quantities of interest are expressed by a straight- 
forward generalization of the corresponding single-scat- 
tering quantities and the multiple-scattering process is 
described without losing the advantage of working with 
analytical expressions in the frame of Mie theory. This 
approach differs from both the numerical and analytical 
models presented in this paper in several respects. The 
multiple-scattering contributions to the intensity are cal- 
culated from a general expression of the n-fold scattered 
field, which is derived without using far-field or small- 
angle approximations [39]. In particular, it allows to 
calculate the multiple-scattering contributions due to 
each single particle as well as the total contributions of 
the whole medium. There are also a few similarities, as 
discussed in [39]. A comparison with the statistical ap- 
proaches shows some common features, namely the pri- 
mary interaction derived from single-scattering results 
and the process of averaging based on the distribution of 
scatterers. However, it is dealing with analytical ex- 
pressions at each stage of the procedure and the average 
quantities are calculated only at the end. This leads to a 
great simplification of the numerical procedures. In addi- 
tion, the model uses radiative-transfer theory to derive 
the multiple-scattering LIDAR equation [39]. The beam 
intensity I(z, t) impinging on a slab of thickness dz re- 
sults from the total aerosol attenuation including the 
multiple forward-scattering contributions to the extinc- 
tion coefficient, while only single-scattering extinction is 
usually considered. The multiple-scattering LIDAR 
equation follows from this generalized transfer equation 
by formal integration [39]. The required inputs are the 
LIDAR-system parameters, and the aerosol particle-size 
distribution and number density. In atmospheric prob- 
lems, the method applies uniformly and does not suffer 
from the convergence and stability problems caused by 
the large number of events that normally have to be 
taken into account at large optical depths and in the 
presence of strong experimental noise. Moreover, the 
absence of small-angle approximations allows accurate 
evaluation of the multiple-scattering contributions, for 
instance in space-borne applications. 

2.6 DREV group's radiative-transfer model 

The DREV (Defence Research Establishment Valcartier) 
model [40] is an approximation to the radiative-transfer 
equation applicable to narrow incident light beams. The 
method relies on two main hypotheses. The paraxial 
approximation and the representation of the flux normal 
to the incident beam axis by a diffusion process. The 
model solutions are the forward- and backscattered in- 
tensity profiles. The required inputs are the LIDAR- 
system parameters, and the aerosol single-scattering 
angular phase function and extinction and scattering 
coefficients, which are allowed to vary along the beam 
axis. On the basis of comparisons with forward- and 
backscattering measurements made in the laboratory 
and the atmosphere [40], the solutions are valid for opti- 
cal depths smaller than ~ 10, for phase functions corres- 
ponding to average size parameters of order one or 
greater, and for off-axis positions not exceeding ~25% 
of the reciprocal of the scattering coefficient. 

2.7 Minsk group's radiative-transfer model 

The semianalytic radiative-transfer approach developed 
by Zege et al. [41] is based on the following model. The 
radiance in the forward direction is due to small-angle 
multiple scattering, whereas only single scattering is 
taken into account in the backward hemisphere. With the 
use of the reciprocity theorem and the aspect-invariance 
property [28] of systems, the following simple expression 
for the LIDAR return was obtained 

F(t= 2z/c) = ~r~S dn P~(n)I(2z, r = 0, n), (4) 

where as is the cloud scattering coefficient, P~(n) is the 
phase function in the backward hemisphere, 
I(2z, r = 0, n) is the on-axis (r = 0) angular radiance dis- 
tribution at range 2z inside the cloud due to some effec- 
tive source. This effective source has the spatial-angular 
radiance profile 

W(r, n) = S dr' ~ dn' Wr(r', n3 W~(r- r', n -  n'), (5) 

where W~(r, n) and Wr(r, n) are the profiles of the source 
and the receiver, respectively. For a monostatic LIDAR, 
the center and the axis of this effective source coincide 
with those of the laser. 

Theoretical estimations and comparisons with avail- 
able data show that this model should give high accuracy 
up to t,~15/a~c at g>0.8, where 

g = ~ S dO sin (0) cos (O)P(O) 

is the asymmetry parameter of the phase function. 
Two approaches to estimate the value of 

I(2z, r = 0, n) in (4) have been developed. Both of them 
rely upon the multicomponent method of the radiative- 
transfer equation solution [42]. In the fully analytic solu- 
tion [41], the small-angle diffusion approximation was 
used to estimate the components. Here, more accurate 



data are presented, where the integrand I(2z, r = 0, n) 
was calculated through the mult icomponent small-angle 
solution, and the problem of  evaluating a three-dimen- 
sional integral arose [41]. The required inputs are the 
LIDAR-system parameters, the aerosol phase function 
and extinction and scattering coefficients which are 
allowed to vary along the beam axis. 

3 Comparison results 

The comparison results are plotted in Figs. 1-4 for the 10 
and 1 mrad field-of-view multiple-to-single and double- 
to-single scattering L I D A R  return ratios, respectively. 
These curves are a measure of the relative importance of  
multiple-scattering contributions in L I D A R  signals. 
They give, for each range z into the cloud, the multiple- 
or double-scattering content of  the L I D A R  return in 
terms of  the corresponding single-scattering value cal- 
culated from (2). All curves have the same characteristic 
shape, i.e., a rapid rise for the first few tens of  meters 
(optical depth <0.5) followed by a more gentle and 
progressively smaller and smaller rate of  increase. In the 
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Fig. 1. Calculated ratios of the multiple-to-single scattering contri- 
butions to the LIDAR return from a uniform C.1 cloud for a 
receiver field of view of 10 mrad; the cloud base is at 1 km and the 
LIDAR is directed vertically. (A, DREV's model; e, Florence 
group's model; v, Israel group's model; *, Munich group's model; 
A, NASA group's model; ©, Swiss group's model; [], Minsk 
group's model) 
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Fig. 2. Same as Fig. 1 but for a receiver field of view of 1 mrad 
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Fig. 3. Calculated ratios of the double-to-single scattering contribu- 
tions to the LIDAR return from a uniform C. 1 cloud for a receiver 
field of view of 10 mrad; the cloud base is at 1 km and the LIDAR 
is directed vertically. (Symbols as in Fig. 1) 
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Fig. 4. Same as Fig. 3 but for a receiver field of view of 1 mrad 

simulation example of  this paper, the ratio reaches values 
of ~ 10 in the 10 mrad case and slightly below 1 in the 
1 mrad case. A first conclusion, therefore, is that higher- 
order scattering is significant and a strong function of  the 
receiver field of  view. Clearly, for the cloud property and 
L ID A R geometry chosen here, it could not be neglected 
in the process of  inverting the L I D A R  return for re- 
trieving the cloud extinction coefficient. 

There is close agreement between the results of  the 
Florence, Munich, NASA and Minsk groups for all 
cases. The first three groups use similar Monte-Carlo 
methods that, however, differ in their calculation 
algorithms. The Minsk group's is a semianalytic ap- 
proximation to the radiative-transfer equation. This 
good agreement between different approaches is certainly 
a worthwhile achievement. In the other cases, the level 
of  agreement varies from one situation to the other. For  
example, the Israel group's Monte-Carlo calculations 
agree with Florence's, Munich's and NASA's for double 
scattering and for multiple scattering at 1 mrad but  are 
higher for multiple scattering at 10 mrad. The DREV's  
radiative-transfer model gives multiple-scattering contri- 
butions that are generally on the high side as compared 
with the other results; at 10 mrad, there is reasonable 
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agreement with the Israel group's calculations, whereas 
at 1 mrad, the shape of the curve is slightly different than 
for the other models showing a greater asymptotic rate 
of increase. The results of the Swiss group show generally 
a lower rise in the first part of the curves and converge 
to the results of the other groups after a few tens of 
meters. For double scattering and multiple scattering at 
10 mrad, the results are very similar to the other models 
and the curves merge after the first meters. For multiple 
scattering at 1 mrad, the results are slightly higher for the 
range from 100 to 200m, and similar to the DREV 
results from 200 to 300 m. We have no independent 
information to determine which, if any, of these models 
gives the right answer, but the results are a good indica- 
tion of the difficulties of predicting higher-order scatter- 
ing in all its aspects. Figures 1-4 show 4 different but still 
related situations and yet we find that the disrepancies do 
not obey a fixed pattern; models that agree in one situa- 
tion may disagree in the other. 

Following are a few thoughts on the origin of the 
differences. To generalize somewhat the discussions, the 
results are regrouped under three categories. 

3.1 Monte-Carlo results 

The first group of models has in common the application 
of Monte-Carlo techniques in one form or the other. A 
main advantage of these techniques is that they allow the 
calculation of the solutions with the desired accuracy. 
The Monte-Carlo approach is based on computer sim- 
ulation of photon trajectories. The expected values of 
the signals are estimated by averaging over the ensemble 
of independent samples. In analog simulation, the ele- 
ments of the trajectories, i.e., the free-path length and the 
scattering angle, are chosen from the probability distri- 
butions of the corresponding physical parameters. The 
constructed random trajectories are statistically equiv- 
alent to those of the real photons. The analog method is 
relatively simple to implement but its main drawback is 
the calculation time to achieve the desired accuracy. In 
the LIDAR geometry of interest here, this is due to the 
high anisotropy of light scattering in clouds. The proba- 
bility of backscattering is extremely small so that the 
detections of physical photons are statistically rare 
events. As a consequence, the variance of the calculated 
signals is high and it improves only as l / M ,  where N is 
the number of samples. To reduce the variance, weighted 
Monte-Carlo methods are used. They are based on em- 
ploying "non-physical" probability distributions. Simul- 
taneously, corresponding weight multipliers are in- 
troduced to correct for the bias of the estimators. The 
result is a reduction of the statistical variance for the 
same amount of computation time. This means increas- 
ing the efficiency of the computational algorithms. 

In view of the differences shown in Figs. 1-4, it is 
important to recall briefly the variance-reduction meth- 
ods used in the Monte-Carlo calculations of this paper. 
The following methods were applied at various stages of 
the calculations: 

3.1.1 Semianalytical method [30, 33]. This method con- 
sists in calculating analytically, from the scattering distri- 

bution at each scattering point, the probability of hitting 
the receiver with no further scattering events. For the 
practical application of this paper (small-aperture re- 
ceiver located far from the scattering points), this method 
reduces the variance compared with the analog Monte- 
Carlo method, because in the latter case the events of 
photons hitting the receiver aperture are very rare. 

3.1.2 Point-flux estimator [35]. This method is based on 
the exact calculation of the flux density at a given point 
in space. For a ring receiver, the calculations are carried 
out by randomly choosing a point on the ring. 

Although the above methods reduce the variance, 
they are often not sufficient. To speed up the computa- 
tions even more, additional variance-reduction tech- 
niques have been implemented. 

3.1.3 Angular bias [30]. This method has been directly 
derived from that introduced by Platt [31] and consists 
in using a fictitious phase function distorted in order to 
increase the probability of photons undergoing scatter- 
ing with angles in the backward direction. As in [31], a 
phase function is employed which is obtained by leaving 
the original phase function unchanged between 0 = 0 and 
~z/2, where 0 is the scattering angle, and letting P(O) be 
equal to P(zc-0)  in the backward hemisphere. The re- 
sulting function is then renormalized. It is, however, 
necessary to apply suitable weights to the photons at 
each scattering angle. Thus, for each trajectory, the 
photon carries the product of the weights pertaining to 
the preceding scattering events and changing along its 
trajectory. 

3.1.4 Scaling relationship [30]. In this method, the con- 
tributions to the LIDAR returns for each scattering 
order are calculated at a different value of the optical 
depth r of the considered cloud layer. Generally, z is 
taken nearly equal to the scattering order. Then, the 
returns are scaled to the desired common value of r, as 
explained in [30]. This procedure proved useful in reduc- 
ing the number of photon trajectories necessary to 
achieve the desired convergence of the calculations. Tests 
on the angular bias and scaling procedures showed that 
their relative efficiency depends, among other factors, 
very much on the order of scattering. Generally, for 
contributions of scattering orders greater than about 6, 
the scaling relations are more effective than the angular- 
bias procedure. 

3.1.5 Splitting of scattering [35]. Another variance- 
reduction tool is based on angle splitting at the points of 
scattering near the laser axis. The incident trajectory is 
split into two trajectories: a first one into the cone near 
the backward direction and a second one in the remain- 
ing portion of the sphere. The angles of the split trajec- 
tories are picked out according to the angular distribu- 
tions proportional to the phase functions P(z~-0) and 
P(O), respectively. The weight factors of both trajectories 
are less than unity. Splitting of scattering essentially 
increases the number of photons backscattered into the 
detector directions. The speed-up in the computations 
for the case of the 10 mrad receiver field of view is in the 
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range of 8-25 times faster than for the corresponding 
analog code. 

3.1.6 Exponential transformation with point splitting and 
Russian roulette [35]. The exponential transformation is 
a photon free-path length stretching method. The sam- 
pled path length in the random walk is stretched in the 
preferred direction to the receiver and reduced in the 
opposite direction. The weight at the end of the path is 
the product of an exponential function and an angular 
factor. The exponential function is the ratio of the values 
of the exponential transformant at the beginning and end 
points of the path. The angular factor v follows the 
general rule that it is larger than unity if the angle £2 
between the direction of the photon path and the line to 
the detector is less than 7:/2, and smaller than unity if 
~2 > re/2. In their code, the Munich group used the com- 
bination of the exponential transformation with splitting 
and Russian roulette. If a photon moves toward the 
receiver, i.e., f2 < 7:/2, they simulate the splitting into v 
photons, and if it moves away from the detector, i.e., 
f2 > re/2, they simulate the Russian roulette with survival 
probability v. The speed-up of the computations by this 
method combined with splitting of scattering is of the 
order of 2-5 times faster than the corresponding calcula- 
tions with splitting alone. 

The accompanying papers of this issue describe in 
more detail how these variance-reduction algorithms 
were implemented. Here, we want to emphasize that they 
are specialized representations of the scattering interac- 
tions that involve some degree of approximation. Since 
the actual algorithms are different from model to model, 
they could explain some of the differences observed in the 
solutions plotted in Figs. 14 .  Other causes are the dif- 
ferences in the basic models themselves. For example, the 
Israel approach is not the classical photon-trajectory 
simulation described above, but a volume random selec- 
tion of scattering centers in number equal to the scatter- 
ing order and sorted to give the same total propagation 
length. Finally, there could also be errors due to the 
angular resolution used for the numerical evaluation of 
the phase function near the forward peak. Unfortunate- 
ly, the same resolution was not used everywhere. For all 
these reasons, the differences observed among the 
Monte-Carlo results of Figs. 1-4 are not unreasonable. 

3.2 Recursive Mie results 

The main feature of our approach is the analytical 
generalization of the scattered electromagnetic field to 
include the contributions of multiple-scattering processes. 
The basic expressions are derived in a very general con- 
text without using far-field or small-angle approxima- 
tions. Moreover, the general expression of the field leads 
to account for interference effects between the contribu- 
tions from the fields at different scattering orders. In the 
particular case of the M D A R  experiment considered 
here, the total scattered intensity has been calculated 
from the expression of the amplitude of the total scat- 
tered field using some approximations compatible with 
the particular experiment and the major assumptions 
used by other groups [39]. The results, which are in good 

agreement with the other proposed methods, are valid in 
the framework of these approximations. However, they 
leave the way open to more general and accurate calcula- 
tions. The discrepancies at "short" distances are related 
to the different dependence on the receiver field of view 
in the Swiss model, which results from the approxima- 
tions made in the numerical calculations, as discussed 
in [39]. 

3.3 Radiative-transfer results 

Although derived from the same radiative-transfer equa- 
tion, the DREV's and Minsk's algorithms are rather 
different, as the individual papers [40, 41] show. The 
differences in the results are therefore not surprising. The 
solutions have the same general shape but they turn out 
to be approximately the lower and upper limits of all 
models considered here. The principal characteristic of 
the DREV's model is the ad hoc or phenomenological 
representation of beam spreading by a lateral diffusion 
process based on the analogy with the successful model- 
ing of transport processes in turbulence. The model cal- 
culates all multiple scatterings at once and cannot single 
out the contributions from the various orders. In the 
Minsk's approach, the spatial angular spread is separated 
into two regimes: in the very near forward direction, the 
small-angle approximation is assumed, whereas, at larger 
angles, only single scatterings are taken into account. For 
this reason, the model underestimates the multiple-scat- 
tering contributions at large time and wide fields of view 
but should give accurate results within the limits discuss- 
ed in [41]. Computationally, the phase function is 
separated into linear components that satisfy the two- 
regime description of angular scattering but that also 
provide an efficient algorithm for handling the mul- 
tidimensional integral in the radiative-transfer equation. 
Therefore, the radiative-transfer equation is solved by 
two very different algorithms and the levels of accuracy 
achieved by the lateral diffusion model in the first case 
and the multicomponent representation of the phase 
function in the second are certainly not uniform for all 
aspects of multiple scattering, and the two approaches 
can give different answers in any given application, as 
shown here. 

The Minsk's results are very close to the Monte-Carlo 
calculations of the Florence, Munich and NASA groups. 
The four together represent the lower limit of the cal- 
culated multiple-to-single scattering ratios of this paper. 

The DREV's model was validated by comparison 
with experimental data [40] for many different forward- 
and backscattering problems. The agreement is quite 
consistent over all situations considered but it is no better 
than a factor of ~ 1.5, which is actually of the same order 
as the scatter of the experimental data. In one example, 
the DREV's solutions were coompared with laboratory 
LIDAR-simulation data in a geometry that emulates that 
of our numerical example of Fig. 1. In conditions of large 
multiple-scattering contributions, the solutions turned 
out to be larger than the measurements by a factor of 
g l.5 or less, as illustrated in Fig. 7 of [40]. If ex- 
trapolated to the problem of Fig. t, these experimental 
data would fall approximately half way between the 
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DREV's  and Minsk's solutions which, as mentioned 
earlier, represent approximately the upper and lower 
limits of  all plotted solutions. We can, therefore, con- 
clude that the differences between the radiative-transfer 
models of  Figs. 1 and 2 are not  large compared with the 
observed experimental uncertainties of  the measurements 
reported in [40], and that the applicable measurements 
happen to fall well within the scatter among all models. 
A main advantage of  the radiative-transfer algorithms is 
that they required insignificant computat ion time. 

4 Conclusions 

The calculations of  this paper are a very worthwhile 
exercise for L IDAR users. The L I D A R  community 
needs improved and validated models of  L I D A R  mea- 
surements in varied aerosol conditions, especially as re- 
gards the importance of  multiple scattering. While lim- 
ited in scope, the project described here was a first at- 
tempt at pulling together a wide-enough spectrum of  
modeling approaches to address multiple-scattering ef- 
fects on L I D A R  operation. The exercise has contributed 
a concensus of  results and understandings which should 
help take the multiple-scattering contributions into ac- 
count in L IDAR  applications, and eventually make use 
of the information they contain. Clearly, and indepen- 
dently of  the level of  agreement, the calculations of  
Figs. 1-4 show that higher-order scattering can contri- 
bute to measured L I D A R  returns to a level that cannot 
be neglected in inversion algorithms. The problem 
chosen here is only one among a whole set of  practical 
scenarios and probably a favorable one in terms of  the 
magnitude of the multiple-scattering effects. For  example, 
a space-based application with greater LIDAR-to-cloud 
distance would lead to much larger multiple-scattering 
effects for otherwise identical parameters. The com- 
parisons show excellent agreement between some of  the 
models in some cases, but disagreement, sometimes be- 
tween the same models, in other cases. Obviously, the 
calculation differences stem from differences in the 
models and/or  algorithms, as explained in the preceding 
section. Higher-order scattering depends on a large num- 
ber of  local and path-integrated aerosol properties as 
well as on the geometry of  the problem. Consequently, 
models and algorithms require simplifications or ex- 
pedients and it seems, from the results of our intercom- 
parison, that it is very difficult to reproduce all aspects 
with uniform accuracy. The intercomparison has allowed 
us to take a closer look at the model particularities that 
could explain the observed differences. The difficulty in 
implementing corrections is to determine which is the 
true solution. More measurements in well-controlled and 
varied conditions are now necessary. It is hoped that the 
present results will stir further interest in improving and 
validating our and other multiple-scattering models and 
calculation algorithms. This is essential for the accurate 
determination of  aerosol properties from L I D A R  mea- 
surements in moderate to dense concentrations, in par- 
ticular for cloud studies. 
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