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Abstract. A Monte-Carlo model is described which has 
been developed for calculation of multiply scattered 
LIDAR returns. Results are shown for the common 
problem selected by the MUSCLE (MUltiple SCattering 
LIDAR Experiments) group for intercomparison, which 
represents a typical ground-based cloud-sensing scena- 
rio. This is contrasted with returns from the same cloud 
sensed by a space-based LIDAR, where multiple-scatter- 
ing effects are much greater. The magnitude of multiple- 
scattering effects is seen to be largely determined by the 
optical depth across the receiver field of view at the cloud. 

PACS: 42.40; 42.68 

It is generally recognized that multiple scattering can 
make significant contributions to LIDAR returns from 
clouds and other dense media. The primary effect of the 
multiple scattering is to make the extinction coefficient 
of the medium appear to be less than it really is. This 
effect can be minimized by using narrow transmitted 
beams and a small receiver Field Of View (FOV), and can 
often be reduced to a level where it is less important than 
other unknowns. For a LIDAR in Earth orbit this is not 
possible. The range from the LIDAR to the atmosphere 
is large and even narrow fields of view yield quite large 
footprints in the atmosphere. Secondly, eyesafety of per- 
sons on the ground is a concern and relatively large laser 
beam divergences are required in order to have high laser 
pulse energy and still meet requirements for maximum 
exposure thresholds. Our interest in LIDAR multiple 
scattering has been stimulated by involvement in a 
NASA program to put a LIDAR system in orbit on the 
Space Shuttle, the LIDAR In-space Technology Experi- 
ment (LITE) [1]. 

Monte Carlo techniques have been applied in a wide 
variety of ways to the study of radiative transfer. This 
paper describes a relatively simple and direct Monte 

Carlo procedure for the simulation of multiply-scattered 
LIDAR returns by modeling as directly as possible the 
physical scattering process. The basic procedure consists 
of constructing random photon trajectories, following 
the photons through multiple scatterings in the cloud, 
and computing the received signals. The statistics of the 
trajectories are determined by probability distributions 
derived from the scattering and absorption properties of 
the cloud particles. This direct simulation approach has 
several advantages. It allows great flexibility in the pro- 
blems which can be studied. It can be applied to any 
medium for which the scattering phase function and 
other basic optical properties are known. Complex sens- 
ing geometries can be modeled which are difficult or 
impossible to handle analytically. Virtually any desired 
parameter describing the scattered radiation can be de- 
rived. Once a basic model is developed it can easily be 
adapted to other problems. The disadvantage ot the 
method is that it is computationally intensive. Because it 
is a statistical technique, a large number of photon trajec- 
tories must be computed to reduce the variance in the 
results. A variety of variance reduction techniques of 
increasing sophistication have been developed [2, 3]. 
These techniques along with the availability of fast desk- 
top computers make Monte Carlo a practical and con- 
venient approach. While the model described here has 
been developed primarily for investigating multiple scat- 
tering effects on space-based LIDARS, it is quite general 
and can be used to study a wide variety of LIDAR 
problems. The model has been applied to the common 
problem decided on by participants in the MUSCLE 
(MUltiple SCattering LIDAR Experiments) workshop 
series, and comparisons with the results of other MUS- 
CLE groups are reported in the joint paper in this issue 
[4]. In the remainder of this paper we describe the Monte 
Carlo method used, then applications to the MUSCLE 
common problem and to several real-world problems. 
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1 Method 

The model was originally developed for simulations of 
oceanographic LIDARS [5] and has recently been modi- 
fied for application to the problem of homogeneous 
clouds. The approach which has been taken is to model 
as directly as possible the physical scattering process, and 
is essentially the procedure describe by Kunkel and 
Weinman [6]. Results obtained are being used as a 
benchmark against which to compare the performance 
of more sophisticated techniques with greater computa- 
tional efficiency. 

The cloud optical properties which must be specified 
are the extinction coefficient a, single-scatter albedo co, 
and the single-scatter phase function P(O). The trans- 
mitted beam is assumed to have a Gaussian profile, and 
the angle at which each photon leaves the transmitter is 
a random value drawn from the appropriate probability 
distribution. The length of each photon path segment 
within the cloud is randomly drawn from an exponential 
distribution such that the probability of the segment 
length I is 

p(/) = o-e ~l . 

Inhomogeneous clouds may be treated in a similar man- 
ner if the appropriate probability density function can be 
constructed. At the end of each path segment, the photon 
is scattered in a random direction, with a probability 
density function determined by P(O). Photons which 
leave the bottom or top edges of the cloud are dropped. 
Photon trajectories within the cloud are followed until 
they have traveled to a distance beyond the angular field 
of the receiver where the probability of being scattering 
back into the field is low: usually to a distance corre- 
sponding to an optical depth of 2. 

The solid angle subtended by the LIDAR receiver 
from the cloud is generally small and the fraction of 
photon trajectories which terminate at the receiver is 
extremely low. It is impractical to calculate the number 
of individual photon trajectories required to accurately 
estimate the signal. To improve computational efficiency, 
the single photon is replaced with a packet containing a 
large number of photons and this packet is assigned a 
weight of unity. Each time a new scattering angle is 
computed, the probability of scattering directly back to 
the receiver is computed analytically: 

p = P(Or) e-~Af2 / 4~z, 

where O r is the required scattering angle, rr is the optical 
depth between the scattering site and the receiver, and 
Af2 is the solid angle subtended by the receiver. At each 
scattering site within the receiver FOV, this fractional 
weight is removed from the photon packet and added to 
the detector signal. The signal is accumulated in time bins 
according to the total time of flight of the detected 
photons. The sum over all scattering events for all trans- 
mitted photons represents the LIDAR signal. 

The procedure described here is very generic and a 
variety of statistical weighting techniques are available 
which could be used to improve the computational effi- 

ciency [4, 7, 8]. Due to the characteristics of the multiple 
scattering process, a technique may prove useful for one 
problem but have no benefits for another. Weighting 
techniques must also be properly normalized or bias 
errors are introduced. While inefficient, the procedure 
described here is a good starting point in developing 
more sophisticated algorithms. 

2 Applications 

A common problem for analysis has been chosen by the 
MUSCLE participants in order to assess the perfor- 
mance of the various approaches being used to compute 
LIDAR multiple scattering effects. The problem was 
designed to represent a typical scenario for ground-based 
LIDAR sensing of water clouds. The lidar is specified to 
operate at a wavelength of 1.064/tin, with a beam diver- 
gence of 0.1 mrad and a receiver FOV of either 1 mrad 
or 10 mrad. The LIDAR is located 1 km from the base 
of a homogeneous cloud. The phase function of the cloud 
is defined by the Deirmendjian C1 size distribution [9]. 
The extinction coefficient of the cloud is 17.25 kin-1 with 
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Fig. la,  b. Solutions to the MUSCLE common problem, a 1 mrad 
FOV. Curves from top to bottom are: total signal, single-scatter 
signal, second order, third order, b 10 mrad FOV. Curves from top 
to bottom are: total signal, single scatter-signal, second order, third 
order, fourth order 



343 

a single-scatter albedo of unity. Complete specifications 
are given in Bissonnette et al. [4]. 

The results shown in Fig. 1 were obtained by comput- 
ing 2 million photon trajectories for each FOV. Com- 
parisons with other MUSCLE participants are given in 
the joint paper [4]. Thirty orders of scattering were con- 
sidered for these calculations. It was found that the first 
4 orders were sufficient to describe the 1 mrad case while 
10 orders were required for the 10mrad case. The 
10 mrad case exhibits much higher multiple scattering 
because the probability for a scattered photon to be 
rescattered within the receiver FOV is primarily deter- 
mined by the optical depth across the radial width of the 
receiver footprint in the cloud. (There is also some depen- 
dence on the phase function. A phase function which is 
sharply peaked in the forward direction will tend to keep 
the scattered photons within the FOV relative to a more 
isotropic phase function). As will be seen in the next 
example, multiple scattering increases with the diameter 
of the receiver footprint, whether this is due to an in- 
crease in the angular field or an increase in the range to 
the cloud. 

The remaining three figures show multiple scattering 
returns from the same homogeneous C1 cloud defined 
above, but for a space-based LIDAR. For each example, 
200000 photon trajectories were constructed and 
30 orders of scattering were computed. Figure 2 illus- 
trates the buildup of higher order scattering as the pulse 
penetrates the cloud. The LIDAR is located 293 km 
above the cloud top and the FOV in this case is 3.5 mrad. 
This corresponds to the sensing geometry of LITE for 
nighttime measurements. Due to the very large size of the 
receiver footprint, scattered photons have a high proba- 
bility of scattering many times within the receiver FOV 
before being scattered out. The behavior of the double- 
scatter signal is much the same as in the l0 mrad ground- 
based case, but the higher orders are greatly enhanced. 
Twenty to 30 orders of scattering must be considered for 
a penetration depth of 600 m. 

Figure 3 compares the single-scatter return with the 
total return at three different fields of view. The diameter 
of the receiver footprint for 0.2 mrad FOV is about one 
mean free path (1/a). As the FOV increases, more scatter- 
ing events per trajectory occur within the FOV and con- 
tribute to the signal, and the variance of the result de- 
creases somewhat. The contributions of the higher order 
scattering are so strong that the total return drops only 
1 order of magnitude through the cloud for the largest 
FOV, even though the optical depth is 10. Beyond the 
first few meters of penetration, the return signal is domi- 
nated by higher-order scattering. Thus, no retrieval 
algorithm for parameters such as extinction coefficient 
will be successful without taking multiple scattering into 
account. The detected signal is seen to be dependent on 
the receiver FOV. This indicates the possibility of com- 
bining measurements at different fields of view to derive 
information about the cloud particles. 

When accumulating photon statistics during the 
model calculations, returns may be binned either by time 
of flight or by the range at which the final scattering 
occurred. Figure 4 shows the return for a C 1 cloud 120 m 
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Fig. 2. Relative scattering from a homogeneous C1 cloud for a 
space-based LIDAR with 3.5 mrad FOV at a range of 293 km. 
Shown are first, second, tenth, twentieth and thirtieth scattering 
orders 
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Fig. 3. Normalized returns from a homogeneous C1 cloud at a range 
of 293 km. Shown are first-order scatter and summation of the first 
thirty orders for 0.2 mrad, 1.1 mrad, and 3.5 mrad receiver FOV 
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Fig. 4. Pulse-stretching effect of a 120 m thick C1 cloud at a range 
of 293 km with a receiver FOV of 3.5 mrad 
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deep binned both ways. On the far side of  the cloud is a 
Rayleigh atmosphere, providing a non-zero signal. When 
binned by time of  flight the lower edge of the cloud 
appears to be diffuse. When binned by range, it is seen 
that the lower edge of  the cloud is in fact sharply defined, 
and it is the increased path length of  the multiply-scat- 
tered photons which produces the appearance of  a diffuse 
edge. While the profile binned by time of  flight does not 
drop to clear-air levels until far beyond the cloud base, 
it does show a significant decrease at the base. This result 
suggests that the pulse stretching produced by multiple 
scattering will not prohibit a determination of  the true 
cloud base. Because of  the large receiver footprint,  light 
which is forward scattered in the cloud is not necessarily 
lost from the beam, and, in some cases, multiple scatter- 
ing may allow LI DAR measurements of  cloud thickness 
to be performed on deeper clouds than would otherwise 
be possible. 
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