
Appl. Phys. B 60, 331-334 (1995) 
Applied 
Physics B ,aso,s and Optics 

© Springer-Verlag 1995 

Analytical multiple-scattering extension of the Mie theory: 
The LIDAR equation 
C. Flesia 1, P. Schwendimann 2 

1 Groupe de Physique Appliqu6e, Universit~ de Gen~ve, CH-1211 Gen~ve 4, Switzerland 
(Fax: + 41-22/781-0980, E-raail: FLESIA@sc2a.unige.ch) 
2 Defence Procurement and Technology Group, System Analysis Division, CH-3000 Bern, Switzerland 

Received: 2 September 1994/Accepted: 19 September 1994 

Abstract. Multiple scattering of light in aerosol media is 
described in a simple picture within the framework of 
Mie theory. Our approach leads to an analytical ex- 
pression of the n-fold scattered electromagnetic field and 
then to an analytical derivation of multiple-scattering 
LIDAR equation form transport theory. This approach 
differs from both the descriptions of multiple scattering 
based on the approximation of radiative-tranfer theory 
and from statistical approaches mainly based on Monte- 
Carlo calculations, The physical quantities of interest are 
expressed by straightforward generalization of the cor- 
responding single-scattering quantities. Therefore, the 
multiple-scattering contributions are calculated without 
losing the advantage of working with analytical ex- 
pression in the flame of Mie theory. 

PACS: 42.60 

In a preceding paper [1], we have presented an extension 
of Mie theory for light scattering from spherical particles, 
which includes the effects of multiple scattering. In this 
model, the spherical wave scattered by the first particle 
is considered as the field impinging on the second one. 
This procedure is repeated at all scattering orders. Fol- 
lowing analytically this process step by step we construct 
the n-fold electromagnetic field scattered by an ensemble 
of particles. The multiple-scattering process is described 
without losing the advantage of working with analytical 
expressions in the framework of Mie theory and the 
physical quantities of interest, the backscattering and 
extinction coefficients, are expressed by a straightfor- 
ward generalization of the corresponding single-scatter- 
ing quantities. In [1], the multiple-scattering contribu- 
tions to the radiation diffused by the whole medium are 
calculated from the light scattered once by an arbitrary 
but fixed particle of the aerosol, i.e., from a point-like 
source. This example has mainly the character of an 
illustration of how the quantities introduced in Mie 
theory for single-scattering events change when the in- 

cident field is not a plane wave but the single-scattered 
field itself, and when the scattering involves not only one 
particle but the whole medium. These results, beside their 
illustrative character, are useful in order to consider the 
modifications of single scattering due to the surround- 
ings. However, the more interesting effects are global 
effects like the scattering of light propagating through an 
aerosol as it is the case in atmospheric physics or in 
optical depth calculations for suspension of particles. In 
order to make the previous results suitable for treating 
these problems, we have to consider backscattering and 
extinction or scattered-field intensity from the ensemble 
of particles in an aerosol considered as source for multi- 
ple scattering without isolating one of them as it has been 
done in [1]. 

In this paper, we consider the propagation case which 
corresponds to the scattering of a pulsed beam through 
an aerosol as it is realized in LIDAR applications in 
atmospheric physics, where information on the diffusion 
at different depths in the aerosol is considered. The 
LIDAR returns from an atmospheric aerosol or from 
clouds are currently described by the LIDAR equation 
in the single-scattering approximation [2]. In this paper, 
we present a generalization of the LIDAR equation in- 
cluding multiple-scattering effects which is based on the 
approach presented in [1]. 

The paper is organized as follows. In Sect. 1 we give 
a short recollection of the results of [1], which are of 
relevance in the present context. In Sect. 2 we present a 
generalization of the LIDAR equation which contains 
multiple-scattering contributions, and in Sect. 3, we dis- 
cuss the applications of this equation to the specific 
numerical experiment described in the common com- 
parative paper included in this issue [3]. 

1 Multiple-scattering contributions to the intensity 

In this section, without giving an exhaustive description 
of our approach already published [1], we report some of 
the results which are relevant in the present context. 
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The single-scattering results of Mie theory [4] have 
been generalized by introducing the scattering coef- 
ficients of  order n. In the single-scattering regime, parti- 
cles scatter the impinging field independently and the 
scattering coefficients al ~) and bl t~ are given by the stan- 
dard expressions [5] 

m~u~ (mx) ~u~ (x) - ~u~ (mx) ~ ( x) 
al ~) (x) = (l) 

rnq/t (mx) ~I ~)' ( x ) -  gt~ (mx) ~I ~) (x) ' 

mgt~ (rex) gh ( x) - ~h ( mx) gt~ ( x) 
b? ~ (x) -- (2) 

m~t~ (mx) ~I a) ( x ) -  ~, (rex) ~I ~)" (x) ' 

where rn is the index of  refraction of  the sphere, x = 27rr/2 
is the particle-size parameter, r is the particle radius, 2 the 
wavelength and gh, ~u;, ~I ~) ~(~)' are the Riccati-Bessel and 
Hankel functions and their derivatives, respectively. 
Double scattering implies that the light scattered by a 
first particle is rescattered by a second one, and vice 
versa. In [1], the scattering coefficients for double scatter- 
ing, denoted by a l 2) and b} 2), are obtained from the 
boundary conditions on the second particle using the 
single-scattered field as input. The boundary conditions 
on the surface of  the second particle lead to expressions 
for al z) and b} 2) analogous to those valid for single scat- 
tering: 

m~ll I (mx2) ¢}1), (q) _ ~//~ (rex2) ¢}1)(q) 
al 2) (xl,  x2, q) = @ ) ( x 0  m~h (mx2) ¢I 1)' (x2) - ~ (mx2) ~I 1) (xz) 

X2 
x - -  = al 1) (x 0 7l (x2, q), (3) 

q 

m ~  (mxz) ~1) (q)_  V, (mx2) (~1), (q) 
bl ~) (x, ,  x2, q) = b ? ) ( x 0  

m~t~ (mx2) (I 1) (x2) - ~/11 (rex2) ~I 1), (x2) 

X2 
x - -  = b111 (xl) fit (Xz, q), (4) 

q 

where q = Iq] is the interparticle distance normalized 
with the factor 2/2rc, and the dependence on the size 
parameters xl and x2 for different particles is explicitly 
written down. The quantities a} a) and bl 2) are the correc- 
tions to Mie theory due to double scattering. The correc- 
tion factors 7, and fi~ are functions of  the inverse distance 
and they decrease to a negligible value when the interpar- 
ticle distance becomes very large, i.e., in the single-scat- 
tering limit [1]. In analogy, we consider the light scattered 
by the second particle as the incoming field for the scat- 
tering on the third particle. The same calculation will give 
the third-order corrections to the scattering coefficients. 
A simple recurrence relation leads to a generalization of  
scattering coefficients for the n th-scattering order. The 
coefficients a~ ") and b} ") have the same structure as those 
for double scattering. They are expressed by the single- 
scattering coefficients al ~) and b~ ~), which depend on the 
first particle-size parameter xl times the product of the 
correction factors 7~ or 6z, respectively, which in turn, 

depend only on thej- th particle size parameter xj and on 
the normalized interparticle distance q. Each term 7~ or 
6~ can vary between one (in the case of  superposed parti- 
cles, i.e., for q = x) and zero (in the case of  a very large 
distance). Therefore, the products defining the coef- 
ficients a~ ") and bl ") contain a natural convergency of the 
correction factors as a function of  the scattering order [1]. 

The multiple-scattering contributions for an aerosol 
of N particles, are calculated by integrating over the 
continuous distance-distribution function 0 (q) which re- 
flects the random spatial positions of  the particles in the 
aerosol giving the successive n-th scattering orders, i.e., 
for each scattering order, the sum over all scattering 
paths between the particles with respect to the position 
of the point-like source and over the particle-size distri- 
bution g (x). For  instance, for the case of  non-correlated 
scatterers in an homogeneous medium and a punctual 
light source, we obtain 

a!")(q0 = i ~alX)(x) 71m)(x, q l ,q)~(q)g(x)dq  dx,  (5) 
m=2 

where I ql I is the distance of  the particle giving the first 
scattering, i.e., the point-like source, with respect to a 
fixed reference frame. In (5), the multidimensional inte- 
gral over the interparticle distances, which is usually 
encountered in other methods, is reduced to a one- 
dimensional integration over the distance-distribution 
function q. In the case of  a microscopic homogeneity of  
the medium, this is a consequence of  the recurrence 
relation defining the n th order scattering coefficients. In 
the case of an incident beam, the distance [qt [ has to be 
averaged over the total width of  the medium L. 

The same holds for b~ "). Expression (5) contains the 
main result of  [1]. 

The explicit expression of the components of  the am- 
plitude of  the n- fold scattered field E (") is constructed as 
in Mie theory and depends on the point-like particle 
positions through the coefficients a} ") and bl "). As an 
example, we report the explicit form of the 0-component 
of  E 2 in spherical coordinates. It reads 

cos 2[ 
E~2) (R, q~; 0, ~b) = i IR-q~l  ~I~)'([ R-qal)  a12) (ql) 

x (pl 1)' (cos 0) cos 0sin 0 -  

cos 0]  
(I1)(IR-qtl)b} 2) (q0PI 1) (cos 0) sin OJ ,(6) 

where a (") (ql) and b (") (q0 are the n-th order coefficients 
introduced above, PI ~) (cos 0) is the Legendre polynomial 
of  order I and R = IR[ is the distance to an arbitrary point 
in space normalized by the factor 2/2ra Expression (6) 
represents the amplitude of  the field scattered two times 
by the whole medium when one considers as incoming 
field the radiation scattered by one single particle, i.e., a 
point-like light source represented here by the particle 
with index 1. In the case of  an incident beam, a sum over 
the positions q~ of the particles responsible for the first 
scattering in the laboratory reference frame is to be 
considered. 



The amplitude of the total scattered field will be 

E = ~ E (j~ , (7) 
J 

where E (J) are the contributions of the scattering process 
of order j to the field. It is important to remark that the 
convergency of the products of 71 ") and 61 ") of the multiple 
scattering correction factors as a function of the scatter- 
ing orders (n) in the expression of a} ") and bl ") coefficients 
leads to a convergency of the sum in (7) as a function of 
the multiple-scattering contributions to the scattered 
field. 

From the expression of the total scattered field, we 
derive the expressions of the attenuation and back- 
scattering of light by the medium, including the effects of 
multiple scattering. The flow of energy is calculated as 
usual from the Poynting vector for the incident, the 
internal and the scattered fie!ds. However, in this case, 
the scattered field contains the multiple-scattering contri- 
butions as well. This is the only difference which exists 
with respect to the expressions for the extinction and the 
backscattering in the single-scattering case. The sum of 
the n-th dimensionless averaged quantities 

) 2  oo 

/~") (ql,)0 : ~ t }-~----1 (2/+ 1) Re [al ") (ql, 2) al "-1)* (ql, 2) 

+ b} ") (ql, 2) bl"-1)* (qa, 2)], (8) 

£ 2 

z(")(qx,2 ) : ~ (2l+ 1 ) ( -  1)" [al") (ql, 2)-bl")(ql, 2)] 
2n l=1 

(9) 

give the totai backscattering and the optical depth of the 
whole medium due to multiple scattering alone, always in 
the case of a point-like source. 

Here, we are interested in the multiple,scattering contri- 
butions to the light intensity impinging on an aerosol. The 
intensity is easily found from the expression of the am- 
plitude of the n-fold scattered field and we can quote here 
its expressions for the n th scattering order 

I~ '0 (R, ql; 0, 45) = 1 IR - q]- ~ L_~}I)' (I R -  q[) al z) (ql) 

PI 1)' (cos 0) cos 0 sin 0 -  (I 1) (IR- qlk) bl z) (ql) 

x ~1; (c°s 0)c°s2 1 sin 2 e°s2 #" (10) 

An analogous expression holds for Ie with sin 2 ~b instead 
cos 2 ~b appearing in it. The expression for the total scat- 
tered intensity up to all scattering orders is given by 

n 
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This implies that no interference effects between the con- 
tributions from the fields at different scattering orders are 
considered. The angular coordinates 0, q~ in (6) and (10) 
refer to a reference frame placed in the center of the 
particle. In order to use the expression for the intensity 
in a propagation context, we have to express it in the 
laboratory reference frame, i.e., in a fixed direction 0', q~', 
and to account for the extinction. This will be done in the 
next section. 

2 Derivation of the LIDAR equation including multiple 
scattering 

The stationary propagation of radiation in an aerosol is 
best described by a transport equation for the intensity of 
the electromagnetic field [6]. This is written in general as 

d I  
d R -  a I + J ,  (12) 

where o- is the attenuation coefficient including single- 
scattering processes only. The source term J accounts for 
the contributions of scattering from different particles in 
the direction of propagation and, therefore, includes, in 
principle, also multiple scattering effects. It is generally 
expressed as 

J(R,O', q~') = ~r~dOdq~P(O, ~b; 0', q~') I(R, 0, ~),  (13) 

where P (0, ~b; 0', q~') is the function describing the trans- 
position from the angular direction 0, ~ to 0', ~'. In the 
following, we will set 0 '=  q~'= 0 for simplicity. When 
only single scattering is considered, the term J vanishes 
and the integral form of the LIDAR equation follows 
from (12) by formal integration, where the LIDAR pulse 
length determines the integration range. The backscatter- 
ing contributes via the initial condition for (12) and the 
geometrical and physical properties of the receiver are 
considered. In order to evaluate the contribution of the 
source term (13) to the transport equation, we consider 
the propagation of a beam of intensity I through an 
aerosol from the point q to a point q+dq. The at- 
tenuation of the aerosol, will be given by (9) including 
multiple scattering, for a set of point-like sources placed 
in a tiny slab of with dq. However, the position of the 
point-like sources appears now as a variable quantity 
in the expression for the extinction. The contribution 
to the intensity scatted from all particles in the di- 
rection R will be given by the sum of all scattering 
events described by (10), and must also account for the 
attenuation due to the multiple-scattering extinction. An 
average over the positions ql of the point-like source has 
to be considered by integration over the length of the 
medium. Therefore, from (10), we introduce the ansatz 

I(R,O, 45)=~SI~")(R, ql, 0,~)exp -- ~ zl(x)d dql, 
n 0 

(14) 
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where rt is the total attenuation coefficient including 
single- and multiple-scattering contributions, as given by 
(9), which has to be integrated over the distance between 
a generic point-like source position ql and the observa- 
tion point R. Substitution of (14) into (13) leads to an 
expression for the source term J which contains the 
effects of multiple scattering explicitelly. The function 
P (0, ~) in (13) is responsible for the transformation of 
the angular variables in (10) to the laboratory reference 
frame as it projects the generic direction in which light 
is scattered into a fixed direction. We formally integrate 
the transport equation obtaining 

I(R) = Ioexp [ - zl (R)] + z 1 (R) ~d R'exp [ -  zl (R - R')] 

~ d Od q~ n(o, eb)Is(R',O, eb ). (15) 

Here I0 is the backscattered intensity due to single scat- 
tering alone. This expression is a general result which 
allows to evaluate the scattering intensity at a given point 
and for a given direction R. In the next section, we will 
use it in order to discuss ground-based LIDAR returns 
from homogeneous clouds including multiple-scattering 
effects. 

3 Numerical results 

Equation (15) allows to calculate the signals which are 
sent to a receiver from an aerosol. An interesting example 
of these signals are the LIDAR returns from clouds. In 
this section, we give some results for ground-based 
LIDAR return from homogeneous clouds. The general 
form of (15) will be simplified on the basis of the ge- 
ometry of the receiver and of the physical characteristics 
of the LIDAR pulses. In a first approximation , the inte- 
grals over the angles are simplified as follows. We assume 
that the contributions of the source term J to the trans- 
port equation arise from a small angle around the direc- 
tion corresponding to an angle between R and q of 180 °. 
This approximation is justified for ground-based mea- 
surements when the distance between the receiver and the 
scattering medium is small. Therefore, we eliminate the 
integral over the angles in (15) and replace it by the value 
of the integrand function for 0 = zc and ~0 = z/2 multiplied 
by a small angular width AO which corresponds to the 
angular aperture of the receiver. The space integral is 
now performed numerically by using a physical dis- 
cretization length which is given by the laser-pulse length. 
Within this assumption, the intensity due to multiple 
scattering is replaced by the total backscattering coef- 
ficient, defined in (8). This gives, in fact, the intensity 
scattered for 0 = 7c, which is required here. Furthermore, 
it depends on the point-like source position as already 
pointed out in Sect. 1. We then assume that on a region, 
whose dimension are given by the laser-pulse length, the 
integral over the point-like source positions may be re- 
placed by the value of the intensity for R =  q. This 
amounts to assume that the attenuation function 

exp [ - z t  (q)] does not vary very much in the interval 
which is considered, i.e., on the layer defined by the 
LIDAR pulse length. This approximation is justified for 
homogeneous scattering media. Within these assump- 
tions, we obtain from (15) 

I(R) = Io exp [ -  rt (R)] + z- t (R) AO ~ dR' 

exp[-z t (R-R ' )]exp[-r t (R ' ) f l~(R ' )] .  (16) 

The remaining integral in (16) is performed numerically. 
Results for a C1 cloud are shown in the comparative 
paper in this issue [3]. 

4 Conclusion 

The main feature of our approach is the analytical 
generalization of the scattered electromagnetic field to 
include the contributions of multiple-scattering processes. 
The basic expressions are derived in a very general con- 
text without using far-field or small-angle approxima- 
tions. Moreover, the general expression of the field ac- 
counts for interference effects between the contributions 
from the fields at different scattering orders. In atmo- 
spheric applications, and, in particular, in the case of the 
LIDAR experiment considered for the comparative 
study defined in [3], the total scattered intensity has been 
calculated in the framework of some approximations 
compatible with the particular experiment and the major 
assumptions used by other groups. The multiple-scattering 
LIDAR equation has been introduced like an ansatz 
from transport theory. The results, which are in good 
agreement with the other proposed methods, are valid in 
the framework of these approximations. They have 
mainly an illustrative character of how our approach can 
work in some specific cases. However, they leave the way 
open to more general and accurate calculations. In a 
general way, our approach is not affected by some of the 
approximation errors, which may appear in purely nu- 
merical approaches. The multiple-scattering contribu- 
tions are calculated avoiding the convergence and stability 
problems often encountered in atmospheric applications, 
These problems occur due to the large number of events 
that have to be taken into account, or when large optical 
depths and/or low signal-to-noise levels exists. 
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