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Abstract. The effect of high contrast in photorefractive 
four-wave mixing is studied using a recently proposed 
empirical formula for the grating amplitude. An analyti- 
cal solution to the coupled-wave equation is obtained 
and its properties are discussed in the case of a double- 
phase-conjugate mirror and semilinear phase-conjugate 
mirror. 

PACS: 42.65.Hw 

Photorefractive four-Wave Mixing (4-WM) has been 
shown to offer many interesting applications such as 
beam amplification, optical signal processing, and phase 
conjugation [1]. The photorefractive process involves the 
formation of a refractive-index grating in an electrooptic 
material through a spatially modulated light distribution 
produced by the interference of interacting optical 
beams. The theoretical description of this phenomenon 
is based mainly on Kukhtarev's et al. model of the 
photorefractive effect [2]. One of the major points of this 
model is the assumption of low contrast of the light 
modulation. As a result, the amplitude of the formed 
refractive-index grating is proportional to the modula- 
tion depth. The approximation of low contrast is not 
always justified in experiments. As a matter of fact, in 
order to achieve highest efficiency of the wave-mix- 
ing process, contrast of the interference fringes is often 
close to unity. This has been found to lead to discrepan- 
cies between theory and results in wave-mixing experi- 
ments. In order to account for experimentally observed 
nonlinear dependence between grating amplitude and 
modulation depth, some modification of the Kukhtarev's 
model has been proposed [3, 4]. However, the empirical 
relation between grating amplitude and the contrast, 
introduced in [3] while correctly describing experimental 
results, does not allow for analytical treatment of even 
the simplest two-beam coupling process. Recently, an 
alternative empirical formula has been proposed by 

Kwak et al. [5]. This model not only exhibits proper 
behavior for large contrast but, additionally, the equa- 
tions describing two-wave mixing could be solved analyt- 
ically. 

In this communication we apply the same model to 
the 4-WM process. We show that corresponding cou- 
pled-wave equations can be completely integrated. We 
use the exact solutions to illustrate the influence of high 
light-intensity contrast on performance of some com- 
monly used self-pumped photorefractive devices includ- 
ing the double-phase-conjugate mirror and the semili- 
near phase-conjugate mirror. 

We consider typical 4-WM geometry when the 
photorefractive material placed between plane z = 0 and 
z = d is illuminated by two counter-propagating pumps 
(A1 and Az) and signal beam A4. The phase-conjugated 
beam (A3) propagates in opposite direction to the signal. 
The interaction of beams is described by a system of 
coupled-wave equations, which, for transmission geom- 
etry, read [6] 

dA1 
- -  = ?~QA,, 
dz 

dA~ 
= -? ,QA*,  

dz 

dA3 

dz -= 7QAz,  

dA~ 
~z-  = -TQA*, (1) 

where Q represents the amplitude of the grating and 7 is 
the coupling constant. In the standard theory of the 
photorefractive effect, Q = m, where m is proportional 
to the contrast of the interference fringes m = 
(A1A* + A'~Aa)/Io and Io is the total light intensity. The 
model proposed in [5] is given by the following relation 



40 

m 

Q - 1 + b m '  (2) 

where b is an adjustable (positive) parameter. For low 
contrast, (2) reproduces results of the standard model 
(Q = m), while for rn increasing it gives a smaller growth 
of the grating amplitude. 

We will consider here the most common situation in 
the photorefractive process, namely a 7c/2 phase shift 
between refractive-index grating and interference pat- 
tern. Then, all amplitudes and coupling constants can be 
treated as real numbers. For this case, the coupled equa- 
tions (1) can be analytically integrated using the 
procedure described in [9]. It can be shown that the 
output amplitudes of the interacting waves can be ex- 
pressed as 

Al  (z = at) = Alo  cos (Pc- A40 sin (Pa, 

A 4 ( z ~ d )  = A40 cos ~oa+ Alo sin foe, 

A3 (z = 0) = --A2e sin ~oe, 

A2(z = 0) = A2e COS (,0d, (3) 

where we assumed that the input amplitude of the phase- 
conjugate wave is zero at the crystal face z = d. The initial 
amplitudes of pump and signal beams are denoted by 
Alo, A2a and A4o, respectively. An auxiliary function (,oe, 

d 
which is defined as ~0d = ,/~ Qdz,  is found from the fol- 
lowing expression o 

Io , / tan  (~e-fl/2)'] 
log ~ t a~ f2 -  -) = (27d- b~a), (4) (a~ + a2)l/2 

where 

al = [ha cos 2~0e+ (I,o-/4o)1/2, 

= /2a/2 sin 2 ~oe-/toV~o, a2 

tanfl/2 = a2/al.  (5) 

The intensity of the phase-conjugate wave is given by the 
simple expression/3(0) = I2e sin 2 ~0e and, for a given set of 
boundary conditions, can be found once the algebraic 
equation (4) for ~0d is solved. Interestingly, the nonlinear 
dependence of the grating on contrast appears in (4) only 
through the term (b ~0a) on its right-hand side. This signifi- 
cantly simplifies analysis (graphical, in particular) of any 
4-WM geometry. 

As an example of application of solutions (3, 4), we 
will consider here two commonly used photorefractive 
devices, namely the Double-Phase-Conjugate Mirror 
(DPCM) [7] and the Semi-Linear Phase-Conjugate Mir- 
ror (SLPCM) [8]. In the one-dimensional theory of 
4-WM both devices are oscillators. Phase conjugation 
takes place when the coupling strength (7 a t) exceeds some 
threshold level. In order to analyze both devices, solu- 
tions, (3) and (4) have to be accompanied by appriopriate 
boundary conditions. For DPCM one has Alo = 0, while 
for SLPCM Alo=0,  and A 2 e = M A l ( z = d ) ,  where M 
denotes the reflectivity of the external mirror (Fig. 1). It 
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Fig. la, b. Interaction geometry for the DPCM (a) and SLPCM (b) 

is known that the DPCM is a soft-threshold device the 
amplitude of the generated phase-conjugate beams is 
zero at the threshold and increases with coupling 
strength. Therefore, it is clear from (4) that the threshold 
condition for the nonlinear response (2) will be exactly 
the same as for the linear one, as then (0 d = 0. However, 
the nonlinearity will affect the phase-conjugate reflectiv- 
ity above the threshold. In Fig. 2a, we show the depen- 
dence of the phase-conjugate reflectivity R = I3 (0)/14o as 
a function of coupling strength, for a few values of the 
parameter b. Clearly, R decreases with larger b but is 
always starts at the same value of (76/)0. These graphs 
exhibit qualitatively the same characteristic features as 
those obtained in numerical studies of large-signal effects 
in the ring phase-conjugate mirror, which is also a soft- 
threshold device [10]. Figure 2b displays standard 
characteristic of the DPCM, namely the output phase- 
conjugate reflectivity as a function of input signal ratio 
(L,o/I2o). Again, all graphs display the same threshold 
independently of b. Generally, however, the nonlinearity 
of the grating-formation process results in deterioration 
of the efficiency of the phase conjugation. Importantly, 
not only the intensity of the phase-conjugate waves de- 
creases but also conditions for their optimal generation 
changes. 

The semilinear phase conjugate mirror on the other 
hand, is a hard-threshold device, i.e., the intensity o f  the 
phase-conjugate output is non-zero at the threshold. 
Therefore, because of the term (b~0a), the non-zero pa- 
rameter b will change the oscillation conditions. Since b 
is positive, the threshold will obviously increase. This is 
evident from Fig. 3a, where we plot the phase-conjugate 
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Fig. 2a, b. Phase-conjugate reflectivity of the 
DPCM as a function of the coupling strength 
(a) and input-beam ratio (b) 
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reflectivity as a function of coupling strength. With b 
increasing, the threshold increases as well and, at the 
same time, the intensity of the phase-conjugate beam at 
the threshold drops. The same effect is also seen in 
Fig. 3b, where we plot the output phase-conjugate reflec- 
tivity vs reflectivity of the external mirror. It has been 
shown recently that the SLPCM actually cannot start by 
itself but requires some level of external seeding, which 
decreases with coupling [II]. Therefore, the nonlinear 
dependence of grating amplitude on contrast will make 
the start of SLPCM even more difficult by increasing the 
required seeding intensity. 

In a similar way, one can analyze an arbitrary geom- 
etry of  four-wave interaction. Because of the form of (4), 
one can look at the term (Td-bc0a) as an effective cou- 
pling strength. It can be shown that ¢0a has the same sign 

as 7. Consequently, any contribution coming from b ¢ 0 
will always have an effect similar to decreasing the cou- 
pling. This is understandable, since the model described 
by (2) gives a lower grating amplitude compared to the 
standard photorefractive process with the same contrast. 
This, in turn, leads to weaker energy transfer between the 
interacting beams. It is worth mentioning that when the 
relation between fringe contrast and amplitude of the 
grating is nonlinear but does not decrease with contrast 
approaching unity (as considered in [12]), the efficiency 
of the phase-conjugation process may be higher than in 
that described by Kukhtarev's model. 

In summary, we discussed the effect of nonlinear de- 
pendence of the refractive-grating amplitude on the con- 
trast of the interference pattern in photorefractive 
4-WM. We solved exactly the coupled-wave equations 
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Fig. 3a, b. Phase-conjugate reflectivity of the 
SLPCM a function of the coupling strength (a) 
and reflectivity of the external mirror (b) 

for the model function describing the nonlinear relation 
between grating amplitude and fringe contrast and ap- 
plied the solutions to the DPCM and the SLPCM. We 
showed that, generally, the efficiency of the phase- 
conjugation process is deteriorated. Additionally, thresh- 
old conditions for hard-threshold photorefractive os- 
cillators increases. 
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