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Abstract. The behaviour of a lava flow is repro- 
duced by a two-dimensional model of a Bingham 
liquid flowing down a uniform slope. Such a li- 
quid is described by two rheological parameters, 
yield stress and viscosity, both of which are 
strongly temperature-dependent. Assuming a flow 
rate and an initial temperature of the liquid at the 
eruption vent, the temperature decrease due to 
heat radiation and the consequent change in the 
rheological parameters are computed along the 
flow. Both full thermal mixing and thermal un- 
mixing are considered. The equations of motion 
are solved analytically in the approximation of a 
slow downslope change of the flow parameters. 
Flow height and velocity are obtained as func- 
tions of the distance from the eruption vent; the 
time required for a liquid element to reach a cer- 
tain distance from the vent is also computed. The 
gross features of observed lava flows are repro- 
duced by the model which allows us to estimate 
the sensitivity of flow dynamics to changes in the 
initial conditions, ground slope and rheological 
parameters. A pronounced increase in the rate of 
height increase and velocity decrease is found 
when the flow enters the Bingham regime. The re- 
suits confirm the observation according to which 
lava flows show an initial rapid advance, followed 
by a marked deceleration, while the final length 
of a flow is such that the Graetz number is in the 
order of a few hundreds. 

Introduction 

In Newtonian viscous fluids, the strain rate is pro- 
portional to the applied shear stress. Lava shows 
instead a non Newtonian behaviour, in that lava 
flows construct their lev6es by themselves and 

may come to rest on a slope. It was proposed by 
Robson (1967) that the rheology of lava is approx- 
imately that of a Bingham liquid (or plastic), 
which is characterized by a yield stress. If the ap- 
plied stress is less than the yield value, no perma- 
nent strain is produced. The Bingham plastic 
model was able to explain the relation found by 
Walker (1967) between flow thickness and ground 
slope on Mt. Etna and the characteristics of de- 
bris and mud flows (Johnson 1970). The existence 
of a yield stress in basaltic lava was assessed by 
Shaw et al. (1968). Hulme (1974) explained the 
morphology of lava flows on the basis of the 
Bingham plastic model. The model has been sup- 
ported by observations of lava flows moving 
downslope (Borgia et al. 1983). 

An important point is that both yield stress 
and viscosity are strongly temperature-dependent 
(Johnson and Pollard 1973; Pinkerton and Sparks 
1978; Spera et al. 1982). This has a great effect on 
the behaviour of lava flows. Cooling is in fact an 
important factor in limiting the downslope flow 
of lava (Wadge 1978). Once the lava leaves the 
eruption vent and flows downhill, it begins to 
cool and a thermal boundary layer develops at the 
surfaces of the flow. This has the effect of reduc- 
ing the heat loss: therefore the temperature gra- 
dient along the flow is small. Isothermal models 
of lava flows are therefore a reasonable approxi- 
mation in describing a limited segment of flow, 
where temperature can be considered as uniform 
(Dragoni et al. 1986). 

In the present paper, cooling of the flow is 
taken into account. Of the various processes of 
heat loss, conduction to the atmosphere is negligi- 
ble. Convection in the atmosphere is responsible 
for a part of heat loss, but numerical estimates in- 
dicate that its contribution is much smaller than 
that due to black body radiation (Murase and 



Dragoni: A dynamical model of lava flows cooling by radiation 89 

McBirney 1970; Dane~ 1972). As to the effect of 
conduction to the ground, it has been shown 
(Hulme 1982) that flow lengths are generally 
much less than the distances at which this contri- 
bution to cooling can significantly affect the flow. 
Moreover, most of the heat generated by dissipa- 
tion will be transferred to the ground, since in a 
Bingham liquid shearing takes place in a thin 
layer close to the base of the flow. Degassing has 
a significant effect on the temperature and the 
rheology of lava (Scarfe 1973 ; Sparks and Pinker- 
ton 1978): this effect is mostly important in the 
early stages of flow and is probably responsible 
for a drastic change in the rheology of magma be- 
fore eruption to that of flowing lava. 

Accordingly, in the present paper, only heat 
loss by radiation is considered. A model is pro- 
posed which describes the downslope flow of an 
incompressible Bingham plastic cooling by radia- 
tion. Two cases are considered: full thermal mix- 
ing in the flow and thermal unmixing (Pieri and 
Baloga 1986). The steady-state laminar-flow solu- 
tion of the Navier-Stokes equation is obtained 
analytically and the downslope evolution of the 
rheological and dynamical parameters of the flow 
is studied. On the basis of a similar model, Park 
and Iversen (1984) worked out by a numerical 
method the thickness growth of a downslope, 
thermally mixed lava flow. 

The model considers flow well behind the 
flow front. In that zone the lev6es can be taken as 
fixed, since they are cooler and have a higher 
yield stress than fresh lava flowing between them 
(Sparks et al. 1976). Therefore, processes at the 
front, including lev6e formation, the change in 
shape of the flow and the choice of flow path, are 
not taken into account. The model, being two-di- 
mensional, neglects friction at the lev6es. It is 
therefore appropriate to low aspect ratio flows. 
The aspect ratio is defined as the ratio of flow 
height to flow width (Hulme 1974). It has been 
observed in the field that lavas with low values of 
yield stress, such as basalts, produce flows of low 
aspect ratio (4  1), while more acidic lavas pro- 
duce flows with higher aspect ratios, but usually 
always less than 1 (Walker 1973). 

• 
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_ ~± _ ~  

Fig. 1. The model: a downslope section of lava flow is shown 
with the coordinate system and the relevant parameters 

and viscosity 7]. It is assumed to be incompressi- 
ble: 

~Vx.  ~Vz 
- - .  - -  = o ( 1 )  
8x ~z 

where v= (Vx, O, vz) is the velocity vector and both 
Vx and vz depend on x and z, since the liquid will 
be allowed to change its height along the flow. 
The equation of motion is the two-dimensional 
steady-state Navier-Stokes equation, where the 
nonlinear terms are dropped since we are consid- 
ering a low-velocity flow (creeping approxima- 
tion). We shall be interested in the x-component 
of this equation, which for variable viscosity reads 
(Landau and Lifchitz 1971): 

~x ~x / rl ~z ~x J 

+P g sin a = 0 (2) 

where g is the acceleration of gravity and a is the 
slope of the ground. 

We make two assumptions: (1) the change of 
velocity along the flow is much slower than the 
change with depth z; (2) viscosity is constant with 
depth in each vertical cross section of the flow. 
Accordingly, Eq. (2) reduces to the lubrication 
theory approximation, which is commonly em- 
ployed in similar problems (Huppert 1982; Emer- 
man and Turcotte 1983): 

rl(X ) B2vx/c~z2 + pg s i n a  = 0. (3) 

T h e  m o d e l  

We consider the stationary downslope flow of a 
Bingham liquid (Fig. 1). The flow occurs in the x 
direction, while no changes in the flow are con- 
sidered in the y direction. The liquid has density p 

Boundary conditions for Eq. (3) are Vx = 0 at z = 0 
and vanishing traction at the free surface of the 
flow, z = h(x). 

Assumption (2) above is of course a crude ap- 
proximation of actual lava flows, where tempera- 
ture varies as a function of z, entailing a corre- 
sponding change in the rheological parameters. In 
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particular, one may argue that the viscosity gra- 
dient ~q/~z, which has been neglected in writing 
Eq. (3), reaches significant values within the flow. 
However, these high values are mainly confined 
to the thermal boundary layer which develops at 
the surface of the flow, where the temperature 
gradient is highest; deeper in the flow, tempera- 
ture can be considered as constant to a good ap- 
proximation (e. g. Archambault  and Tanguy 1976, 
for field measurements). But the theological 
boundary layer is always much thinner than the 
velocity boundary layer (i. e. the plug) characteriz- 
ing Bingham liquids (Hulme 1982), so that the 
highest values of ~q/~z take place within the 
plug: therefore, neglecting ~q/Oz in Eq. (2) will 
not have finally a large effect on the flow dynam- 
ics. 

The presence of a thermal boundary layer will 
have a larger effect on the heat loss of the flow. In 
a thermally mixed flow, the equation of heat loss 
due to radiation is given, at constant flow rate, by 
(e.g. Daneg 1972; Park and Iversen 1984): 

dT 
cpq dx + EST4= 0 (4) 

where cp is the specific heat, q is the mass flow 
rate per unit  width, E is the emissivity and Z is the 
Stefan constant. The solution of Eq. (4) is easily 
found to be: 

T(x) To( -3EST3 x )-1/3 
= + 1 (5 )  

\ Cp q 

where To is the temperature at x = 0 (the eruption 
vent). Equation (4) implies that temperature is 
constant in each vertical cross section of the flow 
and that the local radiative loss is characteristic of 
that temperature. Pieri and Baloga (1986) sug- 
gested that the presence of a cooler crust on the 
flow can be taken into account by assuming that 
radiative heat loss takes place at an effective tem- 
perature Te, which is smaller than the temperature 
of the interior of the flow. In this ' thermally un- 
mixed' case, the heat equation would be: 

Both cases, Eqs. (4) and (6), will be considered in 
the present model. 

The constitutive relation of a Bingham liquid 
is characterized by a yield stress cry (e. g. Skelland 
1967): 

g = {0, cr<crr 
(cr- o ; . ) / ~ ,  cr > a~ (8) 

where cy is the maximum deviatoric stress, ~ is the 
corresponding strain rate and T/B is the Bingham 
viscosity. In our case, i=~vx/~z.  Since tempera- 
ture is allowed to change along the flow, we must 
introduce laws relating temperature T to rheologi- 
cal parameters r/B and cry.. As to viscosity, we as- 
sume the following relation (e. g. Shaw 1969; Pin- 
kerton and Sparks 1978; Spera et al. 1982): 

o~(T) = qle a(r'- r), T<  T/ (9) 

where T~ is the liquidus temperature, ql is the vis- 
cosity at temperature T~ and a is a parameter. The 
analytical dependence of cry on temperature is 
more uncertain: cry is zero at the liquidus temper- 
ature, increasing exponentially below Tl. For the 
sake of simplicity we assume for or (T ) a relation- 
ship similar to Eq. (9): 

ay(T) = cryo[e b(r'- 7) _ 1] (10) 

which, with appropriate values of the parameters 
cryo and b, can reproduce the order-of-magnitude 
changes of yield stress measured by some authors 
(Robson 1967; Pinkerton and Sparks 1978; 
McBirney and Noyes 1979) in limited tempera- 
ture ranges. Equations (9) and (10) are not meant  
to describe the rheology of a particular lava, but 
simply to find out the effect of these strongly tem- 
perature-dependent  parameters on lava flow dy- 
namics. 

The above-written equations are now used to 
obtain the flow dynamics at a point  x downslope. 
Temperature T(x) is computed from Eqs. (5) or 
(7) and the rheological parameters are then com- 
puted according to Eqs. (9) and (10). Equations 
(3) and (8) yield then (Johnson 1970): 

dT 
cpq dx + EZT~e = 0 (6) 

where Te is a constant. The solution of Eq. (6) is: 

E S ~  x 
T(x) = To • (7) 

cp q 

vx(x, z) = 

1 J p g s i n a  z (2h-z) -2crrz  , O<z<h-hc  ( l l a )  
2rln 1t99 sinah2(1--crT/crb) z, h - h c < z < h  ( l lb )  

where: 

crb(X) =pg h s ina  (12) 
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is the shear stress at the base of the flow and: 

hc(x) = crr/ (p g sina) (13) 

is the critical height of  the flow, e.g. the thickness 
of the undeformed part of the flow (the plug) 
where the shear stress is less than or. The flow 
velocity vx is related to the flow rate q, per unit 
width of the flow, by: 

h(x) 

q = p  ~ Vx(X,z)dz. (14) 
0 

The knowledge of vx as given by Eq. (11) allows 
one to obtain from Eq. (14) an equation relating 
the flow height h to the model parameters (Skel- 
land 1967; Hulme 1974): 

ty, flow time and Graetz number. It is therefore 
useful to plot these quantities as functions of x / q  
in describing the flow behaviour. 

The dynamical parameters of flow are calcu- 
lated assuming a fixed flow rate per unit width q 
along the flow. This is equivalent to fix the flow 
rate Q (i. e. the effusion rate) and the flow width 
w: 

q = Q / w  (19) 

Observations show in fact that, after flowing a 
short distance, the lava motion occurs in a chan- 
nel contained between stationary lev6es. 

Numerical examples 

h 3 3 h 2 3r/Bq + - =  0. (15) 
- pcr,,,h c 2 

The height h(x) is obtained analytically as a solu- 
tion of Eq. (15) (see Dragoni et al. 1986). Then Vx 
is obtained from Eq. (11), while vz is: 

dh 
vz(x)=Vx - -  (16) 

dx 

The time fix) required for an element of liquid to 
flow a distance x from the origin is computed 
as :  

x dx'  (17) 
t ( x )  = Vx(X ' )  

A typical flow dynamics according to this model 
is computed by using the numerical values listed 
in Table 1 for the model parameters. Such values 
are meant to represent a basaltic lava flow. An in- 
itial temperature To= T~= 1200°C is assumed at 
the eruption vent (x = 0). However, all graphs can 
be read for any lower initial temperature: to this 
aim it is sufficient to read the graphs starting from 
the point on each curve which corresponds to the 
chosen temperature value and shifting corre- 
spondingly the zero of the abscissa scale. 

As lava radiates heat into the atmosphere, its 
temperature decreases as is shown in Fig. 2 as a 
function of x /q .  The curve for the unmixed case 
has been drawn by assuming T~=900 ° C, which is 

which will be called 'flow time'. Finally, the 
Graetz number Gz is computed along the flow: 

Gz(x) = Vo h ~/ ( Kx) (18) 

where Vo and ho are the flow velocity and height at 
x = 0 ,  respectively; K is the thermal diffusivity. 
The Graetz number is a dimensionless quantity 
which measures the extent to which a channelled 
liquid is close to solidification due to heat loss. 
There is theoretical and observational evidence 
that flow ceases when Gz has decreased from an 
initially large value to a few hundred (Pinkerton 
and Sparks 1976; Hulme and Fielder 1977). 

It is interesting to note that the temperature T 
in Eqs. (5) and (7) depends on the ratio x / q  be- 
tween distance from the vent and flow rate densi- 
ty. Consequently, the same holds for the rheologi- 
cal parameters cry and r/B, flOW height and veloci- 

Table 1. Values of the model parameters which have been 
used in drawing the graphs. The values for E, cp and K are 
currently employed for lavas (Hulme 1982; Wilson and Head 
1983; Park and Iversen 1984). The values taken for q~, cyy0, a 
and b reproduce a possible temperature dependence for basal- 
tic magmas (Pinkerton and Sparks 1978; McBirney and Noyes 
1979; McBirney and Murase 1984) 

p =3000 kg m - 3  Mass density 
9 =9.80 m s -2 Acceleration of gravity 
c~ =0.20 r a d - l l . 5  ° Slope 
To = 1200 ° C Initial temperature 
E = 0.6 Emissivity 
Z =5.67 x 10 8 j s-1 m - 2  O K - 4  Stefan constant 
cp =8.37 x 102 J kg -1 °K -1 Specific heat 
K =3 x 10 - 7  m 2 s 1 Thermal diffusivity 
r h = 102 Pa s Viscosity at T= T~ 
a =0.04 ° K-1 Parameter in rIB(T) 
O'~o = 10 -2 Pa Parameter in crr(T ) 
b =0 .08°K -~ Parameter in cyr(T ) 
T~ = 1200 ° C Liquids temperature 
Te = 900 ° C Effective radiation tem- 

perature 
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Fig. 2. Temperature T along the flow, as a function of the pa- 
rameter x/q, for the thermally mixed case and the thermally 
unmixed case with T~=900°C (lower horizontal scale). The 
solid curve represents also the unmixed case if the values of 
x/q are read on the upper  horizontal scale. Initial temperature 
To= TI= 1200°C is assumed 

the upper bound of the temperature range consid- 
ered by Pieri and Baloga (1986) and is close to the 
solidus temperature of basaltic lavas. This choice 
for T~ has been made simply to show the gross 
features of  the flow behaviour in thermally un- 
mixed conditions: any lower value for Te would 
further reduce the temperature decrease along the 
flow. For instance, in the mixed case, a tempera- 
ture TI--1000° C is reached at about 140 m from 
the vent if q =  102 kg s -1 m -1, which represents a 
small lava flow: e.g. a flow of width w =  1 m, with 
volume flow rate Q/p ~ 0.03 m 3 s-1. At the other 
extreme, 7"1 is reached at x = 1 4 k m  if 
q =  104 kg s -~ m -~, representing a large flow: e.g. 
w = 1 0 m  and volume flow rate equal to 
~30  m 3 s - L  The corresponding values of x for 
the unmixed case are 260 m and 26 km. 

If we assume that a flow stops when tempera- 
ture at the front has fallen to a given value, inde- 
pendently of flow rate, the model shows that flow 
distance L may be proportional to the flow rate 
density q rather than to the effusion rate Q 
(Wadge 1978). Actually different conclusions 
have been reached by the observation of lava 
flows (Walker 1973; Malin 1980). There is a more 
complex relationship between Q and L, involving 
the lateral spreading of flows and, basically, the 
rheological properties of  lavas (e.g. Baloga and 
Pieri 1986). 

The corresponding change in the rheological 
parameters q~ and ~r is shown in Fig. 3. Both pa- 
rameters increase by orders of magnitude along 
the flow. Values of  cr~ in the order of 105 Pa have 
been observed in the final stages of  solidification 
(Robson 1967). 

Figures 4 and 5 show respectively flow heights 
and velocity components as functions of  x/q, for 
different values of flow rate density q. In these 
and the following graphs, the lower and upper ho- 
rizontal scales refer to the thermally mixed case 
and to the thermally unmixed case with 
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Fig. 3. Yield stress c~y and viscosity q~ along the flow, as func- 
tions of the parameter  x/q, for the thermally mixed (solid 
curves) and the thermally unmixed (dashed curves) cases. Solid 
curves represent also the unmixed case if values of x/q are 
read on the upper  horizontal scale 
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Fig. 4. Flow height h as a function of x/q, for three different 
values of flow rate q. The dashed curve is the critical height he. 
The lower and upper horizontal scales refer to the thermally 
mixed case and to the thermally unmixed case with 
Te = 900 ° C, respectively 
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mlSO 1 j F ~ . _ _ _ _ ~  iVx , , r 

0 0.5 1 1,5 i2 
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Fig. 5. Flow velocity components vx (solid curves) and v~ 
(dashed curves), as functions of x/q, for three different values 
of flow rate q. The lower and upper  horizontal scales refer to 
the thermally mixed case and to the thermally unmixed case 
with T,.= 900 ° C, respectively 

Te=900°C, respectively. At high temperatures, 
close to the liquidus, the flow is still in the New- 
tonian regime. Flow heights increase exponen- 
tially and flow velocities decrease exponentially 
as temperature decreases. As the flow cools, its 
height approaches the critical height he. With the 
model parameters of Table 1, the flow height is 
about 10 m when T= T1 ; this happens at different 
distances from the vent according to the flow rate 
and to the thermal conditions (mixed or un- 
mixed). A remarkable increase in the rate of  



Dragoni: A dynamical model of lava flows cooling by radiation 93 

height increase occurs at x/q> 1 m 2 s kg-1  for 
the mixed case and at x/q>2 m 2 s kg-1  for the 
unmixed case (note that the vertical scale is logar- 
ithmic). This height increase corresponds to a 
strong deceleration in the lava motion, which can 
be seen in Fig. 5, and indicates that the effect of  
the Bingham rheology becomes evident. Note that 
v: is much smaller than Vx as long as the lava is 
flowing and ~v/~x'~Svx/~x, according to the 
model assumptions. 

In Fig. 6 a distance is considered downslope 
from the eruption vent, which is 1000 m for the 
thermally mixed case and about  2000 m for the 
thermally unmixed case. For both cases, three 
temperature curves are shown in Fig. 6(a) pertain- 
ing to different flow rates; the corresponding flow 
heights are shown in (b). This figure contains no 
more information than Figs. 2 and 4, but it makes 
clearer some features of a cooling flow. While the 
smallest flow (q= 102 kg s-~ m - l )  cools down 
very rapidly and stops, the other two flows move 
through the whole distance considered in the 
graphs. An interesting fact can be noted in Fig. 
6(b) which was not evident from Fig. 4: near to 
the eruption vent, larger flows are higher, but this 
is no longer true downslope. Considering the 
thermally mixed case, after less than 100 m, the 
smallest flow is already higher than the others, 
while at x ~ 4 0 0  m the largest flow is the lowest; 
the corresponding values for the unmixed case are 
200 m and 900 m. The model confirms the possi- 
bility of reproducing the paradoxical phenomenon 
proposed by Hulme (1974), where an increase in 
effusion rate leads to a decrease in flow height in 
a channel of  fixed width. An increase in the effu- 
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Fig. 6. Flow temperature (a) and height (b) as functions of dis- 
tance x from the eruption vent, for three different values of 
flow rate q. The lower and upper horizontal scales refer to the 
thermally mixed case and to the thermally unmixed case with 
T~ = 900 ° C, respectively 

sion rate produces in fact a temperature increase 
at a given point along the flow (Fig. 6a): at a cer- 
tain distance from the vent, this can correspond to 
a remarkable decrease in flow height (Fig. 6b). 

The flow time, as defined by Eq. (17), is shown 
in Fig. 7 as a function of  x/q and for different 
values of the flow rate density. For an easier com- 
parison with field observations, x is plotted as a 
function of  t in a graph with linear scales (Fig. 8) 
for some medium-size flow rates. It can be seen 
that the flow is very fast at the beginning and then 
drastically slows down. A different choice of  the 
parameters entering the rheological laws Eqs. (9) 
and (10) would not sensibly alter this feature. A 
milder slope of  the ground, as well as a lower ini- 
tial temperature To, would have the effect of  
somewhat slowing the flow. The distance covered 
as a function of  time is very sensitive to flow rate. 
Due to temperature decrease, the smaller flows in 
Fig. 8 will come to rest long before the 5-day span 
shown in the graph has elapsed. A comparison 
between the thermally mixed (left vertical scale) 
and the thermally unmixed case (right scale) 
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Fig. 7. Flow time t as a function of x/q, for three different 
values of flow rate q. The lower and upper horizontal scales 
refer to the thermally mixed case and to the thermally un- 
mixed case with Te= 900 ° C, respectively 
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Fig. 8. Distance x from the eruption vent as a function of time 
t, for different values of flow rate q. The left and right vertical 
scales refer to the thermally mixed case and to the thermally 
unmixed case with T~= 900 ° C, respectively 
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Fig. 9. Graetz number Gz along the flow, as a function ofx/q, 
for three different values of flow rate q. The lower and upper 
horizontal scales refer to the thermally mixed case and to the 
thermally unmixed case with Te= 900 ° C, respectively 

shows that thermal unmixing with an effective ra- 
diation temperature as high as 900°C can double 
the distance covered by the flow in a given time 
period. Actual lava flows will be of course ther- 
mally mixed close to the eruption vent and ther- 
mally unmixed downstream. 

In Fig. 9 the Graetz number Gz is plotted as a 
function of x / q  and for different values of the 
flow rate density. It is found empirically that the 
motion ceases when the value of Gz has fallen 
from an initially high value to a few hundred 
(Hulme and Fielder 1977). This value corresponds 
to a situation in which cooling has affected about 
half of the flow thickness (e. g. Hulme 1982). This 
observation is confirmed by the model. 

Discussion and conclusions 

It is not easy to compare numerical results of de- 
tailed theoretical models of lava flows with in situ 
observations. Measurements of lava flow parame- 
ters are in fact sparse. For instance, temperature 
measurements are often limited to a single point 
in the flow, while rheological parameters are very 
seldom estimated. Simultaneous measurements of 
several quantities, such as flow dimensions and 
velocity, temperature, viscosity and yield stress, 
taken at different points in the flow, would be 
necessary for a check of theoretical models. 

Some data were obtained by a study of sub- 
terminal laval flows on Mt. Etna (Pinkerton and 
Sparks 1976), which have smaller volumes and 
lower effusion rates and can be studied in greater 
detail than large flows. At individual vents, flow 
depths varied from 0.2 to 2 m, velocities from 
5x  10 -3 to 0.15 m s  -1 and effusion rates from 
10 - 4  to 0.2 m 3 s -1. Since channel widths varied 
from 0.5 to 5 m, this corresponds (if the largest 
width corresponds to the largest flow rate) to a 
mass flow rate per unit width q varying from 0.6 
to 1.2 x 10 2 kg s-1 m - l )  assuming a density 

p = 3 0 0 0 k g m  -3. Effusion temperatures varied 
from 1070°C to 1090°C. A comparison with the 
case q = 102 kg s - 1 m -  ' of our model shows that, 

< o if 1070°> T 1090 C, then h is between 0.5 and 
0.7 m and vx is between 7 and 9x  10 2 m s - 1  
(Figs. 4 and 5). As a result of their low effusion 
rates, such flows were capable of flowing for only 
a few hundred metres. The largest individual 
flows had lengths of several hundred metres and 
flow front thickness up to several metres. The re- 
sults of the model are consistent with these data. 

The model presented here is, of course, a sim- 
plification of actual lava flows. It describes the 
laminar flow of a Bingham liquid down a uniform 
slope. It does not reproduce important aspects of 
a lava flow, such as lev6e formation, the change in 
shape of the flow and the choice of flow path, 
which occur in the frontal zone. Moreover, tran- 
sient phases, due to a rapid change of model pa- 
rameters, cannot be described. 

Since the flow model is stationary, t(x) is the 
flow time in an already formed flow, as results 
from its definition, and must be considered only 
as roughly indicative of  the time required by the 
front to reach a distance x. However t(x) repro- 
duces a characteristic behaviour observed in ac- 
tual lava flows, which show an initial rapid ad- 
vance, followed by a marked deceleration (e.g. 
Borgia et al. 1983: Lockwood et al. 1985). 

An important point is temperature variation 
with depth z within the flow. Both thermally 
mixed and unmixed conditions have been consid- 
ered. In the thermally mixed model, the tempera- 
ture T is an average value over the flow thickness 
and is representative of the temperature in the in- 
terior only as long as the thermal boundary layer 
is sufficiently thin. At great distances from the 
eruption vent, when a thick thermal boundary 
layer has developed at the surface of the flow, sig- 
nificant differences between surface and interior 
temperatures may arise: discrepancies up to 50 °- 
100°C have been found in very slow lava flaws 
(Archambault and Tanguy 1976). Some observa- 
tions (e.g. Pinkerton and Sparks 1976) show that, 
by the time many individual lava flows come to 
rest, the temperature drop in the interior is less 
than 100°C. Accordingly, at a certain distance 
from the eruption vent, thermally unmixed condi- 
tions are more appropriate. However the assump- 
tions of an effective radiation temperature Te, 
which is a constant for the whole flow length, is 
again a crude approximation: Te must be part of 
the solution of the problem and it must decrease 
downstream. Explicit consideration of the vertical 
thermal and theological profiles in the flow is 
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therefore necessary for a more compiete theoreti- 
cal description of  lava flows. 
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