TMPM Tschermaks Min. Petr. Mitt. 23, 39-50 (1976) 9 by Springer-Verlag 1976

From the Istituto di Mineralogia e Petrografia dell'Università di Bologna, Italy

Chlorites from Italian Granitoid Rocks

Mirella Bondi, L. Morten, and P. L. Rossi

With 3 Figures

Received August 4, 1975; accepted October 7, 1975

Summary

Chemical, X-ray, optical, thermal and microprobe analyses have been carried out on six chlorites from Italian granitoid rocks formed as a result of deuteric action on biotites. The data show that five chlorites, spanning ripidolite-brunsvigite fields, are Πb polytypes and therefore of high temperature origin. Only one sample is a thuringite, Ib (β = 90^o) polytype, typical of low temperature.

The occurrence of this last polytype, never mentioned in the literature from granitoid rocks, suggests a wider possibility for **using** chlorite polytypism in studying the late mag: matic phenomena.

Résumé

Chlorites de roches granitiques italiennes

On a fait des analyses chimiques, aux rayons X , optiques, termiques et à la microsonde électronique, de six chlorites, provenant de roches granitiques italiennes, dérivées par action hydrothermale sur des biotites. Les résultats montrent que cinq chlorites sont ripidolites-brunsvigites, du polytype IIb, et donc, de températures élevées. Seulement une est une thuringite, polytype Ib ($\beta = 90^{\circ}$), typique de températures basses.

La découverte de ce dernièr polytype, jamais cité dans la litérature, en roches granitiques, laisse prévoir la possibilité plus vaste d'employer le polytypisme des chlorites dans l'étude des phénomènes tard-magmatiques.

Introduction

Chlorite is a common, though admittedly minor, constituent of olutonic rocks and its origin is generally explained by deuteric phenomena acting on primary ferromagnesian minerals.

In previous reports *(Morten* and *Rossi,* 1971, 1972) the chlorites from the granitic rocks of the "dei Laghi" hercynic batholith have been studied and the authors stated that such minerals (1M, *2LC* of the present work) had been formed as a transformation product of primary biotites via deuteric phenomena. It was also shown that the compositions of the chlorites and/or

their association with others minerals (e. g. sphene) depend on the composition of the primary biotites. *Dodge* (1973) came to the same conclusion by studying chlorites from granitic rocks of the central Sierra Nevada batholith.

In the present work, the authors would like to expand the knowledge on the genesis of chlorites from granitoid rocks and set the chloritization phenomenon rather in a more general picture.

For this purpose, samples from several Italian outcrops (see Appendix 1) have been studied.

Chemical Study

The chemical compositions¹ of the selected chlorites and their atomic ratios calculated on the basis of 36(0, OH) and 28(0) are given in Table 1.

Fig. 1. Ti and CaK α X-ray images (400 \times) in the CdA47 sample,showing the sphene distribution

The formulas are obtained from the analyses recalculated to 100% after substraction of the CaO, $TiO₂$ and $SiO₂$ amounts needed to form sphene. The presence of sphene closely associated with chlorites has been previously reported *(Morten* and *Rossi,* 1972) and reconfirmed in the present work by electron microprobe analyses (Fig. 1). The excess CaO and the $Na₂O$ and

1 The separation and chemical techniques used are reported in a previous paper *(Morten* and *Rossi,* 1971).

Chlorites from Italian Granitoid Rocks 41

t-

results (particularly, they found a high CaO amount: 2.99%).

 $K₂O$ were ignored because there is no place in the chlorite structure for cations as large as Na⁺, K⁺ and Ca²⁺ (Deer et al., 1965; Foster, 1962; Albee, 1962).

The analysed chlorites were plotted according to the classification scheme proposed by *Foster* (1962). Their points, as well as those of the chlorites from granitic rocks of the central Sierra Nevada batholith *(Dodge,* 1973), fell mainly in the ripidolite-brunsvigite fields. Only the Sp5 sample fell in the thuring ite field. An exceptionally iron-rich chlorite from plutonic rocks, such as the Sp5 specimen, has never as far as we know been reported in the

Fig. 2. Powder photographs of CdA47(A) representing the lib polytype, and of Sp5(B), the I $b(\beta = 90^\circ)$ polytype

literature. In other respects it shows remarkable similarities to chlorites from mineralized hydrothermal veins in Japan *(Shirozu,* 1958).

Table 1 also shows that the excess of charges in the brucite-like layer is balanced by the deficiency of charges in the mica-like layer, if cations are allocated as suggested by *Foster* (1962).

X-ray Study

The X-ray data have been obtained by means of diffraction patterns and powder photographs ($CuK\alpha$, Fe $K\alpha$, 114.6 mm Debye-Scherrer cameras). The observed d-values, the relative intensities visually measured, Miller indices and cell parameters, calculated by least square refinement, are listed in Table 2. A comparison of the obtained data with those reported in the literature *(Shirozu, 1958; Brown and Bailey, 1962; Hayes, 1970)* shows that the 1M, 2LC, SR, BR and CdA47 samples are lib polytypes, while the Sp5 sample is a Ib $(\beta = 90^{\circ})$ polytype².

² The X-ray single crystal data on the Sp5 sample confirm β = 90^o.

~ $\dot{\sim}$ **Chlorites from Italian Granitoid Rocks 43**

44 Mirella Bondi et al. :

As far as the latter polytype is concerned, *Brown* and *Bailey* (1962) and *Hayes* (1970) report maximum intensity values for the 202 reflection, while *Shirozu* (1958), for the same reflection, reports variable and not maximum intensity values, just as we found for the Sp5 sample (Table 2, Fig. 2). On the other hand *Hayes* (1970) found that in this polytype the hQ reflections – and 202 in particular $-$ show a progressive weakening with a continued grinding, and concurrent development of a broad, diffuse diffraction band on the high angle side of the 202 line.

Fig. 3. TG and DTG curves. (a) In nitrogen atmosphere; (b) In nitrogen atmosphere and in air

Optical Study

The optical properties of the analysed chlorites are given in Table 3. For our data as compared with that determined by *Albee* **(1962), the relationship existing between the optic sign and the refractive index is found to be on the whole the same in both cases, whereas the interference colours differ: the BR and SR samples (negative sign) exhibit abnormal brown interference colours, whereas the 1M and 2 LC samples exhibit normal interference**

Z **E** $\frac{1}{2}$

colours. The Sp5 sample $-1b$ (β = 90°) polytype – exhibits abnormal interference cotours contrary to what *Shirozu* (1958) had stated.

Colours and the pleochroic scheme are in agreement with the data found in the literature.

Thermal Study

The thermal study was carried out by means of TG analyses, using a Dupont 951 thermogravimetric analyzer, in a nitrogen atmosphere and in the air, with a heating rate of 50° C per minute.

TG and DTG curves are reproduced in Fig. 3. They show that (1) the dehydration of the brucite-like and mica-like layers takes place at two different temperatures; (2) the dehydration peak of the mica-like layer decreases, disappearing in the Sp5 sample; (3) the dehydration peak of the brucite-like layer shows the same inflexion in the CdA47 and Sp5 samples.

Regarding the first point: the dehydration taking place at two different temperatures in ripidolites is neither in agreement with what *Caillére* and *Hénin* (1960, 1963) stated, nor with what has been previously found studying the 1M sample by TGA with a less sensitive apparatus *(Morten* and *Rossi,* 1971).

Regarding the second point: it is worthwhile emphasizing the inverse relationship between the 2nd peak intensity/1 st peak intensity ratio and the Fe^{2+} content. The decrease in the intensity of the second peak, up to the point of disappearing in the Sp5 the Fe^{2+} -richest sample, is therefore due mainly to the oxidation of the Fe^{2+} at the expense of the mica-like layer oxydriles. Regarding the third point: the first peak inflexion (CdA47 and Sp5 samples) indicates a reduction in the weight-loss caused by Fe^{2+} oxidation at the expense of the brucite-like layer oxydriles. The two chlorites in which this phenomenon occurs are the $Fe²⁺$ -richest samples and consequently moderate amounts of $Fe²⁺$ are present in the brucite-like layer. The proof is shown by the fact that the inflexion disappears when the test is carried out in air. This is because the $Fe²⁺$ oxidation then takes place at the expense of the $O₂$ in the air (Fig. 3 b).

Conclusions

From the obtained data, we may deduce that chlorites from granitoid rocks have formed as a result of deuteric phenomena acting on primary ferromagnesian minerals, mainly biotites. Their composition and the close association with others minerals is influenced by the composition of the primary minerals *(Chayes,* 1955; *Schwartz,* 1958; *Morten* and *Rossi,* 1972; *Dodge,* 1973).

Such chlorites are Fe-rich members, generally IIb polytypes, and therefore of high temperature origin *(Brown* and *Bailey,* 1962; *Hayes,* 1970). Nevertheless, we have found a chlorite (Sp5) of the Ib (β = 90°) polytype which, as far as we know, has never been mentioned in the literature from granitoid rocks. This polytype, typical of low temperature, has been considered up to now to be peculiar to diagenetic environment *(Hayes,* 1970) and/or to low temperature metamorphism *(Brown* and *Bailey,* 1962).

Since the Sp5 sample occurs in most deuterized Predazzo granite facies *(Paganelli* and *Tiburtini,* 1964; *Del Monte* et al., 1965; *Borsi* and *Ferrara,* 1967; *Lucchini* et al., 1971 *;Morten* and *Rossi,* 1974), the presence of this Ib $(\beta = 90^{\circ})$ polytype shows that deuteresis in the Predazzo granite took place at a low temperature, under $150-200^{\circ}$ C, assuming therefore this value as a boundary to the conversion to IIb polytype *(Hayes, 1970)*.

So, it is possible to state that the deuteric phenomenon which causes the primary ferromagnesian minerals-chlorite transformation takes place in a wide range of temperatures and that such chlorites are not necessarily the lib polytype.

Chlorite polytypism therefore can be used as a geothermometer in the study of deuteric phenomenon.

The authors are indebted to Prof. P. *Gallitelli* for his interest and advice and the critical review of the manuscript, to Dr. *G. Bocchi* for Fe^{2+} determinations, to Dr. *E. Foresti* for Weissenberg photographs, to Dr. *A. Krajewski* for cell parameters refinement.and to Dr. *L. Poppi* for TG analyses.

This work was supported by the Consiglio Nazionale delle Ricerche, Roma, Contribution n. 74.00026.05.

Appendix I

Sample 1M

Mergozzo, Monte Montorfano, Novara, hercynic dei Laghi batholith. The "green" granite host rock shows a granular holocrystalline hypidiomorphic texture with modal composition: quartz = $12-15\%$; plagioclase = $48-50\%$; chlorite + muscovite = $26-32\%$; others = 2-5% and chemical composition: $SiO₂ = 62.14\%$; TiO₂ = 0.40%; Al₂O₃ = 18.20%; Fe₂O₃ = 2.34%; FeO = 2.07%; MnO = tr; CaO = 0.36%; MgO = 4.80%; Na₂O = = 4.75%; K₂O = 2.18%; H₂O⁻ = 0.12%; H₂O⁺ = 3.15%. The chlorite appears in rounded fibrous aggregates and/or concentrated in irregular lamellae *(Gallitelli,* 1938).

Sample 2LC

La Colma, Alzo, Novara, hercynic dei Laghi batholith. The granite host rock shows a granular hypidiomorphic holocrystalline texture with modal composition: quartz = 30.3% ; feldspars = 56.3% ; chlorite = 10.4% ; others = 3.0% . The chlorite, pseudomorphous after biotite, appears in ondulose and strained lamellae. Along the cleavage traces many leucoxenic granulations can be noticed (sphene) *(Morten* and *Rossi,* 1972).

Sample SR

Riu de sa Rubaria, Nuoro, hercynic Sardo-Corso batholith. The syenite-lamphrosyenite host rock has mainly hypidiomorphic texture, partly poikilitic with modal composition: microcline perthite = 22.5% ; albite = 41% ; muscovite = 2.5% ; chlorite = 31% ; sphene = 2% ; apatite = 0.5% ; Fe-ores = 0.5% and chemical composition : $SiO₂ = 51.89\%$; TiO₂ = 0.80% ; $A1_2O_3 = 19.49\%$; Fe₂O₃ = 1.91%; FeO = 7.96%; MnO = 0.05%; MgO = 4.87%; CaO = 1.28%; $Na₂O = 4.92\%; K₂O = 3.87\%; H₂O⁺ = 3.10\%; H₂O⁻ = 0.19\%.$ The chlorite can be found in regular larnellae or more frequently arranged in flake-like crystals *(Emiliani* and *D 'Amico,* 1959).

Sample BR

Badde Rubos, Monte Ortobene, Nuoro, hercynic Sardo-Corso batholith. The host rock is a pegmatite granite with large feldspars, with modal composition: quartz = 33.5% ; microcline = 29%; plagioclase = 30%; muscovite = 3.5%; biotite (chlorite) = 3.5%; others = 3.5% and chemical composition : $SiO₂ = 71.55\%$; TiO₂ = 0.24%; Al₂O₃ = 15.31%; Fe₂O₃ = 1.89%; FeO = 0.29%; MnO = 0.03%; MgO = 0.55%; CaO = 1.36%; $\text{Na}_2\text{O} = 3.46\%, \text{K}_2\text{O} = 4.84\%, \text{H}_2\text{O} = 0.14\%, \text{H}_2\text{O}^+ = 0.65\%$ *(D'Amico*, 1959). The chlorite appears in flake-like crystals or pseudomorphous after biotite.

Sample CdA47

Cima d'Asta, Trento, hercynic Cima d'Asta batholith. The granite host rock has a granular holocrystalline hypidiomorphic texture, with modal composition: quartz = 2.82% ; alkali-feldspars = 3.41%; plagioclase = 31.0%; biotite (chlorite) = 6.2%; others = 0.5% *(D'Amico and DeIMonte,* 1969). The chlorite is pseudomorphous after biotite with exsolution of leucoxenic granulations (sphene) *(Gandolfi,* 1967).

Sample Sp5

Predazzo, Trento, triassic Predazzo-Monzoni intrusive complex. The host rock is a "medium grained albite granite" and "texture is holocrystalline, moderately granular and hypidiomorphic" with modal composition: quartz = 33.0% ; perthite = 40.0% ; plagioclase = 23.5%; others = 3.5% and chemical composition: $SiO_2 = 73.02\%$; $TiO_2 = -$; $Al_2O_3 = 14.92\%$; Fe₂O₃ = 0.50%; FeO = 0.92%; MgO = 0.10%; MnO = 0.01%; CaO = $= 0.98\%$; $P_2O_5 = 0.09\%$ *(Paganelli and Tiburtini, 1964)*. The chlorite appears distributed in pseudomorphous lamellae after biotite.

References

- *Albee,* A. L., 1962: Relationships between the mineral association, chemical composition and physical properties of the chlorite series. Amer. Min. *47,* 851-870.
- *Borsi, S., and G Ferrara,* 1967: Determinazione dell'eth delle rocce intrusive di Predazzo con i metodi del Rb/Sr e K/Ar. Min. Petr. Acta (Bologna) *13,* 45-65.
- *Brown, B. E.,* and S. W. *Bailey,* 1962: Chlorite polytypism: I. Regular and semirandom one-layer structures. Amer. Min. *47,* 819-850.
- *Caillére, S., and S. Hénin, 1960: Relation entre la costitution cristallochimique des* phyllites et leur temperature de deshydratation. Application au cas des chlorites. Bull. Soc. franç. Ceramique 48, 63-67.
- -, 1963: Min6ralogie des argiles. Paris: Masson. $T_{\rm MPM}$ 23/1 4
- *Chayes, F.,* 1955: Potash feldspar as a by-product of the biotite-chlorite transformation. J. Geol. *63,* 75.
- *D'Amieo, C.,* 1959: Notizie petrografiche sui graniti e su alcune loro differenziazioni nel quadrante "Bitti" (Sardegna). Acta Geol. Alpina 7, 25-60.
- -, andM. *DelMonte,* 1969: Le plutoniti del bordo sud-occidentale di Cima d'Asta. Studio Modale. Min. Petr. Acta (Bologna) 15, 221-246.
- *Deer, W. AI , IL A. Howie,* and *M. A. Zussman,* 1965: Rock-forming minerals, Vol. 3, London: Longmans.
- *Del Monte, M., L. Paganelli,* and *R. Tiburtini,* 1965: The feldspars from Predazzo granite, North Italy. Min. Petr. Acta (Bologna) $11, 91-109$.
- *Dodge, F. C W.,* 1973: Chlorites from granitic rocks of the central Sierra Nevada batholith, California. Min. Nag. *39,* 58-64.
- *Emiliani, F.,* and *C. D'Amico,* 1959: La clorite di sa Rubaria e la sua gicitura nel granito di Nuoro. Acta Geol. Alpina 7, 79-100.
- *Foster, M. D.*, 1962: Interpretation of the composition and a classification of the chlorites. U. S. Geol. Surv. Profess. Papers *414A,* 1-33.
- *Gallitelli, P.,* 1938: Ricerche petrografiche sul Montorfano (Lago Maggiore). R. Acc. Sc. Lett. Art. di Modena 16 , 1-93.
- *Gandolfi, G.,* 1967: Le plutoniti del bordo sud-occidentale di Cima d'Asta (Trentino). Studio petrografico e petrochimico. Min. Petr. Acta (Bologna) *I3,* 217-247.
- *Hayes, J. B.,* 1970: Polytypism of chlorites in sedimentary rocks. Clays and clay minerals *18,* 285-306.
- *Lucchini, F., L. Morten,* and P. *L. Rossi,* 1971: K/Rb ratio in the intrusive rocks of the petrographic province of Predazzo (North Italy). Min. Petr. Acta (Bologna) *16,* 55-73.
- *Morten, L., and P. L. Rossi, 1971: La clorite del "granito verde" di Mergozzo. Min. Petr.* Acta (Bologna) 17, 85-92.
- -, 1972: La clorite del granito di "La Colma", Alzo, Lago d'Orta. Min. Petr. Acta (Bologna) *18,* 97-106.
- -, 1974: Rapporto K/Rb delle pertiti e delle "biotiti" del granito di Predazzo, Val di Fiemme, Trento. Acc. Naz. Lincei, Rend. C 1. Sci. Fis., Mat., Nat., serie VIII, *56,* fasc. 4, 608-613.
- *Paganelli, L.,* and *R. Tiburtini,* 1964: The Predazzo granite, North Italy. Min. Petr. Acta (Bologna) *10,* 57-79.
- *Schwartz, G. M.,* 1958: Alteration of biotite under mesothermal conditions. Econ. Geol. *53,* 164-177.
- *Shirozu, H.,* 1958: X-Ray powder patterns and cell dimensions of some chlorites in Japan, with a note on their interference colors. Min. J. Japan 2, 209-233.

Authors' address: Dr. *Mirella Bondi,* Dr. *L. Morten,* and Dr. *P. L. Rossi,* Istituto di Mineralogia e Petrografia dell'Università di Bologna, Piazza di Porta S. Donato 1, I-40127 Bologna, Italy.