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Abstract. The locking and unlocking phenomena of the 
modes of the transverse family q = 1 in a CO2 laser are 
investigated. The experimental results show three charac- 
teristic regions: a bistability between two helical waves 
of opposite handedness, a tristability among the two 
helicities of opposite handedness and an unlocked state, 
and the unlocked state. Near the locking threshold, os- 
cillations which can be interpreted as due to the oscilla- 
tions of the modal amplitudes and relative phase are also 
observed. These results are found to be consistent with 
solutions of the two-mode Maxwell-Bloch equations for 
class-B lasers. 

PACS: 42.60.Jf, 42.65.- k, 61.70.Ga 

When several transverse modes are excited in a laser, 
transverse dynamic phenomena can be observed. The 
occurrence of stationary patterns can be explained in 
terms of cooperative frequency locking within one or 
several transverse mode families. In such a case trans- 
verse modes of different optical frequencies lock to a 
common frequency producing a time independent pat- 
tern [1]. Stationary patterns for the transverse family 
q = 1 to q= 3 have been predicted and experimentally 
observed in class-A lasers [2]. For the q= 1 family the 
stationary pattern can be a doughnut mode whose cen- 
tral dark region corresponds to a phase singularity (also 
referred to as an optical vortex) [2]. Other more complex 
stationary patterns of vortices have been observed such 
as an eight-vortex crystal-like structure in a sodium- 
dimer laser [3] and optical vortex lattices in a high fresnel 
number carbon-dioxide laser [4]. Multistability of sta- 
tionary patterns has also been predicted [2]. This was 
demonstrated by the doughnut bistability in a HeNe 
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laser [5] and multistability among q = 2  patterns in a 
sodium laser [2]. 

Some transverse patterns exhibit temporal oscilla- 
tions. Usually, these are attributed to the beating of 
modes. For example, the Gauss-Hermite modes, TEMoI 
and TEM 1 o, when not degenerate, result in an "unlocked 
doughnut" which shows regions in which the intensity 
pulses at the mode-beat frequency. In this case the non- 
degeneracy is primarily due to astigmatism, the reduction 
of which can lead to a locked state. The transition from 
the beating modes to the time-independent, locked state 
within the q-- 1 mode family was investigated in HeNe 
laser (class-A) [6]. 

Coexisting TEMo0 and TEMpi modes results in a 
phase singularity revolving about the center of the laser 
beam. The "spinning vortex" spins at a frequency of the 
order of the difference of the mode-pulled frequencies of 
the two modes [7]. This dynamical pattern can serve as 
a good illustration of the hydrodynamic forces acting on 
optical vortices [8]. 

Contrary to class-A lasers, the inertia of population 
inversion plays a significant role in class-B lasers. Trans- 
verse pattern formation in this type of lasers (carbon- 
dioxide lasers, in particular) has been reported [9-12]. In 
[9-11] the spatiotemporal dynamics of the carbon-diox- 
ide lasers was studied by changing the effective curvature 
of the resonator mirrors, and the pump, as the control 
parameters. The patterns observed are classified in sym- 
metry groups and the changes in the patterns are inter- 
preted by symmetry breaking. In [12], the emphasis is on 
the spatiotemporal behavior of slightly nondegenerate 
modes in the carbon-dioxide laser. In most cases, the 
temporal oscillations of the pattern are due to the beating 
of the excited modes but in some cases, these have been 
attributed to the modal amplitude oscillations [9]. 

In spite of extensive experiments a complete theoreti- 
cal treatment of transverse dynamics in Class-B lasers is 
still missing. The theoretical analysis in [13, 14] also 
applies to class-A laser: the material variables (polariza- 
tion and population inversion) have been adiabatically 
eliminated. Due to the adiabatic elimination the 
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phenomena characteristic for class-B lasers such as re- 
laxation oscillations, antiphase mode beats [15], self- 
induced transverse dynamics [16] are excluded from the 
models in [13, 14]. 

In [17] the transverse mode dynamics has been inves- 
tigated taking into account the inertia of population 
inversion, thus using the class-B laser model. The studies 
focused on transverse mode-locking unlocking phenome- 
na. It was shown in particular, that the transverse mode 
locking, unlocking occurs as a subcritical bifurcation in 
contrary to the class-A laser, where locking is supercriti- 
cal. As a consequence bistability between locked and 
unlocked states exists in class-B lasers. 

This paper aims to confirm experimentally the predic- 
tions of [17]. In the following section the main results of 
the theory are summarized and applied to the family 
q= 1. The experimental observations of the locking 
phenomena of the Hermite modes, TEM0, and TEM,o, 
in a carbon dioxide are presented. 

1 Locking and unlocking of modes in class-B lasers 

For class-A lasers, the polarization decay rate 7= and the 
population inversion decay rate 71~, are much larger than 
the field decay rate x. Thus the polarization and popula- 
tion inversion can be adiabatically eliminated from the 
Maxwell-Bloch equations. In class-B lasers, Yll << ~ and the 
population inversion is not enslaved by the electric field. 
Its dynamics can, nevertheless, be incorporated using the 
modal approach [17] by expressing the population inver- 
sion D(r, t), in terms of the products of cavity modes 
A~(r, t), with time dependent pump depletion amplitudes 

di/t).  That is, D(r , t )=  Do(r)/1-y 4j(0A,(r)A,(r) ], 
t _  - -  _ l  t,J 

where Do(r) is the unsaturated population inversion. 
With the optical field amplitude expressed as E(r, t) = 

fi(t) Ai(r) (where f~(t) is the complex amplitude of the 

i-th cavity mode), the resulting equations for class-B 
lasers, considering only two modes, are [17]: 

at 
- ( D l - a 0 f ~ + i  A o ~ f ~ - f ~ ( G ~ i d ~ +  G,2d22) - 

f2(G12d12 + Gi2d21), ( la)  

aA 
at 

- (D2 - %)fz + i Aco2f2- f2(G22d22 + G~2d~ ~) - 

fl(G12d21 + G'12d12), (lb) 

Od~j _ 
Ot 711(dij- f i f* ) '  (lc) 

where cq and Aco~ are the linear loss and the frequency, 
respectively, of the i-th mode. 71,, ~ and Aco~ are norma- 
lized here to ~c. Di=~ ~ Do(r)"iA~(r)l z" dr are the gain 

coefficients, and Gij= ~ ~ D0(r) iAi(r)121A/r)12dr are the 
auto- and cross-saturation coefficients. G~j = ~ ~ Do(r) 
A{(r)A~(r)dr is the phase-sentive cross-saturation coef- 
ficient. A nonzero G2j results in a "nonlinear mode pull- 
ing" which causes the modes to lock for a range of values 
of their frequency difference. This "nonlinear mode pull- 
ing" is additional to the usual mode-pulling phenomenon 
(where the lasing frequency is a weighted average of the 
cavity frequency and gain line center frequency). 

In the limit of ,/ll~oc, (lc) leads to d~j=f~f*, and (1) 
transforms into the well-known mode-expansion equa- 
tions for class-A lasers [2]: 

at 
- ( D I - ~ , ) A + i  AcolA-A(G!!If~12+ 

2G121 f2l 2 + G i 2 A f * ) ,  (2a) 

aA 
at 

- (D2 - cq)f2 + i Acoz fz -  f2(G221 f212+ 

2G~2i fl]2 + Gi2f2f~).  (2b) 

Here coefficients G~j are defined as in (1). In a more 
accurate analysis in [13, 14] the smallness of 711 is taken 
into account by modifying the cross-saturation coef- 
ficients Gij. We note, that such a way of taking the 
slowness of population inversion into account is correct 
in the limit e = 71/1<< 1 only, which is the limit of the 
class-A laser. For correct description ofclass-B lasers the 
inertia of population inversion must be taken into ac- 
count by retaining (lc): only in this case the solutions of 
(1) describe properly the relaxation oscillations, which 
are characteristic for class-B lasers. 

The presence of the additional (lc) changes the behav- 
ior of class-B lasers drastically from that of class-A 
lasers. Analysis of solutions of (1) for both types of lasers 
shows that the frequency of inter-mode beating in class-B 
lasers is always larger than that of the class-A laser. 
Furthermore, in the "mode non-pulling" case, G[2 =0 
(for example, one which involves modes of different heli- 
cities), two transverse class-B laser modes always beat 
with nonzero frequency (i.e., the modes "anti-lock") [17]. 
This produces a nonstationary pattern even in the case 
where Aco 1 = Aco 2, in which case class-A lasers emit a 
stationary pattern. The frequency of these self-induced 
oscillations is of the order of magnitude of the relaxation 
oscillation frequency. Bistability between different re- 
gimes different solutions of (1) also appear for 
!Aco l -  Acoal <- COrel. 

Bistability occurs also when locking modes are fre- 
quency-pulled. This is shown in the frequency locking, 
unlocking behavior of the two Gauss-Hermite modes 
TEMlo and TEMol in Fig. 1. For these particular modes 
and in the case of spatially uniform pump D1 = D2 = Do, 
GI~ = G==3/(4z0 and G12 = G[2 = 1/(470. The figure 
shows the dependence of the beat frequency on the dif- 
ference between the single-mode frequencies of class-A 
and class-B lasers. Although these modes belong to the 
same family and in the ideal case are frequency- 
degenerate, imperfect rotational symmetry in the cavity 
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Fig. l .  The beat frequency Af2 vs mode frequency separation Aco for 
class-A (711 = 100), and class-B (?ll = 0.02) lasers obtained from the 
numerical solution of  (1) for Do = 2 
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Fig. 2. The temporal dynamics of the phase difference of the modes 
Alp = (o 1 -(o2, and of the mode intensity nl = n2 = If112 obtained 
from the numerical solution of (1) for ?11 = 0.02 and Do = 2 

can lift this degeneracy, justifying the separate frequency 
assignments, Ac01 and Aco2, to the two modes. As Fig. 1 
suggests, in class-A lasers, the modes can lock even in the 
presence of a certain degree of rotational asymmetry. 
From (1) this locking frequency is found to be Acolock = 
0.4(Do-1) [17]. The locking occurs as a supercritical 
bifurcation when parameter Am is changed in class-A 
lasers. 

In class-B lasers the locking occurs as a subcritical 
bifurcation, differently from class-A laser. Thus a region 
of coexistence between locked and unlocked modes ex- 
ists. Compared with class-A lasers, locking occurs at a 
significantly smaller mode frequency difference, Aco, 
which is of the order of magnitude of the relaxation 
oscillation frequency: COre I = [2~ll(D o -  1)] 1/2. Thus it is 
more difficult to obtain frequency locking in class-B than 
in class-A lasers. In the coexistence region of locked and 
unlocked states, the locked state can have either right- 
hand or left-hand helicity. Hence this bistable region is 
actually tristable. 

Relaxation oscillations plays an important role in the 
locking of class-B lasers. Specifically, the numerical cal- 
culations suggest that the mode locking in the bistable 
regime (i.e., the jump from the upper to the lower branch 

of Fig. 1) is the result of the synchronization between the 
mode-beat frequency, and the first subharmonic of the 
relaxation oscillation frequency. Near the locking thresh- 
old the modal amplitudes are themselves oscillating at a 
frequency equal to the relaxation oscillation, as shown in 
Fig. 2. The relative phase between the modes (also shown 
in Fig. 2) shows oscillatory time dependence with values 
of odd multiples of ~/2 at the modal amplitude maxima. 
Increasing Am, from the locked branch, unlocking occurs 
when the mode-locked solution of (1) becomes unstable. 
The linear stability analysis [17] shows that the mode 
unlocking occurs for Aco > [?ll(Do- 1)] 1/2. 

Experimentally the locking mechanism can be ex- 
plored by perturbing the cavity (for example by introduc- 
ing loss in a form of a spot or a pin). Losses have two 
possible effects. One is spatial distortion (or equivalently, 
nonuniform phase changes) of the beam. This results in 
changes in the frequencies of the active modes. For illus- 
tration the frequency shift due to the introduction of an 
aperture arranged rotationally symmetrically around the 
TEM*I Gauss-Laguerre mode (doughnut) is calculated 
(see Appendix). The result is Aogaif = 22/(4 Aco±), where 
2 is the parameter of additional loss due to the aperture, 
and A~o± is the frequency separation of the transverse 
modes. 

The second effect of the introduction of losses, is 
related to the usual frequency-pulling. The greater the 
loss, the more pulled is the actual lasing frequency tow- 
ards the gain line center. An additional loss introduces 
a frequency shift, A(Dpu], given by: A(Dpu I = )~ ((L)A--O)C) 
?±/(1 + ?±)2, where COA is the gain line center frequency, 
and COc is the frequency of the mode (see Appendix). 

The first mechanism always increases the excited- 
mode frequency. The second mechanism, on the other 
hand, always pulls the frequency of the mode towards the 
center of the line. For CO2 lasers both effects are of the 
same order of magnitude. When the mode frequency COc 
is less than the gain line center frequency ~OA, (~OC< ~OA), 
the effects of the two mechanisms add. Thus the mode is 
more tunable in this case than when its frequency is 
larger than ~OA, where the effects subtract. 

The loss can be restricted to affect only one of the 
modes. It can be changed to allow a continuous variation 
of Aco (which include the two loss-induced frequency 
shifts discussed above as well as that induced by the 
astigmatism of the cavity). 

2 Experiment 

Experimentally locking and unlocking of the Hermite 
modes TEMol and TEMlo is observed in a carbon-diox- 
ide laser, schematically shown in Fig. 3. 

The CO2 laser consists of tube which is 55 cm long 
and has an 8 mm inner diameter, a curved mirror with 
a radius of curvature of 2 m and a 150 lines/mm plane 
(outcoupling) grating with a 95% diffraction efficiency. 
With the gain bandwidth of approximately 100 MHz, 
and with a cavity length of 0.8 m, the laser oscillates in 
a single longitudinal mode. The transverse mode separa- 
tion and the cavity linewidth are 41 MHz and 15 MHz, 
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Fig. 3. Experimental setup. M1 : concave Mirror; M: plane Mirror, 
BS: BeamSplitter; G: Grating, PM: rotating Polygon Mirror; D: 
Detector. The 3 possible patterns after the mode converter are 
shown, o indicates the position of the detector in the pattern 

respectively. It was possible to restrict the laser to selec- 
tive oscillation in the q = 1 family to be comparable with 
the theoretical two-mode model. The tuning is achieved 
by the fine adjustment of the cavity length using a piezo- 
electric transducer to which the mirror is attached. 

For measurements, the laser radiation is detected by 
a fast HgCdTe detector and the resulting signal is dis- 
played simultaneously on an osciloscope and a spectrum 
analyzer. The spatial-temporal dependence of the inten- 
sity along a cut in the pattern is monitored using a 
rotating mirror. 

For sufficiently large frequency difference, A~o, be- 
tween the modes TEM01 and TEMto (for example in the 
presence of Brewster windows), the "nonlinear mode 
pulling" discussed above plays a very insignificant role. 
In this case, the total optical field in the overlapping 
regions of two Hermite modes is just the sum of the 
electric fields of the modes. When modes are of different 
frequencies, ~:he intensity in the overlap regions is mod- 
ulated at the beat frequency [9, 10, 12]. This is shown 
schematically in Fig. 4a. The unlocked state consists of 
superimposed TEMlo and TEM0~ modes whose electric 
field directions are indicated by the arrows. The overlap- 
ping regions are indicated by A, B, C, and D. It is 
straightforward to calculate the intensity in the overlap- 
ping regions and to show that the intensity in region A 
oscillates in phase with D and anti-phase with region C. 
Intensity pulsations in the overlap regions are shown in 
Figs. 4b, c, which are the beam scans of intensity across 
the lines passing through A and B and through A and D, 
respectively. In the nodal lines of the Hermite modes 
(1 and 2 cuts in Fig. 4a) there are no significant temporal 
variations of intensity as would be expected because 
these are regions where the modes do not overlap. 

To explore the locking and unlocking bistability, 
Brewster windows were replaced by plane ZnSe windows. 
To allow continuous change of the mode frequency dif- 
ference, losses for one of the Hermite modes are in- 
troduced by translating a pin in either of the two direc- 
tions (indicated as 1 or 2 in Fig. 4a). As discussed in 
Sect. 1, the losses can cause pulling of modes and distor- 
tion of the beam with the effect of compensating for 
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Fig. 4. a Superposition of TEMol and TEM lo modes indicating the 
directions of the electric field of modes. A, B, C, D are the regions 
where the modes overlap. 1- and 2-axes correspond to the nodal 
lines of Hermite TEMol modes. The cross sections of the unlocked 
doughnut pattern show the temporal intensity modulation for (b) 
A-B cut (antiphase oscillation) and (c) A-D cut (in-phase modula- 
tion). The time interval between the arrows in (b) and (c) represents 
an integral multiple of the beating period 

residual astigmatism [6]. Both effects are achieved by a 
pin whose position can be used as a control parameter. 
The effect of changing of the pin position (along direction 
1 of Fig. 3) on the beat frequency of the lasing modes is 
shown in Fig. 5. By translating the pin along either 1 or 
2 the loss in one of the two Hermite modes can be 
changed. The frequency tuning is achieved and conse- 
quently, the modes can be locked or unlocked. The zero 
position of the pin is a point sufficiently far from the 
beam and corresponds to a locked "doughnut" state. 

From the locked state (r=0), the pin is translated 
towards the beam. At a pin position r=6.5 mm, the 
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Fig. 5. Beat frequency vs pin position 

pattern unlocks. Similarly, from the unlocked state the 
pin translation is reversed (i.e., the pin is moved away 
from the pattern). As r decreases, the doughnut remains 
unlocked until a critical value of the beat frequency 
(approximately equal to 300 kHz), beyond which the 
doughnut locks (at r = 5.3 mm). This beat frequency is of 
the order of the relaxation oscillation frequency. The 
different thresholds for locking and unlocking represent 
a bistability which is evident in Figl 5. The tunability of 
the mode frequency due to the losses (and consequently 
the range B of Fig. 5) depends on which side of the gain 
profile the mode frequency is located. This is consistent 
with the theoretical prediction discussed in the previous 
section. 

The previous theoretical discussion has also pointed 
out that modal ampiitudes and the relative phase of the 
modes are oscillating near the locking threshold. This is 
confirmed experimentally as shown in Fig. 6 where the 
power spectra at two points in the pattern are shown. 
Fig. 6a is a typical power spectrum in regions A, B, C, 
and D (of Fig. 4a) where the two Hermite modes overlap. 
In the regions where only one of the modes is present, the 
power spectrum (Fig. 6b) shows strong oscillation at a 
frequency equal to the second harmonic of the beat 
frequency. These second-harmonic oscillations are in- 
dicative of the modal oscillations as predicted for the 
region near the locking threshold. This can be seen in 
Fig. 6c, d which show the intensity peaks associated with 
the ordinary beating of the modes (Fig. 6c) and the mod- 
al oscillations (Fig. 6d) in the pattern. The intensity os- 
cillation at the second harmonic of the beat frequency is 
independent on the angular location. 

In the vicinity of the locking point the second harmon- 
ic of the beat, related also to the modal oscillation, 
increases and through resonance with the relaxation os- 
cillation leads to the locking of the modes. 

As pointed out in the previous section the bistable 
region of locking and unlocking (region B in Fig. 5) is 
actually tristable corresponding to unlocked doughnut 
and two locked doughnuts of opposite helicities. To 
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Fig. 6a-d. Power spectra in the pre-locking state when the detector 
is in (a) the overlap region A, and (b) the nodal line 1 (in Fig. 4a). 
The distribution of the beat amplitude (e) and the amplitude of the 
second harmonic of the beat (d) 

show this, a part of the beam is passed through a mode 
converter consisting of two cylindrical lenses. This mode 
converter changes a left- (right-) handed locked dough- 
nut into a Hermite TEMol (TEMlo) modes tilted by 45 ° 
[5]. Thus by placing the detector behind the converter in 
the nodal line of the Hermite mode TEMol as shown in 
Fig. 3, we can relate the high-level signal to the right- 
handed helical emission, the low-level signal to the left- 
handed helicity, and the intermediate level to the un- 
locked state. Following the technique used in showing 
bistability in the HeNe laser [5], the laser was turned on 
and off periodically and the result of such switch-on 
statistics is shown in Fig. 7. In region A (of Fig. 5), the 
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Appendix 

Mode-Frequency Shifts due to Spatially Inhomogeneous 
Loss 

The equation for transverse modes of the cavity with 
spherical mirrors is: 

~A 
- iAco± rZA+(iAco±/4)V2A, (A1) 

0t 

where Aco± is the transverse mode frequency separation 
and V 2 --- 0~ + 62 is the Laplacian operator in a two 
dimensional space (x, y) or (r, fp). The solutions of (la) 
are the Gauss-Laguerre functions, and the first two are: 

A0(r, t) = (2/n)1/2 exp ( -  r 2) exp ( -  i Aco: t), (a2a) 

Al(r, t) = 2 n-  1/2r exp ( -  r24 -i (/9) exp ( -  2i Aco: t). (A2b) 

To evaluate the effect of an aperture on the solution 
(A2b) a term describing the presence of a spatially inho- 
mogeneous loss is introduced in (la) as follows: 

0A 
Ot - (-r2/r2P) A - i A c o ~  r2A+(iAco±/4) V2A. (A3) 

laser switches randomly between the right-hand and left- 
hand helicity as shown in Fig. 7a. Fig. 7b which corre- 
sponds to region B shows tristability. In region C the 
trivial case of an unlocked doughnut is observed (called 
in [11] a modulated wave). 

Depending on the angular position of the losses in- 
troduced, it is also possible to make the laser operate in 
a prefered helicity. In this case one of the helical states 
is suppressed and in region B the laser shows bistability 
between the prefered helicity doughnut and the unlocked 
state. 

3 Conclusions 

We have experimentally conformed the theoretical 
prediction [17] that the locking and unlocking phenome- 
na of the Gauss-Hermite modes, TEMol and TEMlo, in 
CO2 lasers are characterized by the coexistence of locked 
and unlocked states. It was also proved that this region 
corresponds to tristability of an unlocked doughnut, a 
doughnut with right-handedness and a doughnut with a 
left-handedness. In the locking region, the bistable 
doughnut state was observed. The locking behavior was 
shown to be influenced by the population inversion dy- 
namics which is important in class-B lasers. 
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For convenience the loss function is of parabolic form, 
where rp corresponds to the radius of the aperture. 

A solution of (A3) of the following form is assumed: 

A l(r, t) = r exp ( -  r2/r2o + i r2/R2o + i ¢) x exp ( -  i cot- 20, 
(A4) 

where r0 is the radius of the beam, which is not equal to 
1 as in (A2), Ro is the parameter of the laser beam 
curvature, and 2 is the loss parameter. After (A4) is 
inserted into (A3), and the terms with the equal powers 
of r are collected, the following relations are obtained: 

2 = 2Aco±/R~, co = - 2 A c o ± / r  2, 
(A5) 

2 2 Ro/r p = 2Aco±/r~, r o 4 - R o  4 = 1. 

From relations (A5) the unknown parameters to, Ro, co 
and 2 are determined. The mode frequency co is no longer 
equal to - 2 Aco as in (A2b), and in the limit of 2 Aco r2>> 1 
(i.e., with small influence of aperture), the frequency and 
the decay rate of the mode are connected by a simple 
relation. Thus, the frequency shift due to the aperture 
A O,) di f i s  

ACOdi f = co-2 Aco± = 22/(4 Aco±), (A6) 

which is the analogue of the Kramers-Kronig relation for 
the spatial spectrum. 

According to (A6) the mode frequency increases with 
increasing losses due to the aperture, 2. Another effect of 
the presence of the aperture is related to frequency pull- 
ing. The spatially distributed losses decrease the quality 
of the resonator for the particular mode, and the fre- 
quency pulling changes. The frequency of the laser radia- 
tion, co, is the weighted average of  the central frequency 
of the amplification line, coA, and the mode frequency, 
COc. That is, co = (cocK+coaT±)/(~c+7±), where the re- 
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laxat ion  rate  o f  the optical  field is ~c -- 1 + 2 [2 is the 
addi t ional  loss due to the aper tu re  as in (A4-6].  F o r  2<< 1, 
the f requency shift is: 

)Y± 
ACOpu~ = 2 (1 + 71 "2) (c°A- COc). (A7) 

The  f requency change  due to this p h e n o m e n o n  is directed 
towards  the ampl i f ica t ion line center  when  the losses 
increase. 
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