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Abstraet. The mechanism responsible for transitions of 
laser-cooled trapped ions from an ordered "crystal" state to 
an irregular "cloud" state has been discussed controversially. 
A numeric and analytic study of the relative motion of 
two trapped ions without laser cooling is performed and 
compared with the results of previous simulations involving 
the laser. It turns out that the system without laser, in spite of 
its simplicity, already exhibits a non-monotonic dependence 
of crystal stability on trap parameters, which is linked to the 
presence of low-order nonlinear resonances. 

PACS" 32.80.Pj, 42.50.Vk, 36.40.+d 

There is a persistent interest (see, e.g., [1]) in storing 
large numbers of laser-cooled ions in a Paul trap [2]. It 
has been known for several decades that under suitable 
conditions charged particles in such a trap are capable of 
forming clusters (referred to as Wigner crystals [3], Coulomb 
clusters, ordered stares) in which trap forces and Coulomb 
repulsion are balanced in the average over one trap period 
[4]. Such crystals have been prepared by laser cooling of 
trapped ions [5, 6], and transitions (melting) back to an 
irregular (cloud) stare were observed wl:ile trap parameters 
or laser power or detuning were being varied. The desire to 
identify the underlying mechanisms has spawned activities 
by experimenters and theorists alike [7, 8]. In particular, the 
question is still debated [9, 10], to which extent the melting 
of crystals is reproducible and what kind of forces have to be 
included into a model in order to explain the phenomenon. 

Laplace's equation zBV = 0 for the electrostatic potential 
V excludes the possibility of trapping a point charge in a 
vacuum by static electric fields. The Paul trap achieves con- 
finement of charged particles with the help of an oscillating 
fiel& The amplitude of the ac trap voltage is proportional 
to the trap parameter q3 used below, see, e.g., [2, 4, 11] for 
details. A dc voltage may also be applied, which is propor- 
tional to the parameter %. Choosing a dimensionless time 
scale on which the ac voltage has period re, the equation of 
motion for a single ion and for the center-of-mass motion of 

several ions in a Paul trap has the Mathieu [12] form 

2 j  + (aj - 2qj cos 2 t ) x j  = o ,  (1) 

where 

al,2 = g3/2 and ql,2=-q3/2 (2) 

due to trap symmetry with respect to rotations about the z- 
axis and to the Laplace equation for the trap field. For certain 
parameter values the solutions of the Mathieu equation are 
stable [13]. Using (2) and intersecting the stability regions 
for j =  1,2 on the one hand and j = 3 on the other hand, 
parameter values leading to three-dimensional confinement 
are obtained, see, e.g., [9]. In what follows, q~(%)  denotes 
the upper bound of q3 for fixed a 3 in the usual stability 
region, see Fig. 3. 

In the case of several ions, Coulomb repulsion has to be 
included. Thus, the relative motion of two ions is governed 
by 

äj + (aj - 2qj cos 2t) z j  oeccj 
Ixf3 - 0 ,  (3) 

where the constant c~ in the Coulomb force can be made 
equal to unity by an appropriate choice of the length scale, 
which is assumed in the following. 

Interaction of the trapped ions with a laser beam gives 
rise to momentum changes, which may lead to damping and 
to diffusion (see, e.g., [9, 14, 15] for a discussion of laser 
cooling in a Paul trap). 

Particular attention has been devoted to the melting of 
crystals of two (or a few) ions when the dc parameter % is 
kept constant and the ac amplitude q? is increased. 

With a 3 = 0, an order-chaos transition in the relative 
motion of two ions was reported at some critical value 
qc < qM~(0) for both experiments and computer simulations, 
the latter including trap forces, Coulomb repulsion, a cool- 
ing term and random displacements in coordinate space [8]. 
In contrast to this, other authors [9] have not found any such 
transition in numerical calculations, and ttuctuations arising 
from spontaneous emissions were deemed to weak to cause 
order-chaos transitions in the case a 3 = 0 [10]. Further- 
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more, in experiments with short q3-scan times, crystals were 
observed to remain stable in several - but not in all - runs 
of the experiment until q3 = qM~(C@ was reached [9]. 

Collisions with background molecules were found to 
be capable of  inducing transient chaos for q3 < % and 
stationary chaos for q3 > qc, but such collisions were 
calculated to occur on a time scale of  roughly one minute 
[10], which left unexplained the relatively high number of 
melting events in the experiments of [9], which lasted only 
seconds. 

Recently, melting at some realistic trap parameters was 
reproduced in computer simulations [16] mimicking two-ion 
experiments reported in [9]. The model  used in these simula- 
tions featured trap forces, Coulomb repulsion of  the ions and 
interaction of each ion with the laser beam, including fluc- 
tuating forces from spontaneous emissions. The model  did 
not include collisions with background gas molecules. The 
trap parameters at which melting occurred in those simula- 
tions were found to be correlated with nonlinear resonances 
in the relative motion of  two ions without laser cooling. 
This link between the behavior of laser-cooled ions (a non- 
Hamiltonian system) on the one hand and the Hamiltonian 
system of interacting trapped ions without a laser on the 
other hand was established for four different areas in the 
%-q3 plane. A number of questions remained open, though, 
in particular: 

• there was no proof that the system without laser itself was 
less stable at the trap parameters in question than elsewhere, 
and 
• it was unexplained why the presence of  a low-order 
nonlinear resonance did not always lead to melting in 
simulations including laser cooling. 

The purpose of this paper is to clarify these issues by study- 
ing the system of two interacting ions in a Paul trap without 
laser cooling (malnly). The change of coordinates necessary 
to make apparent the nonlinear resonances mentioned in [ 16] 
will be given. 

1 Numerical  Calculations without a Laser 

This section is devoted to a numerical study of the solu- 
tions of (3), the equations of motion of a t ime-dependent 
Hamiltonian system. It is not quite obvious that insight into 
the behavior of the non-Hamiltonian system with laser cool- 
ing can be gained from studying the Hamiltonian orte. An 
attempt to do this is based on the observation that in the pres- 
ence of  a laser beam, even in those cases where melting does 
not occur, deviations from the periodic crystal solution exist, 
the size of which is the result of a balance between the ner 
cooling effect of the laser light pressure and heating caused 
by fluctuations. The properties of  the Hamiltonian system 
are studied in an area of  phase space whose size is chosen 
somewhat larger than these deviations in a no-melting run 
of the simulation program with laser cooling. For constant 
trap parameters and 400 different initial values close to the 
crystal solution, (3) is integrated numerically o v e r  104 trap 
cycles, using a fourth-order symplectic integrator [17]. Two 
types of trajectories can be distinguished: some stay close to 
the crystal solution, while others deviate from it by amounts 
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Fig. la-g. Number of crystals stable over 104 trap periods in simalation 
without laser and with fixed trap parameters, a a 3 = 0; bct 3 = - 0.003; 
e % = 0.018; d % = -0 .023. . . ;  e % = -0.036; f a 3 = - - 0 . 0 5 0 ;  

bct  3 = -0.055 . . . .  Step width is z2lq3 = 0.002 (0.0025 in b and 
g). Dashed lines in b, e and e mark parameter values where melting 
occurred in simulations with laser cooling 

several orders of magnitude larger than initially. In the latter 
case, the crystal is considered "molten". Figure 1 shows the 
number of cäses in which no melting occurs as a function of 
the träp parameter q3, the step width being Aq3 ---- 0.002 or 
0.0025. This number is used as a crude measure of stability 
of the two-ion crystal. The results show that crystal stabil- 
ity depends non-monotonically on the ac trap parameter q3. 
This suggests that the melting of crystals might not be just 
a question of  increasing q3 beyond a critical value. 

In order to see whether melting of laser-cooled two-ion 
crystals can be understood on the basis of properties of 
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the system without laser, in the cases a 3 = - 0 . 0 1 8  and 
aß = - 0 . 0 3 6 ,  ac amplitudes q3 where melting occurred in 
simulations including the laser [16] have been marked by 
dashed lines in Fig. 1. They coincide with local minima in 
the curve obtained from simulations without laser in a way 
which strongly suggests that properties of the Hamiltonian 
system under consideration provide a key to understanding 
the more comptex system which includes laser cooling. In 
simulations with laser cooling, in the case a 3 = - 0 . 0 3 6  
melting took place in a narrow area of the q3-axis at about 
q3 = 0.81 and in a broader orte at q3 = 0 .85 . . . 0 .87 .  
This feature corresponds to a narrow dip and a broader one, 
respectively, in the curves indicating stability of  the system 
without laser cooling. 

In [16], simulations of  laser cooling were performed for 
a 3 = 0, too, but no melting was found. In the corresponding 
Fig. la, at abõut q3 = 0.78, there is a pronounced dip in 
the number of crystals which survived 104 trap periods 
in calculations without a laser. This enhanced sensitivity 
apparently was not strong enough to give rise to melting 
in simulations with laser cooling though. 

Upon changing the dc parameter to a 3 = - 0.003, the dip 
in question becomes deeper (see Fig. lb), and simulations 
including the laser now result in melting (dashed lines). 
In contrast to [16], these simulations have no experimental 
counterpart yet. To save computer time, they are limited 
to a small q3 fange: calculations start at q3 = 0.76, and 
upon increasing this parameter, melting takes place in all 
ten simulations (performed with different random number 
sequences for the modelling of spontaneous emissions) in 
the range 0.769 < q3 G 0.774. 

A certain amount of  arbitrariness is involved in producing 
Fig. 1. Clearly, the choice of  initial values has an influence 
on the outcome. The above results have been produced with 
initial values obtained by adding to the crystal solution at 

= 0 velocities on a two-dimensional grid with nonuniform 
spacing, as shown in Fig. 2. It corresponds to a regular 
spacing in vm'iables I~,z to be introduced in the hext section. 

0.3t .................... 
0 . 2 -  

0,1- 

I 
0.0  -I 

- 0 . 2  0.0 

Fig. 2. 400 velocities added to the periodic crystal solution to obtain 
initial values for Fig. 1. Variables T]I,2 defined in Sect. 2 

It has been checked that the main features can be obtained 
with other sets of  initial values as well. Integration time 
is another interesting parameter: in examples it was found 
that no melting occurred over the first 100 cycles whereas 
the situation after 105 cycles did not differ from that after 
only 104 cycles. Therefore integration over  104 cycles was 
used throughout Fig. 1. The outcome was not sensitive to the 
integration step width in an example where this was checked, 
comparing step widths 7r/20 and 7r/200. 

The main result of this section is that the stability 
of the crystal solution of the Hamiltonian system of two 
interacting trapped ions in a Paul trap without laser cooIing 
depends in a non-monotonic fashion on trap parameters and 
that the melting of laser-cooled ion crystals takes place at 
trap parameters where this stability is particularly low. The 
remainder of this paper will try to identify a pattern behind 
that dependence of stability on trap parameters. 

2 N o n l i n e a r  R e s o n a n e e s  

The analysis in this section is based on a change of variables, 
cf. [18,19]. Trap symmetry and the use of cylindrical 
coordinätes allow to restrict the problem to two coordinates 
u - (%, ~2) -= (& z) with momenta v, whose equations of 
motion are obtained from the Hamiltonian 

1 v2 H 1 = ~ + U ( u , t ) ,  (4) 

where the potential is 

2 ( ) 
1 P~ 1 1 1 u2 (5) 

U -  2 u 2 +~ü~ + 2  ( a 3 -  2«3c°s2t)  u ~ -  

and the angular momentum p~ is a constant of motion. Let u ° 

denote the crystal solution in the z -y-p lane  u ° = [~°(t), 0] = 
[~0(~ + ~r), 0] for some fixed trap parameters and angular 
momentum Pc under consideration. A new coordinate e with 
momentum ~1 is defined as the deviation from the crystal 
solution: e(t) - u(~) - u°(t). The time evolution of ~1 and e 
is governed by the Hamiltonian 

1 OU uo H2('ll, E, t) = ~ n 2 q- U[E @- U0(t), ~] - Õ ü  . e .  (6) 

This Hamiltonian is written as a sum 

H 2 = / / 2 o  + H21, (7) 

where 

1 2 1 0 2 U  u 0 
/-/20 - ~ n + ~ ~ qe  50u i Ou t (8) 

i,j 

- U[e + u°(t), t] 0Õ~uU //21 
U 0 

1 02U u0 
2 ~ '~e ie J  Õ~i0u~-j- " (9) 

i , j  

H2o alone yields decoupled equations of motion which are 
linear and whose coefficients have period 7r (Hilt 's equation, 
see, e.g., [12, 13]. The stability of this linearized problem is 
checked by calculating the Floquet exponent [12, 13]. It turns 
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Fig. 3. The usual stability region of a Pau] trap (solid bolders). In 
regions 1 and 2, two-ion crystals in the z-y-plane and on the z-axis, 
respectively, are stable according to linearized equations of motion 

out that its solutions are bounded and stable, indeed, in most 
of  the parameter region of interest in the present context, see 
region 1 in Fig. 3. (P~o = 0 was assumed here, the influence 
of realistic p~ values on the location of the stability region's 
boundary being small.) A similar analysis can be done for 
the relative motion of two ions along the z-axis (rather than 
in the z -y-p lane  as treated so far); the linearized problem 
obtained in that case is stable in region 2 in Fig. 3. All 
calculations presented in this paper have trap parameters in 
region 1. In experiments [9] and simulations [16] with dc 
parameter a;  = - 0 . 0 3 6 ,  region 2 was intersected at low 
q3 values; the change of orientation of the crystal from the 
z-axis to the z -y -p lane  upon increasing q3 was visible in 
the simulations. 

Having established that all solutions of the linearized 
problem are bounded and stable in the parameter region of 
interest here, they will be used to define new variables for the 
investigation of the original nonlinear problem. The general 
motion of the j component in the linearized problem is a 
linear combination of two basic solutions 

cos 
h j = tc,3(t ) [cvjt + 133(t)] (10) 

1 , 2  . 

sln 

where wj(l,) and flj(t) are real and periodic with period re. 
The index j refers to % - Q for j = 1 and to 14, 2 - -  21 for 
j = 2. It is assumed that the (constant) Wronskian 

det \h~(~) ]~J(t)J 

equals unity for j = l, 2. To achieve this, in addition 
to multiplying w j  by a constant, it may be necessary to 
interchange cos and sin in (10). 

Finally, variables (I, ~ )  are defined to satisfy 

eo = ~ 3 [ c o s ( w j t -  4~j)h{(t) + sin(wjt ~ j )hJ ( t ) ] ,  (12) 

r/j = ~ j j  [cos(wjt - ~ßj)h{(t) + sin(c~jt - ~ j )h~( t ) ] .  (13) 

A.W. Vogt 

Their time evolution is given by the Hamiltonian 

H 3 = I . ~ + H 2 1 [ e ( I , Ó , t ) , t ] - I . ~ + H 3 1 ( I , + , t )  (14) 

according to i = - O H 3 / &  b, [5 = OH3/OI.  This is the 
result given without proof in [16]. 

As for the interpretation of the new variables, I = 0 
corresponds to the periodic crystal solution. The frequencies 
tot, 2 depend on trap parameters e »  q3 and, in principle, on 
angular momentum P c  They are obtained from the Floquet 
exponent of the linearized problem. The influence of p+ 
again turns out to be negligible for the present purpose, 
and p~ = 0 is assumed. The physical meaning of the 
frequencies %,2 is simiiar to that of frequencies of small 
oscillations about the stable equilibrium position in a model 
which replaces the trap with a time-independent harmonic 
potential [11, 20, 21]. For low g3, even the size of the 
frequencies agrees well with those obtained in the time- 
independent model, but this approximation would not be 
good enough for use in Fig. 4. 

Since ej = 2 ~ w ( t ) c o s [ Ó j  +~qj(t)] is periodic, t131 has 
period 2~r as a function of the ~j and period ~- as a function 
of t, whence a Fourier expansion 

H31 = Z Ck0~:lk2(I) exp[ i (2k0/+  Ælq$1 +/C2@2)] ' ( 1 5 )  

where the sum is over integer /cd's. For small II] one has 
[22] d ~ d / d t  ~ w'j, which implies that the arguments in 
the exponentials are slowly varying whenever a resonance 
relation 

2k 0 + COlk I q- co2Æ 2 ~ 0 (16) 

holds. The significance of such resonances for the long-time 
behavior of trajectories is well known (e.g., [18, 23- 25]). In 
particular, those resonances for which h 1 and h 2 have equal 
sign (sum resonances) may lead to instability of solutions 
[18, 23, 26]. In Fig, 4, resonance lines for [k~]+ Ik2] < 
8, k z even [27], kt/c 2 > 0 (sum resonances) have been 
drawn in the cq-w2-plane. Dotted curves (closely resembling 
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Fig. 4. On solid lines a relation 2Æ 0 +/~1% + ]C2C02 = O holds. Lines 
have been drawn for sum resonances with Ihll + [k21 < 8, k 2 even. 
Dotted curves show (%, co 2) values belonging to parameters a 3, q3 as in 
Fig. 1, with lowest q3 at lower left end in each curve. Symbols (0) mark 
points where enhanced sensitivity of crystals was found in simulations 
without laser 
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straight lines) mark values ~1,2 calculated from trap voltages 
appearing in Fig. 1. Symbols (0)  mark those frequencies 
which correspond to Iocal minima (as a function of q3, see 
Fig. 1) in the number of stable crystals in simulations without 
laser. Only those with less than 175 stable trajectories have 
been chosen in order to concentrate on the main features 
and because the location of these low minima is determined 
by the behavior of trajectories with initially small I/1,2[, for 
which any frequency shifts caused by H31 are small, cf. [22]. 
It turns out that the frequencies corresponding to minima, 
i.e., relatively unstable crystals, lie close to resonance lines 
( /%,/el , /@ = ( - 1 , 3 ,  0), ( - 1 , 2 ,  2), and ( - 1 ,  1~ 3) [27], i.e., it 
appears that the presence of low-order resonances is reflected 
in the pattern of  minima in Fig. 1, thus explaining why the 
sensitivity of  crystals to displacements from the periodic 
solution depends non-monotonically on trap parameters. 
At this point it should be noted that the explicit  time 
dependence of  the trap field is essential here since in a time- 
independent two-dimensional model  no sum resonances can 
occur. Besides, there is a well-known topological argument 
(see, e.g., [28]) according to which two-dimensional time- 
dependent systems are eligible for a universal instability 
- Arnold diffusion [125] - while two-dimensional time- 
independent ones are not. 

From what has been said above it is clear that the mere 
presence of low-order nonlinear resonances does not allow 
to predict melting of a general laser-cooled Coulomb cluster 
in a Paul trap, but the above results provide a warning 
that trap parameters with increased sensitivity of crystals 
to perturbations might exist. Ultimately, the occurrence of 
melting will also depend on laser parameters [5]. 

In spite of all difficulties in comparing theoreticat and 
experimental results, arising from trap imperfections such 
as asymmetries and contact potentials [5], e.g., the signifi- 
cant non-monotonic dependence of  crystal stability on trap 
parameters found in this paper should be amenable to ex- 
perimental tests beyond the experiments already performed 
in [9]. In particular it would be interesting to confirm the 
prediction of  destabilization at a 3 ~ - 0 . 0 0 3 ,  q3 ~ 0.78 
experimentally. 
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3 C o n c l u s i o n  

Coming back to the questions raised initially, the main 
results of  this work can be summarized as follows. 

* The melting of crystals of two laser-cooled ions in a 
Paul trap can indeed be understood from an enhanced 
sensitivity of the crystals to displacements from the ideal 
crystal solution which is visible already in the Hamiltonian 
system without laser cooling. 
® This enhanced sensitivity in turn is correlated to the 
presence of  low-order nonlinear resonances, as has been 
demonstrated for 11 of the local minima of Fig. 1, whose 
fi-equencies are marked in Fig. 4. But already for the system 
without laser the size of the effect varies strongly for 
different trap parameters, even for the same resonance 
(different heights of  minima in Fig. la,  b, e.g.), which makes 
it plausible that under laser cooling, melting need not always 
take place in the presence of  such a resonance. 

In the present context it is not possible to predict the degree 
of destabilization in the presence of  a given resonance - this 
cannot be done without taking into account the dependence 
of coefficients %&~k2(I) in (15) on action variables I. The 
simple argument given above for the relevance of  resonances 
(namely, the occurrence of  slowly varying arguments in the 
exponentials), clearly does not contain everything known 
today on the complex behavior of nonlinear systems. Further 
work might in particular address the question of overlapping 
of  resonances in the sense of  Chir ikov's  overlap criterion 
[25]. 

This work dealt with the case of  a two-dimensional time- 
dependent system. Higher dimensional ones arise if  more 
than two ions are considered. Another way to generalize 
the problem would be to include higher order contributions 
of  the trap field [29], or to consider an asymmetric trap. 
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