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Abstract. The ultrashort pulse-forming properties of 
lasers are reviewed in terms of the master equation time- 
domain description of mode locking. The pulse shorten- 
ing strengths and steady-state operating characteristics 
of a broad range of modern experimental systems are 
discussed within the framework of the classic slow- 
saturable-absorber and fast-saturable-absorber analyti- 
cal models. 

PACS: 42.55.-f, 42.60.Fc 

In a general sense, one may describe the formation of 
ultrashort pulses in a laser in terms of either the fre- 
quency domain or the time domain. The term mode 
locking comes from the frequency-domain description. 
Any steady-state output of the laser consists of a super- 
position of frequencies (modes) separated by Af  = c/2nL, 
where c is the speed of light, L is the length of the laser 
resonator and n is the effective group-velocity index. In 
the time domain such an output is periodic, with period 
1/Afcorresponding to the round-trip time of the light in 
the resonator. Mode locking implies that the relative 
phases of the modes are held fixed with respect to each 
other. With proper relative phases, the resulting periodic 
temporal output is a train of pulses. To produce short 
pulses, one has to lock modes over a wide frequency 
range. One's ability to make even shorter pulses is ulti- 
mately limited by the overall laser bandwidth and the 
uneveness in mode spacing caused by variations of the 
effective index with frequency. 

In a practical sense, one wants to be able to describe 
analytically how the mode locking occurs and what pulse 
characteristics are produced. Then the frequency-domain 
approach can become intractable. Ultrashort pulses uti- 
lize a very large number of modes; and the mode-cou- 
pling mechanism that produces the locking is generally 
nonlinear and not so easily described in the frequency 
domain. A review of early frequency-domain analyses 
may be found in Smith et al. [1]. Most of our current 
analytical understanding of mode locking comes from 
time-domain theory. 

1 Time-Domain Propagation and Filtering 

Before considering the more complicated, nonlinear and 
time-varying, modulations used in mode locking, let us 
first define the necessary time-domain descriptions of 
linear propagation and filtering effects caused by ele- 
ments in any laser [2]. The two most important of these 
are: (a) pulse broadening by bandwidth limiting in the 
laser, and (b) pulse broadening and chirping by Group- 
Velocity Dispersion (GVD). 

In the frequency domain, the gain changes an incident 
spectral amplitude E(co) into 

I ( E'(o) = l + g  1 ~° 2 j.jE(o~) (1) 

if we assume that the gain is small and that deviation 
from the center of the gain is small compared to the gain 
bandwidth. Then, by Fourier transformation we find the 
output pulse in terms of the input 

[ ( 1")1 E'(t) = l + g  1+ . . ~ t 2  E(t). 
gOg 

(2) 

Similarly, passage through an element with GVD (a 
quadratic phase variation with frequency) produces 

E'(o)) -- [1 - iD(og- COo)2]E(¢o), (3) 

where, again, we assume a small change over the fre- 
quency range. The new pulse in the time domain is 
broadened and chirped. It becomes 

E'(t)=(l+iDad~)E(t). (4) 

Thus, we have two dispersion operators for use in the 
time domain, one real (band limiting) and one imaginary 
frequency dispersive). Next we consider the types of 
modulation that shorten pulses and produce modelock- 
ing. 
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2 Active Mode  Locking 

As an analytical starting point, we consider active mode 
locking. First demonstrated thirty years ago [3], it re- 
mains a reliable method for the generation of short pulses 
when passive methods are not applicable or when phase 
locking to an electronic signal is desired. Time-domain 
theory describing how it works is now well-established 
[2, 4, 5]. An amplitude modulator inside the laser is used 
to provide transmission gating at the cavity roundtrip 
frequency. A pulse, arriving at maximum transmission, 
is passed with relatively low loss. The shorter it is the 
less loss it will experience. Other light in the laser is sup- 
pressed. 

If we consider the pulse E(t)  to be characterized near 
its peak by a parabolic curvature in time (true of Gaus- 
sian or sech pulse shapes), then, for t<<~, 

Upon passing through the amplitude modulator which 
has a transmission 

T = 1 - m(l - cos corot) ~ 1 - m(c%t)2/2, 

the shape of the pulse peak becomes 

E(t) = Eo 1 -  , 

where 

(6) 

1 1 moo 2 
- + - -  (7) 

~.,2 r2 2 

The Pulse-Shortening Rate (PSR), Az/z per pass, 
produced by the modulator, is therefore 

A'C mo)2"c 2 

v 4 
( 8 )  

where we have defined Az as a decrease in pulse width. 
As the pulse gets shorter, the effectiveness of the modula- 
tor (i.e. its PSR) decreases significantly. This is a key 
difference between active mode locking and passive mode 
locking. 

If we restrict ourselves to gain media with long relaxa- 
tion times (solid-state lasers), we can neglect time varia- 
tions of the gain during the pulse and define g as the 
steady-state saturated gain. Figure 1 illustrates how the 
active loss modulation creates a window of gain for the 
peak of the pulse under this condition. In the laser, in the 
steady state, the changes produced by all of the internal 
elements must cancel for each roundtrip. For simplicity, 
and since active mode locking seldom produces pulses 
short enough for it to be a factor, we neglect GVD. Then, 
we can write for active mode locking 

g 1+ 7 ~  - l - m ( 1 - c o s c % t )  E(t) = 0, 
6Og 

(9) 
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Fig. 1. Pulse-shaping loss dynamics for active mode locking 

where l is defined as the roundtrip linear loss, and we 
have assumed for simplicity that the modulator fre- 
quency is exactly equal to the roundtrip frequency of the 
laser. This is a Mathieu equation [6] and has periodic 
solutions. 

If we approximate the modulation as parabolic, as 
done above, (9) becomes the Schroedinger equation for 
a particle in a parabolic well. The solution [2, 4] is a 
Gaussian 

E(t) = Eo exp - ~5 (10) 

with 

1 89 
r - -  - -  - -  ( 1 1 )  

? (Z)g(D m \ m /  

Thus, the pulsewidth varies inversely with the square 
root of the gain bandwidth and the modulation fre- 
quency. We note that this steady-state pulsewidth rep- 
resents the exact balancing of the pulse-shortening rate 
of (8) and the pulse-spreading rate produced by the gain 
bandwidth filter: Az/r = 2g/co2z 2. Including GVD would 
make r 2 complex, increasing its magnitude and adding a 
chirp to the pulse. The effect of modulation frequency 
detuning can also be balanced with a per-roundtrip 
timing delay expressed by the operator tD(d/dt) [2, 4]. 

The predictions of this analytical theory have been 
found to work quite well for solid-state lasers such as 
Nd :YAG [5]. But, care should be taken when trying to 
apply them to actively modulated semiconductor lasers, 
in which fast gain dynamics play a role. There, the model 
of the synchronously-pumped laser [7] should be more 
appropriate since the effective modulation frequency is 
increased by the pulse's self-saturation of the gain. Sta- 
bility problems [8, 9] then also tend to complicate ul- 
trashort pulse generation. 

3 Passive Mode Locking 

Ever since the first picosecond pulses were generated with 
only the help of a passive, saturable-absorber element in 
the laser [10], passive mode locking has been the means 
for generating the shortest pulses. It led to the first sub- 
picosecond pulses [11] and can now be used to produce 
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pulses on the order of l0 fs [12, 13]. In one sense passive 
mode locking is similar in all systems: the pulse inside the 
laser self-modulates itself, more rapidly than would be 
possible with any active modulation. On the other hand, 
the type of element in which this occurs can be quite 
different from one system to another. For purposes of 
analysis, they fall into two classes: fast saturable absor- 
bers and slow. First we discuss the latter. 

4 S l o w  S a t u r a b l e  A b s o r b e r s  

A slow saturable absorber is a lossy element that be- 
comes more transparent with increasing light intensity 
but cannot recover its absorption on the timescale of an 
ultrashort pulse. It favors pulse generation over cw radia- 
tion, but cannot do much shortening on a timescale 
shorter than its own recovery time. Early studies of pas- 
sively mode-locked flashlamp-pumped dye lasers [14] 
revealed, however, that picosecond pulses were in fact 
being generated with dye saturable-absorber elements 
that recovered on a nanosecond timescale. An insightful 
rate equation analysis by New [15] suggested that this 
was made possible by dynamic saturation of the gain. 
The absorber would preferentially absorb the leading 
edge of the pulse; gain depletion would cause loss on the 
trailing edge. Both loss and gain recover in time for the 
next roundtrip. Each time, the wings of the pulse ex- 
perience loss while the peak of the pulse receives gain. 
The modulation dynamics of this process are illustrated 
in Fig. 2. 

When the pulse is much shorter than the recovery time 
of either the absorber loss (la) or gain (g), simple rate- 
equation analysis, in the temporal vicinity of the pulse, 
yields: 

/a(t) = /~exp (-as-~ilE(012dt) (12) 

and 

g(O = giexp -ag  " IE(t) l 2tit , (13) 

where a a and O'g a r e  the effective absorber and gain cross- 
sections, respectively, and l~ and 9~ are the initial (partially 
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Fig. 2. Pulse-shaping gain and loss dynamics for slow-saturable- 
absorber mode locking 

recovered) values of the loss and gain just before the 
arrival of the pulse. Two conditions are immediately 
apparent for successful mode locking: l i > g~, and a,> %. 
The first, which ensures loss for the pulse leading edge, 
generally requires the absorber to recover more rapidly 
than the gain (since, for start-up, the fully recovered 
value of g must be greater than that of/).  The second 
allows the center of the pulse to see net gain. Two experi- 
mental techniques used to help achieve this second con- 
dition are tighter focussing in the absorber than in the 
gain (which actually changes the relative energy densities, 
but the effect is the same), and Colliding Pulse Mode 
locking (CPM) [16], which does the same and increases 
the effective a, by a factor between 2 and 3 [17]. More 
detailed conditions for steady-state pulse stability, which 
depend upon recovery rates and cavity roundtrip time, 
have been given by New [18] and Haus [19]. 

Concerning pulse shortening by these slow-absorber/ 
gain dynamics (see Fig. 2) we note that the depth (ms) of 
the Self-Amplitude Modulation (SAM) depends only on 
the pulse energy and is therefore independent of pulse- 
width. But the speed (curvature) of the modulation is 
determined by the pulse duration since the window of net 
gain narrows proportionally. Within the parabolic ap- 
proximation we have used above, such a modulation 
function can be written r = l-m~(t2/z2). The negative 
change in pulsewidth per pass is obtained from l / r  '2  = 

1/'C 2 +ms/r 2, which gives 

A'c  m s 
- - const. (14) 

r 2 

That is, the PSR due to this shaping effect does not lose 
its strength as the pulse gets shorter. 

The first analytical description of steady-state pulse 
parameters was obtained by Haus [19]. In the steady state 
both gain and loss vary on the timescale of the pulse, so 

I lo a e d 1 
g(t)-la(t)-lo+i~u+ coy dt ~ + tD~ E(t)= O, (15) 

where we have included the timing shift t D and the optical 
phase change needed for closure. The amplitude of the 
gain bandwidth-limiting operator, proportional to the 
net average saturated gain, is most easily approximated 
here by the nonsaturable loss l 0. If both g(t) and/a(t) are, 

in turn, expanded only to second order in i ]E(t)[2 dt, 
- c o  

the closed form solution is 

E(t) = Eo sech 

where 

(16) 

: =  \ l i /  " (17) 
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Here W = ~ Ig(t)12 dt is the total pulse photon density, 

and lo/l ~ is the ratio of DC loss to saturable absorber loss. 
Plugging this solution back into (15) yields equations for 
Eo, t D and ~u. 

The pulsewidth is proportional to the inverse of the 
gain bandwidth, which we note is expected from the 
balance between the constant PSR of slow-absorber 
mode locking and the 2 2 2lo/~ cog spreading due to band- 
width limiting. The result tells us that the PSR is given 
by l~(a a W)2/8, which is proportional to the amount of satur- 
able absorber and to the pulse energy squared. Although 
this analytic theory assumes only small changes per element, 
the results it predicts have been found to compare sur- 
prisingly well to those obtained from more complete nu- 
merical studies of non-perturbational systems [17, 20, 21]. 
The PSR for CPM dye-laser systems is estimated by these 
numerical studies to be in the range of 1-4%. When one 
compares this with the PSR for synch-pumped systems, 
estimated to be in the range 10 - s -  10 -s [22], one appre- 
ciates the strength of slow-absorber mode locking. 

Early experimental work also indicated the presence 
of chirp in passively mode locked laser pulses [23, 24]. 
With the introduction of intracavity dispersion com- 
pensation by prism pairs in the CPM dye laser [25], it 
became possible to study the causes of this in more detail. 
Pulse duration depended not only on the magnitude of 
the GVD in the laser but on its sign, a clear indication 
of interplay between GVD and Self-Phase Modulation, 
SPM. The possible sources of SPM in the individual 
CPM-laser components were then investigated, ev- 
aluated and incorporated into Haus's master equation by 
Martinez et al. [26]. They obtained [26, 27] an elegant 
extension of the sech-pulseshape analytical solution: 

E(t)= Eosech(~),exp[if l lnsech(t/z)] (18) 

which is expressed in terms of a chirp parameter fl as well 
as the pulsewidth r. The variation of r with intracavity 
GVD obtained for the predominant nonlinearities of a 
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Fig. 3. Pulsewidth vs G V D  for different values of  dynamic SPM in 
a passively mode-locked dye laser 

CPM laser is illustrated qualitatively in Fig. 3. It is 
assumed that the SPM is due primarily to a negative 
index change proportional to the absorption decrease of 
the saturable absorber. In the master equation this 
amounts to adding an imaginary term proportional to 
1,(t) in (15) and a dispersion operator as per (4). The 
shortest pulses, and the least chirp, are then found for 
positive (normal) dispersion as expected for soliton-like 
balancing of the two effects. 

The interplay of SPM and GVD can result in pulses 
that are shorter than would be generated by the SAM 
alone, but not by a large factor. Martinez [26] estimated 
the additional shortening to be less than a factor of 2. 
Perhaps an even more important consequence of this 
interplay is the potential instability of the steady state. In 
the presence of SPM, stable oscillation is often not ob- 
tainable with zero GVD or with small values of GVD of 
the wrong sign. This is indicated by the gaps in the 
dashed curves shown in Fig. 3. Thus, it is especially 
important that GVD be adjustable. Several authors have 
studied the complex temporal evolutions of apparent 
pulseshape that can occur. They have been described in 
terms of higher-order soliton effects [28, 29] and have 
been identified as instabilities [30] associated with SPM 
and bandwidth limiting. An additional, wavelength- 
stability criterion has also been derived by Chilla et al. 
[311. 

The theory of slow-absorber mode locking was greatly 
stimulated by development of the cw passively mode- 
locked dye laser [32]. That laser, in turn, has served as a 
particularly good model system with which to test the 
theory, since the response times and optical properties of 
the individual elements could be determined separately. 
It produced the first sub-picosecond pulses [11], spawned 
the CPM technique [16], permitted the adjustable com- 
pensation of GVD with prism sequences [25], produced 
pulses as short as 28 fs [33], and facilitated pulse com- 
pression down to durations of 6 fs [34]. 

The passively mode-locked semiconductor laser [35] 
has become another increasingly important application 
of slow-absorber mode locking. Integrated saturable ab- 
sorbers have been created by defects [35-37] and by 
inhomogeneous excitation with tandem contacts [38-41]. 
The effects of SPM play a strong role in semiconductors 
as do a variety of fast and slow time constants [42] so that 
structures with optimized GVD and bandwidth control 
need to be developed. As they are, monolithic semicon- 
ductor devices will become ever more reliable and practi- 
cal ultrashort-pulse sources. Promising results are now 
being obtained from a variety of monolithic device 
geometries [41, 43]. Semiconductor CPM lasers have 
been made to generate sub-picosecond pulses at repeti- 
tion rates as high as 350 GHz [43, 44]. 

5 Fast Saturable Absorbers 

A fast saturable absorber is an element that responds 
essentially instantaneously to changes in light intensity. 
That is, it can recover its initial absorption in a time short 
compared to the optical pulse duration. Thus, it can 
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Fig. 4. Pulse-shaping loss dynamics for fast-saturable absorber 
mode locking 

produce pulses in a laser without any help from gain- 
saturation dynamics. Figure 4 shows how this works in 
the steady state. The absorber shapes the pulse on both 
leading and trailing edges and discriminates against 
background light between pulses. Rate-equation analysis 
for the loss, in the limit of absorber response r a << ~, yields 

la(t) = /0-TIE(t)[ 2, (19) 

where IE(t)12 is the photon flux density, 7 is the SAM 
coefficient, and we have assumed 71E(t) 2 I<</o. The gain is 
assumed to be approximately constant during the pulse, 
and equal to its saturated level determined by the steady- 
state average power. This is the case for media with small 
gain cross-sections and long upper-state lifetimes. It is, 
in a practical sense, the defining condition for the fast- 
absorber mode locking model. 

6 Real Saturable Absorbers 

For solid-state lasers with long upper-state lifetimes that 
prohibit significant dynamic gain saturation within a 
roundtrip, fast-saturable absorbers are a necessity for 
passive mode locking. But, when they have fast recovery 
times, real saturable absorbers can require either ul- 
trashort pulses or pulses with high intensity to produce 
any sizeable effect. Thus, for many years passive mode 
locking of solid-state lasers was restricted to transient, 
flashlamp-pumped systems in which high intensities were 
achieved rapidly. Theoretical investigations of such sys- 
tems focussed on the selection and evolution of picose- 
cond pulses from noise fluctuations [45-47]. Successful 
experimental application required the selection of single 
pulses during build-up, before higher-order effects took 
over [48, 49]. Of course, pulse durations could not get any 
shorter than the real response times of the absorbers [50]. 

Only recently, with the advent of cw broadband sys- 
tems has it become possible to mode-lock solid-state 
lasers passively, in a controlled way. Semiconductor sat- 
urable absorbers have been used with success in color- 
center lasers [51, 52], in coupled-cavity systems [53], in 
anti-resonant Fabry-Perot devices [541 and in fiber lasers 
[55, 56]. Real absorbers have the advantage of simplicity; 
because of their real lifetimes, however, they have not 
produced the shortest pulses. That has been accom- 
plished with artificial fast-saturable absorbers. 

7 Artifical Fast-Saturable Absorbers 

The fastest optical nonlinearities are reactive and non- 
resonant. The index of refraction nonlinearity in glass, 
for example, has response on the order of a few fem- 
toseconds [57]; and it may be utilized over a wide range 
of wavelengths. Because they are fast, such nonlinearities 
are also relatively weak. Their potential applicability to 
mode locking has been recognized for some time in the 
context of pulsed systems [58-61], but it was not until the 
emergence of fiber and high-power cw solid-state lasers 
that their utility has been fully appreciated. Several re- 
cent reviews document this renaissance [62]. 

Four realizations of artificial saturable absorbers are 
discussed below. In each case, changes of refractive index 
with intensity are converted into amplitude modulation. 
These artificial absorbers have clear advantages over real 
absorbers in that they need not dissipate power (since 
they deflect power out of the laser instead of absorbing 
it) and their operational parameters can be varied experi- 
mentally. The effective small-signal losses they introduce 
and their effective SAM coefficients can be optimized by 
proper choice of lenses, beam splitters and cavity dimen- 
sions. 

8 Additive-Pulse Mode Locking 

The coupled-cavity confguration of Fig. 5 was inves- 
tigated first in conjuction with the soliton laser [63] and 
then discovered to produce mode locking in non-soliton 
systems as well [64, 65]. Its pulse-shaping properties have 
been related to fast-absorber theory and described in 
terms of Additive-Pulse Mode locking (APM) [66-68]. 
Its applications have included F-center [66, 69], Ti: Sap- 
phire [70, 71], Cr:Forsterite [72], Nd:YAG [73, 74], 
Nd:YLF [75, 76], and Nd:Glass [77] lasers. 

The SAM in such lasers arises from the coherent 
interference of a pulse in the main laser cavity and with 
a synchronized pulse returning from the nonlinear auxili- 
ary cavity. The pulse from the auxiliary cavity has ex- 
perienced self-phase modulation which causes the peak 
of the pulse to be shifted in phase with respect to the 
wings. If the wings of the pulses (main cavity and auxili- 
ary cavity) interfere with a relative phase of ~AS (deter- 
mined by the relative cavity lengths), then other parts 
of the pulse will interfere with relative phase ~ = ~U~XAS + 
~NL, where g~NL is proportional to intensity. Pulse shor- 
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Fig. 5. Pulse shortering by nonlinear coupled-cavity APM 
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tening will occur if the interference is more positive at 
higher intensities. The resulting SAM may be thought of  
as due to a mirror with a nonlinear reflectivity, as illus- 
trated in Fig. 6. The magnitude of  its small-signal am- 
plitude reflectivity varies periodically with the difference 
in relative cavity lengths. It may be approximated by [67] 

R = r + L ( 1 - r  2) cos 7 t, (20) 

where r is the amplitude reflectivity of  the coupling mir- 
ror and L (assumed<< 1) is a roundtrip multiplicative fac- 
tor accounting for loss in the auxiliary cavity. Here it 
should be noted that if there is no loss (L = 1) there can 
be no pulse shortening. If  the cavity phase bias is chosen 
so that an increased phase delay produces increased 
reflectivity (i.e. positive ( d R / d ~ ,  then pulse shortening 
will occur. The SAM coefficient may be written [68, 78] 

y = - teL(1 - r 2 )  sin ~r-tBiAS, (21) 

where ~c= gtNL/[E(t)[2 is the effective nonlinear coefficient. 
We note that here, and in the expressions to follow 
below, K is proportional to the length of  interaction as 
well as the intrinsic Kerr coefficient, and inversely 
proportional to the effective mode area. 

Two key aspects of APM are apparent from Fig. 6: 
1) proper bias requires interferometric stabilization of  
the two cavities; and 2) the effect tends to saturate with 
a nonlinear relative phase shift on the order of  re. 

Mediurn I 

P1 Wl W2 P2 

Fig. 7. Pulse shortening by nonlinear polarization rotation, or 
polarization APM 

linearly birefringent phase plates. Characteristically of 
APM, the amplitude transmission through the polarizer 
varies periodically with linear plus nonlinear phase dif- 
ference, as in Fig. 6. In an isotropic medium the two 
polarization components are most conveniently de- 
scribed in terms of  circular polarizations. Then the SAM 
coefficient may be written [68, 78] 

y = - -  ~ -  ( 2 r  2 - -  1) sin 2~/B1AS, ( 2 2 )  

where r/V1 - r 2 is the ratio of  the two orthogonal circular 
polarization amplitudes and % is the nonlinear coef- 
ficient for circular polarization. This SAM coefficient is 
the result of  the difference in nonlinear phase modulation 
between the two modes, so there is always significant 
common mode SPM as well. Since large SPM tends to 
cause stability problems, a figure of  merit M has been 
proposed for the comparison of  artificial saturable- 
absorber systems [68]: 

M -  7 . (23) 
dlo 

For polarization APM this figure is on the order of one, 
much smaller than for coupled-cavity systems, but the 
need for interferometric stabilization is avoided. The 
principle application of  polarization APM has been fiber 
lasers, with demonstrations in both linear [82-86] and 
ring [87-92] cavities. Pulses as short as 38 fs [84] and 77 fs 
[92] have been achieved in neodymium- and erbium- 
doped systems, respectively. 

9 Polarizat ion A P M  

Intensity dependent polarization rotation [79 81] also 
provides a mechanism for artificial saturable absorption 
as shown in Fig. 7. It may be analyzed as an automatical- 
ly stabilized form of APM since it utilizes the coherent 
addition of  two polarizations in the same cavity. If  they 
undergo different nonlinear phase shifts, their combina- 
tion can result in an intensity dependent polarization 
rotation. With a polarizer this is converted into SAM. 
Bias between the polarizations is usually controlled with 

10 Nonlinear Loop Mirror 

The Nonlinear Optical Loop Mirror (NOLM) [93-96] 
may also serve as an artificial saturable absorber. A 
non-50/50 coupler, or an asymmetrically placed gain 
dement  [97], as shown in Fig. 8, provides greater inten- 
sity for one direction around the loop than for the other. 
The difference in SPM of the two directions produces 
interference SAM on the output in a manner similar to 
that of  the APM cases discussed above. It has been 
shown that proper polarization biasing of  the loop with 
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Fig. 8. Pulse shortening by a nonlinear fiber-loop mirror with either 
an imbalanced coupler or an asymmetrically placed gain element 

phase plates, or the polarization-controlling loops shown 
in Fig. 8, can permit use of such a loop in either trans- 
mission or reflection mode [78]. For the example of a 
Nonlinear Amplifying Loop Mirror (NALM) with a 
lumped gain element (power gain = G) the perturbation 
SAM coefficient is [78] 

K 
= - ~ (G-  1) sin 2~r/BIAS, (24) 

where ~c is the effective Kerr coefficient for each direction. 
The figure of merit M of this device is also found to be 
on the order of one [78], so that it has about the same 
sensitivity to SPM-induced instabilities as a nonlinear 
polarization rotation device. 

Following the first passive mode locking of a fiber 
laser incorporating a NALM in figure-eight configura- 
tion [98, 99] a variety of workers have achieved consider- 
able success in generating sub-picosecond pulses with 
both NALM [100-103] and NOLM [104-105] based sys- 
tems. Recently, pulse durations shorter than 100 fs have 
been achieved [106, 107]. 

11 Kerr-Lens Mode Locking 

Dynamic self-focussing [108] has been used with par- 
ticular effectiveness for mode locking bulk-element solid- 
state lasers. Its importance became apparent shortly after 
the observation of self-mode-locking in a cw Ti: Sapphire 
laser [109, 110] which revealed different spatial mode 
parameters under short-pulse operation than under cw. 
Piche [111] suggested that self-focussing might be re- 
sponsible. Cavity designs were developed to enhance the 
lensing effects and utilize them for effective saturable 
absorber action as illustrated in Fig. 9. The technique 
was dubbed Kerr-Lens Mode locking (KLM) by Spinelli 
et al. [112] who demonstrated improved mode locking 
with an aperture appropriately placed in the cavity. Ex- 
cellent results were quickly achieved by a variety of 
groups in both Ti: Sapphire [113-124] and other systems 
[125-131]. In one of these, a microdot mirror assembly 
demonstrates that an artificial saturable absorber can be 
created as a modular unit [121]. Several numerical [111, 
132-134] and analytical studies [135-138, 68] provide 
insight into various characteristics of the process. A rela- 
tionship between SPM and SAM for KLM has been 

L1 L2 Aperture 

Fig. 9. Pulse shortening by dynamic self-focussing, or KLM 

determined analytically [68] and the figure of merit, 
M = ~/51o, under proper design, is found to be about the 
same as that for polarization-APM and NALM systems. 
KLM Ti: Sapphire lasers have produced the shortest 
mode-locked laser pulses to date [12, 13]. 

12 Pulse-Shortening Rate 

Since the amplitude of the pulse-shortening modulation 
produced by a fast absorber is proportional to the peak 
intensity of the pulse, it depends inversely on the pulse 
duration for a given average power in the laser: mr-- 7W/2r.  
The parabolic temporal curvature of the modulation also 
becomes stronger as the pulse gets shorter, just as in the 
slow-absorber case. Together they produce a modulation 
function that can be written T = 1 -  (yW/2z) (/2/Z'2). The 
negative change in pulsewidth per pass is obtained from 
1/r '2 = 1/r 2 + 7W/2r  3, which gives 

Ar 7W 

r 2r 
(25) 

Thus, unlike the case of slow-absorber mode locking in 
which the PSR remained constant, fast-absorber dynam- 
ics produce an ever increasing PSR as the pulse gets 
shorter. A limit is reached, of course, when the absorber 
is completely saturated or when the pulse duration ap- 
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== 
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~../M Active odelocking 

Fast ~ r -/ 
Absorber " ~ / ~  

11"~ 
Fig. 10. Pulse-shortening rates for three different mode-locking 
mechanisms. Dashed curve indicates eventual limiting by pulse 
spreading effects 
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proaches its response time. The downside of  such strong 
shortening for ultrashort pulses is that the shortening is 
very weak initially when the pulse is long. We can see this 
clearly in Fig. 10 where the pulse-shortening rates for the 
different mode-locking mechanisms are plotted illustra- 
tively versus 1/r. This latter aspect has led to problems 
with self-starting in fast-absorber systems. More about 
that below; first we consider the steady-state behavior 
predicted by the master equation [139, 140, 68]. 

13 The Steady State 

For all of  the above fast-absorber systems, we may write 
the master equation for steady-state mode locking as 
follows, 

g d 2 d 2 d 
- - -  + iD - -  + tD --  g l+i~u+ __~ dt 2 dt 2 dt COg 

q 
+ (7-id)lE(t)I~J E(,) = o, (26) 

where we specifically include d, the proportionality con- 
stant for fast SPM. It is generally related, as discussed 

above, to the SAM coefficient 7 by the nature and design 
of  the fast absorber. Remarkably, the analytical solution 
for this equation has the same form [26, 140] as that 
obtained for the slow-absorber case: Equation (18). 

Equations for z,/~ and W are obtained by plugging 
(18) into (26). Figure 1 la, b show plots of  pulsewidth r 
and chirp ,8 as a function of  GVD for a fixed energy co 
and gain bandwidth COg but for different values of  SPM 
(d). Here it is assumed that 3 is positive (positive change 
in index with intensity) as is the case for most femto- 
second nonlinearities in solid-state materials. For zero 
SPM the minimum pulsewidth occurs at zero GVD and 
has a value of  [140] 

49 
ro 7 Wcog 2 (27) 

consistent with a simple balance of  PSR and bandwidth 
limiting. As SPM is increased, the point of  minimum 
pulsewidth moves to negative GVD where the chirp is 
compensated. The GVD value required for fl = 0 is given 
analytically by [140] 

0.) 2 D i  = 0/v)  (o/ ,), (28) 

and at this point again 

r = 41D I /&W = % .  (29) 
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Fig. 11 a--e. Steady-state operating parameters vs GVD for different 
values of SPM in a fast-saturable-absorber system with positive 
index nonlinearity: a pulsewidth; b chirp; ¢ stability parameter 
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It is interesting to note that shorter pulses with chirp can 
be obtained at higher values of IDL, but they are not more 
than a factor of 2.75 shorter than they would be with 
SAM alone [141]. 

The solutions thus predicted by the master equation 
are, as in the slow-absorber case, not always stable. The 
condition for stability is not just that a steady-state pul- 
seshape be produced but that it has greater gain than 
competing cw oscillation. To elucidate this condition we 
plot 9pul~e--g¢~, in Fig. 1 lc. It reveals an interesting con- 
dition: a pure soliton laser (i.e. one without any am- 
plitude modulation) is always unstable. Because the 
soliton requires more bandwidth than cw oscillation at 
the gain peak, the latter will always take over. Even with 
SAM, SPM can drive the system unstable unless suf- 
ficient GVD is introduced at the same time. 

14 Higher-Order Effects 

c) When the changes produced by individual elements 
are large, the pulse may have significantly different dura- 
tions and spectra in different parts of the cavity. The 
ordering of the elements can then be important, par- 
ticularly in the case of strong SPM. A laser operating 
under these conditions has been called a solitary laser 
[153]. The pulse duration may be approximated by [153, 
143] 

3.531D 
r - + ~c~W, (30) 

gW 

where ~ is an empirical constant. The first term, like the 
master-equation result, is consistent with the prediction 
of adiabatic soliton shaping. ; the second term gives the 
increase due to the large periodic changes. Equation (30) 
has shown good correspondence with results obtained 
with lumped-element solid-state lasers [153] and fiber 
lasers [142]. 

The master equation incorporates several approxima- 
tions that are certainly violated by some practical laser 
systems. To obtain accurate operating parameters under 
such conditions, numerical simulations are required [142, 
143]. Nevertheless, we can at least discuss some higher- 
order effects in the context of the analytical model de- 
scribed above. 

a) At high powers the saturable absorber saturates 
fully, so that its modulating effect is no longer linear with 
intensity. It still provides a window of gain for stability, 
but this window becomes flatter and extended in time. 
Soliton shaping can keep the pulse somewhat shorter 
than the width of the amplitude shaping window, but the 
steady-state pulse duration will be longer than that 
predicted by the analytical theory alone. If the peak 
power of the pulse is limited, for example, by the par- 
ticular saturation characteristics of an artificial saturable 
absorber, the single-pulse soliton energy is also limited: 
In fiber lasers this, along with periodic perturbations, can 
cause pulse break-up into multiple solitons [144]. One 
method for increasing the energy obtainable in a single 
pulse is the recently demonstrated stretched-pulse APM 
technique [145]. Finally, in soliton systems, when the 
roundtrip SPM phase shift becomes large, so that the 
cavity length is no longer much shorter than the soliton 
period, roundtrip-periodic perturbations produce pulse- 
width-limiting instabilities and spectral sidebands [146, 
147]. 

b) At very short pulsewidths, Third-Order Dispersion 
(TOD) can be the dominant factor. In the master-equa- 
tion formalism it introduces a third-order time-derivative 
term [148] for which no simple analytical solution has 
been found. Numerical simulations [148, 149] as well as 
experimental evaluations [149] indicate that TOD limits 
pulse shortening and produces asymmetries in shape and 
spectrum. Narrow-band features observed in the output 
spectrum also result from TOD phasematching to the 
continuum [148, 149, 12]. Efforts to characterize and 
compensate for TOD in femtosecond lasers are crucial 
for the reduction of pulse durations below current limits 
[12, 13, 115, 149-152]. 

15 Self-Starting 

Finally, we should note that self-starting is problem 
inherent to fast-saturable absorber systems. As Fig. 10 
illustrates, fast-absorber systems differ significantly from 
active- and slow-absorber systems in that they have a 
very slow pulse-shortening-velocity when the pulse is 
long. In theory, if you wait long enough, a short pulse 
should develop out of any initial fluctuation. In practice, 
this does not always happen. One reason can be dynamic 
gain saturation. When it is significant, only fluctuations 
shorter than a given duration will develop [154]. Another 
reason can be competing pulse-dispersing processes. If 
the pulse does not shorten significantly within a cavity 
mode coherence time [155], it will be dispersed. This sets 
a power threshold for self-starting. Mode pulling due to 
spurious reflections [156] can cause a short coherence 
time, as can spatial hole burning [157]. It has been shown 
[158] that unidirectional ring operation, which reduces 
both spatial hole burning and the effects of multiple 
reflection, greatly facilitates self-starting. Still, there is 
not yet any completely satisfying way to ensure starting 
in all systems. Current methods (other than banging on 
the table) include tilting plates and moving mirrors 
[159-161], adding a real saturable absorber either intra- 
cavity [113] or in RPM mode [118], synch-pumping [63, 
123, 162], regenerative initiation [120], or active modula- 
tion [163]. Each method brings with it trade-offs. Which 
is actually used will depend upon the application. 

16 Summary 

The generation of ultrashort pulses by passive modelock- 
ing is now an advanced and highly sophisticated art. A 
Iarge number of passively mode-locked lasers has been 
developed for different wavelength regimes, different 
power levels, and different applications. All of them have 
somewhat different components, specific design needs 
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and opera t ing characteristics. The purpose  o f  this paper  
has no t  been to discuss all o f  these systems and to docu-  
ment  their characteristics. Ins tead we have tried to illus- 
trate some o f  the c o m m o n  principles by which they 
operate.  We classify each o f  them as either a s low-satura-  
ble absorber  system or a fast-saturable absorber  system. 
Wi th  a master  equation,  per turbat ional  t ime-domain  
analysis we show that  these two classes have characteris- 
tically different pulse-shortening rates as a funct ion o f  
pulsewidth. This affects their steady-state parameters ,  
their starting properties,  and their stability. A l though  
more  detailed, numerical  analysis is becoming in- 
creasingly necessary as these systems are refined and 
pushed to their limits, the classic analytical  analyses o f  
s low-absorber  and fast-absorber  mode  locking cont inue 
to provide valuable insight. 
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