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Abstract. An experimental study of transmission holo- 
graphic optical elements is presented. Several important 
aspects related to the diffractional analysis of these ele- 
ments have been considered. The case of  the spherical 
object wave is analyzed in detail. The emphasis is on 
obtaining the entropy from the intensity distribution on 
an image plane. We use the calculated entropy to locate 
experimentally the position of the best image plane in the 
sense of minimal aberrations for a holographic lens. The 
comparison of experimental and theoretical results is pre- 
sented and good agreement between theory and experi- 
mentation has been obtained. 

PACS" 42.40.Dp; 42.40.Fr 

An evaluation of the imaging quality of classical or holo- 
graphic optical systems is possible by using the diffraction 
theory of aberrations [,1 5]. The diffraction image given 
by an optical system from a point is known as the Point 
Spread Function (PSF), and this optical response function 
can be calculated from the design data [-6]. This is still of 
great use to study the performance of an optical system 
with aberrations. By using this theory, it is possible to 
calculate the light intensity distribution on the image 
plane directly. In the previous papers, we used the diffrac- 
tion theory to address a series of questions including 
intensity distribution in an image plane and its character- 
ization through a series of statistical moments [7] and the 
axial irradiance [-8] of a Holographic Optical Element 
(HOE) in the presence of spherical aberration. Recently, 
the concept of entropy has been used to locate the position 
of the best image plane for a HOE in the presence not only 
of small but also large aberrations [-9]. In this paper, we 
are going to use an experimental optical setup to find 
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out how all these theoretical results can be applied experi- 
mentally. We will begin with a detailed description of the 
experimental setup, and then we will present the most 
relevant results we obtained. 

Let us outline the properties of hologram aberration 
derived by Champagne [-10]. We assume that the HOE is 
located on the XY-plane, and the point source Q(xq, yq, Zq) 
of a spherical wave is defined in terms of the parameters 
Rq, ~q, and/~q, as can be seen in Fig. 1. Here q = r, o, c and 
i denote the reference, object, reconstruction and image 
points, respectively. The recording and reconstruction 
wavelengths are 2r and 2°, respectively. The phase aberra- 
tion A at a point (x, y) in the exit-pupil plane of the HOE is 
given by: 

A(x,y) = ~e(X,Y) - ~i(~,Y) + ['~o(~,Y) ~r(~,Y)], (1) 

where qSq is the phase of a spherical wave: 

2~z 
qsq(x, y) : ~q [,r~(x, y) - Rq].  (2) 

The phase aberration A(x, y) is related to the wave aberra- 
tion W(x, y) according to A(x, y) = (2~/2o) W(x, y) . Us- 
ing (1) and (2), W(x, y) can be written as: 

W = rc -- ri ± #(r0 -- r,) -- [Re - Ri _+/x(R0 - Rr)], (3) 

where/~ denotes the wavelength shift 2e/)or. The geometry 
for calculating the diffraction patterns is shown in Fig. 2. 
We introduce a local coordinate frame X' Y'Z' fixed to the 
Gaussian image point G as origin. The Z'-axis is defined 
by the principal ray which runs from the center of the 
hologram to the Gaussian image point and we choose the 
X'Y'-plane as the image plane, so that (x', y') are the 
coordinates of an image point H in this plane, while the 
coordinates of this image point in the X Y Z  coordinate 
system are (xi, Yi, zi). The intensity of the image in a plane 
normal to the chief ray (the Z'-axis) at a distance z' from 
the center of the H O E may be written as [7] : 

~2 ~s dxdy 2(4) I(x' ,y ';z ')= 1 A(x,y)exp[,iA(x,y;x',y',z')] 
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Fig. 1. Geometry used for the HOE analysis 
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Fig. 2. Geometry used for calculating the diffraction patterns 

for an uniform amplitude A(x, y) = 1 and S being the area 
of the exit pupil where the integration is done. In (4), B is 
the amplitude at the Gaussian image point (x' = y' = 0) in 
the absence of aberrations. Intensity can be interpreted as 
a probability density function, provided that it is ad- 
equately normalized as: 

I(x', y'; z') 
P ( x ' , y ' ;  z ' )  - , (5) 

~ I(x', y'; z') dx' dy' 
A'  

where A' is the integration area in the image plane. For  an 
image plane situated at z' position, we can define the 
entropy of the image formed on this plane as [9] : 

S(z') = - SSP(x ' ,y ' ; z ' ) ln[P(x ' ,y ' ; z ' ) ]dx 'dy ' ,  (6) 
A'  

and numerical calculations are necessary to obtain this 
entropy. In this case, entropy should be interpreted as 
a property of the way energy is distributed on an image 
plane intensity, and, in this sense, entropy gives us 
a measure of the aberrations in the considered plane. The 
lowest entropy plane will be the best image plane in the 
sense of minimal aberrations. In the presence of aberra- 
tions, this plane is different from the plane which contains 
the Gaussian image point. 

I "o- ela e  " ]% 
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Fig. 3. Optical setup used to record holographic lenses 

1 Experimental setup 

An experimental setup was designed that allows for the 
diffraction analysis of HOEs  recorded as off-axis elements. 
Figure 3 shows a simplified scheme of the setup. The laser 
beam is divided into two by a variable separating sheet. 
Using a 40X microscopic objective, one of the beams is 
expanded so that, by using a piano-convex lens, a beam is 
obtained whose degree of collimation can vary due to the 
fact that the lens is mounted on an electronically control- 
led micrometric axial translator that has a resolution of 
+_ 0.1 gm. This will be both the reference beam during 

recording and the reconstruction beam. The second beam 
is expanded using a 40X microscopic objective which 
generates a divergent beam. This will be the object beam. 
The holographic plate is mounted on a rotating device 
which is also controlled electronically and which has 
a resolution of + 0.001 °. Since this device is in turn 
situated on a micrometric precision stage, it is possible to 
obtain a very accurate repositioning of the HOEs. 

In order to analyze the image beam coming from the 
HOE, we use a CCD camera mounted on X Y  mechanical 
micrometric translators, which in turn are mounted on an 
electrically controlled axial movement  system with a sen- 
sitivity of _+ 0.1 gin. With this camera, it is possible to 
obtain images that will be processed subsequently. 

2 Experimental analysis of holographic lenses 

Throughout  the experimental study, several holographic 
lenses were manufactured and analyzed, each with a dif- 
ferent recording and reconstruction geometry. One of 
them was chosen to be used as an example. The holo- 
graphic lens that we selected was recorded through the 
interference of a spherical wave from a point source and 
a plane wave (Fig. 3) in Agfa 8E75 H D  emulsion, using the 
633 nm (2r) radiation of a He-Ne laser of 40 mW. The 
point source for the spherical wave was a pinhole measur- 
ing 25 gm in diameter. Spurious reflections were elimi- 
nated by placing an index-matched absorbing layer 
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Table 1. Recording and reconstruction geometry parameters of the 
lens 

R~ = oo % = 30 ° f i r  = 0° 
R o = 4 0 c m  ~ o = 0  ° r i o = 0 °  
R e =  - 4 1 3 c m  % = 0  ° f l o = 0  ° 
"~'r = 633 nm D = 10.45 mm 

against the glass side of the photographic plate. Polariza- 
tion of the recording beams was perpendicular to the 
plane in Fig. 3, and the usable diameter of the lens was 
10.45 ram. The object wave was an on-axis spherical wave, 
and the reference wave was a plane wave at an angle of 
30 °. The distance between the point source of the spherical 
wave and the center of the plate was 40 cm. We chose one 
of the recording waves as a plane wave in order to simplify 
both recording and reconstruction. 

The exposure level used was 40 gJ/cm 2 with a beam 
ratio of ~ 1. After exposure, the plate was developed in 
a PAACM developer, which consists of a solution of 
Phenidone (0.5 g), Ascorbic Acid (18 g), sodium Carbon-  
ate (120 g) and Methol (2 g) in 1 1 of distilled water. After 
a brief rinse, the plate was bleached without a fixation step 
with an R-10 rehalogenating-type bleach. This bath was 
composed of potassium dichromate (2 g) , sulfuric acid 
(10 ml), and potassium bromide (35 g) diluted in l l of 
distilled water. This processing technique is known to 
introduce small changes in the emulsion thickness [11]. 

Once the lens was processed, the H O E  was reconstruc- 
ted using the setup described in the previous section with 
light from the same laser that was used in the recording 
stage (2c = 2 r  = 633 nm). The lens was reconstructed with 
a - 413 cm divergent beam that was obtained by modify- 

ing the position of the collimating lens shown in Fig. 3. 
Figure 4 shows a recording and reconstruction scheme for 
the holographic lens analyzed. During reconstruction, the 
lens is rotated 180 ° to obtain a convergent image wave. 
This is equivalent to considering that the recording was 
done with a collimated beam and a convergent beam. The 
parameters  of the lens shown in Table 1 are used. 

Using the recording geometry shown in Table 1, the 
aberration coefficients of the holographic lens are the 
following [10] : 

Spherical abberration 
coefficient S = 4.10 x 10-6 cm-3  
C o m m a  coefficient Cx = 2.90 x 10-6 cm 2 
Astigmatism coefficient Ax = - 6.05 x 10-4 cm - 1. 

The maximum aberration-wave values for spherical aber- 
ration, comma, and astigmatism are 3.05x 10-7 
4.10 x 10 -7, and 1.60 x 10 4 cm, respectively. From these 
values, we obtain that the dominant  aberration in the 
recorded holographic lens is astigmatism. 

3 Calculating entropy 

In order to calculate the entropy, experimental diffraction 
figures must first be obtained. Figure 5 shows the experi- 
mental setup that was used to obtain the entropy. Once 
the holographic lens is manufactured and respositioned, it 
is reconstructed as mentioned in Sect. 2. 

On the optical axis of the lens, we find a CCD camera 
(Sony, XC-75CE) which is also mounted on a micro- 
positioning device which allows the distribution of inten- 
sities to be captured in any image plane perpendicular to 
the optical axis. The camera gives us a high-resolution 
image with 752x582  pixels. Each pixel measures 
8.6 pm x 8.4 pm (horizontal/vertical), and this allows us to 
calculate the real size of the image from the number  of 
pixels on the computer screen. The CCD camera is con- 
nected to a computer  with a Data  Translation DT 3851 
digitized card. The image is initially digitized with the 
software package known as G L O B A L  LAB Image. 

[ He-Nelaser ~ D. ~ - ~  

Electronic 
control 

~ pc ~ - - ~  

c c D  T 
camera ~ _~ Holographic 
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Electronic 
control 

Fig. 5. Optical setup used to obtain entropy 
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Since theoretically, we work with a finite-size image 
plane, the size used in the experiment to analyze the image 
should be the same as the one used in the theoretical 
numerical calculations. In order to calculate entropy (and 
subsequently axial irradiance), a total of 22 images were 
captured. The position of the CCD camera was moved 
0.1 cm between the images, covering a total distance along 
the optical axis of 2.2 cm. 

In order to analyze the image, a file was generated 
which contained an M~j squared matrix made up of whole 
numbers whose values indicated the gray level in the pixel 
placed at position (i,j) in relation to a system of Cartesian 
coordinates centered on the upper left vertex of the image. 
A software program has been developed (in Turbo Pascal) 
for data-processing purposes that makes it possible to 
calculate the entropy of each plane image from the 
Mij matrix. 

The first step is to normalize the Mig matrix to one. 
This is done by dividing the value of the gray level stored 
by the maximum value possible, which in this case is 255. 
In other words: 

Mij ~ Wij = Mij/255. 

After normalizing the matrix, we can see that a back- 
ground that is not zero exists which was not taken into 
account in the theoretical calculations and that this back- 
ground is due to noise. 

This background noise is not cummulative, and in 
general, its values are relatively low. One way to suppress 
it is to rescale the image so that Lij = W ~ j -  Mo for 
Wij > Mo and zero for other cases. The value of Mo is 
determined by analyzing the image's histogram. This tech- 
nique is valid when the signal-to-noise ratio is large. 
However, when we analyze planes in which the signal 
noise is low, we do not get good results. In the cases we 
analyzed, this happened when image planes in marginal 
zones were analyzed. 

It is also possible to calculate the FFT  of each image 
plane and to use a filter to eliminate the noise frequencies, 
thereby obtaining a definitive image through an inverse 
Fourier transform. However, we thought that this option 
would be too slow. The option that was used to eliminate 
the background noise R in each image plane consisted of 
calculating the average value ( R )  from the intensity 
found in a square in the dark zone of the image. Once the 
average noise was calculated, the Wij matrix was rescaled 
so that 

Wij --+ Fig = Abs(Wij - (R ) ) ,  

where "Abs" indicates the absolute value of the magnitude 
which is used to make sure that Fir > 0. With this new 
definition, we are using intensity values that are closer to 
the ones used in the theoretical calculations. 

In order to calculate the entropy, it is necessary to 
work with the distribution of probability associated with 
each image plane. The total intensity T for each image 
that is captured is calculated using the following equation: 

N M 

T =  Z Z Fij, (7) 
i = l j = l  
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Fig. 6. Theoretical and experimental entropy with background 
noise 
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Fig. 7. Theoretical and experimental entropy without background 
noise 

where N x M is the total number of pixels in the image. By 
using this value, we can define the discrete distribution of 
probability Pij associated with the corresponding plane 
a s :  

Fij 
PiJ = T "  (8) 

From this distribution, the entropy associated with the 
plane S can be numerically calculated by using the equa- 
tion 

N M 

S = - ~ Z PijlnPij. (9) 
i - l j = l  

Figure 6 shows the experimental entropy obtained when 
background noise is not taken into account and the 
theoetically calculated entropy for the holographic lens 
described in Sect. 2. As can be seen, the value of the 
experimental entropy is greater than the theoretical en- 
tropy obtained numerically. This is due to the fact that 
background noise implies that there is more disorder in 
the image plane, and an increase in the disorder in an 
image implies a greater value of the entropy. However, 
qualitatively, the shape of the two curves and the position 
of the minimum and maximum values coincide. 

Figure 7 shows the entropy obtained experimentally 
when the intensity was corrected for background noise in 
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Fig. 8a-c. Experimental distribution of intensities obtained for (a) 
the relative maximum of the entropy, (b) the first minimum of the 
entropy, and (e) the second minimum of the entropy 

each plane, as was indicated earlier. As can be seen in this 
case, the curves coincide both qualitatively and quantitat- 
ively. This agreement makes it possible to state that the 
entropic function can be used to determine if the correct 
noise filter was used for the image. As was indicated in 
Sect. 2, the lens is essentially astigmatic when this record- 
ing and reconstruction geometry is used. Therefore, the 
lens has two Sturm focal points (Sturm's focals) and the 
circle of minimum astigmatic confusion is found exactly 
half way between these two focal points. 

Figure 8 shows the experimental distributions of the 
intensity obtained using the CCD camera for the positions 
corresponding to the relative maximum and the two abso- 
lute minimums of the entropic function. This proves that 
they correspond to the minimum confusion circle and the 
two Sturm focal points. Figure 9 shows the same figures 
obtained theoretically using the numerical program that 
we developed. 

4 Calculation of axial irradiance 

The next step was to obtain the axial irradiance of the 
holographic lens shown in Fig. 4. To calculate the axial 

Fig. 9a-c. Theoretical distribution of intensities obtained for (a) the 
relative maximum of the entropy, (b) the first minimum of the 
entropy, and (c) the second minimum of the entropy 

irradiance the Mij matrix that was obtained experi- 
mentally was always used. Starting with the level of gray 
for each image plane, we found the corresponding central 
pixel. By appropriately normalizing the gray level, we can 
find the normalized axial irradiance value (Strehl ratio) for 
this plane. Figure 10 shows the axial irradiances obtained 
theoretically and experimentally. As we see, the agreement 
between the two is quite good. Therefore, this method 
makes it possible to obtain the axial irradiance quickly 
and more easily than by using other methods that have 
been proposed recently [12]. 

5 Conclusions 

We performed an experimental study of a transmission 
HOE using Agfa 8E75 HD photographic emulsion and an 
R-10 rehalogenating bleach without a fixation step. The 
diffractional analysis of these elements was investigated 
and the entropy calculated from measurements of the light 
intensity distribution in the image plane. Using the values 
of the entropy, we have obtained the best imaging plane 
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Fig. 10. Theoretical (solid line) and experimental axial irradiance 

for an holographic lens whose dominant aberration is 
astigmatism. The analyses shown in this paper give us 
important evidence about the potential of the use of the 
e n t r opy  for the s tudy of the imaging  qual i ty  in holo-  

graphic systems. Finally, the experimental study presented 
in this paper can also be extended to conventional optics. 
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