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Abstract. The anharmonic potential felt by a single- 
species ions confined in a rf quadrupole trap which results 
from a non-ideal trap configuration and the charge distri- 
bution of the ion cloud is studied. The rf resonance- 
absorption spectra are explained by a Duffing oscillator 
and a representation of the line-shape parameter t/ is 
derived. For ~ > 0.77, the electric signals will exhibit hys- 
teresis. The relation with the anharmonic potential is 
discussed. 

PACS: 29.25; 32.80.Pj; 35.80 

The ion trap has been a fundamental experimental tool for 
precision measurements of the mass energy levels and 
motional frequencies of charged particles and for quan- 
tum physics studies during past decades.. [1, 2]. For most 
precision measurements, it is desirable that the charged 
particles move harmonically under the action of a pure 
quadrupole potential in the trap in order to obtain a nar- 
row, unshifted and distortion-free (usually Lorentzian) 
line shape of signals [3]. An ideal quadrupole trap with 
three flawless and infinitely extended hyperboloid elec- 
trodes supplied with a dc voltage certainly meets this 
requirement. However, for the actual trap electrodes with 
inevitable truncation, holes and defects of mechanical 
fabrication and assembling, a small amount of higher- 
order potentials is necessarily superposed on the do- 
minant quadrupole one. Elaborate adjustment of the 
voltages on the compensation electrodes [3] and the con- 
trol of particle movement quite nearly around the trap 
center can eliminate most of the higher-order potential 
effects. For conventional traps without compensation, the 
existence of a tiny higher-order potential will generally 
result in anharmonicity of the ion motion, and thus line 
shift, broadening and distortion (e.g., hysteresis) of signals. 
Higher-order potentials will surely exist in cylindrical 
[4,5], linear [6-8] and ring traps [9,10], which were 
successfully applied for various studies, but they are not 
our concern in this paper. 

For a single electron trapped in the Penning trap, the 
hysteresis of the anharmonic axial resonance due to the 
practical electrode imperfection and its elimination were 
studied 1~3], the hysteresis caused by the nonlinear relativ- 
istic cyclotron motion was also observed and explained 
[11, 12] and the anharmonicity induced by the presence of 
two different species of ions in a Paul trap had been 
demonstrated by Kajita et al. [13]. Recently, we reported 
on a preliminary observation of the hysteresis of the axial 
resonance of a single-species ion cloud confined in an 
actual Paul trap and gave a qualitative explanation by 
introducing a nonlinear coefficient phenomenologically 
[6]. To our knowledge, no quantitative analysis of the 
anharmonic potential for the ion cloud moving in the 
Paul trap. has been given yet because of the difficulties in 
treating the time-dependent potential and the ion-ion 
interaction. The effects of other ions in the cloud, the 
so-called, space charge, on an ion stored in both Penning 
and Paul traps were extensively investigated by various 
approaches [ 15-19], but the main concern of the previous 
studies was focused on modifications of ion frequencies, 
such as cyclotron and magnetron frequencies in the Penn- 
ing trap [15J and secular axial and radial frequencies in 
the Paul trap [18; 19]. It is anticipated that the potential 
produced by the space charge with a complicated distribu- 
tion, even its average, cannot be inclusively described by 
a pure quadrupole term, and that it should contribute 
somewhat to the anharmonicity. In this paper, we present 
a unified treatment of an anharmonic force which is felt by 
the ion cloud in a non-ideal Paul trap and originates from 
the imperfect electrode configuration and ion-charge dis- 
tribution, and show the relationship between the experi- 
mental signals with hysteresis and the physical parameters 
of interest~ 

1 Extended pseudopotential model with an imperfect trap 
configuration 

Ion confinement in a Paul trap is accomplished by a volt- 
age V = Vdo + V,~cosg?t applied to the electrodes. For 
an ideal trap configuration, this voltage will produce 
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a time-dependent quadrupole potential in the chamber 
[20] 

mr2 2 
~(r ,  z; t) - 

16q 
(az -- 2q~cos Qt)(r 2 --2zZ), 

where m denotes the ion's mass, q the ion's charge, 
a~ = -8qVa~/mr202, q~ = 4qV, o/mr2(22 with ro being 
the radius of the trap's ring electrode, zo = ro/~/2, the half 
distance of the trap's end caps; Va~ and Vao, the applied dc 
and ac voltages, respectively, f2/2rc is the trap's driving 
frequency, r = x/~ 5 + y2 and z are the radial and axial 
coordinates of the trap, respectively. The corresponding 
equation of motion for a single trapped ion is the Mathieu 
equation with well-known solutions [21]. 

In the limit of [a~ [ << I q~l << 1, Dehmelt described the 
motion of a single ion in the Paul trap with 
a pseudopotential model [22]. In this case, the axial dis- 
placement z(t) of the motion is decomposed as: 

z(t) = s(t) + ~(0 = e(t) + 4o(e)cos  o r ,  

where the displacement,/(0,:of,the axial macromotion or 
secular motion is governed by a time-averaged effective 
potential, namely, pseudopotential, and the superposed 
axial micromotion ~(t) is mainly the oscillation at the 
trap's driving frequency. From (1), the expression of the 
pseudopotential in the z-direction can be derived as 

1 
• po(e) = ~ mco/~ze ~, z.q 

with col = ~ f22/~ = ~ f2 a~ + . 

Expanding this inhomogeneous electric field at Z to read 

•Eo ~ 1 632Eo 
EoEZ(t)] = Eo(~) + ~ z~ ,  + 2 V Y z  ~ z=, 

(1) 

1 #SE0[ 43 

4 oz l== , + . . . . . .  , 

we get an approximate expression for the average force 
experienced by an ion in a micromotion cycle 

1 22  [- 3 q f f )C4(L)2  1 (F~(t))a~ --~mQ q~ZL1--(8 +g 

Secondly, if the dc voltage is not equal to zero, it only 
contributes to the secular motion as it is time-indepen- 
dent. The total force controlling the macromotion in the 
axial direction is then deduced to be 

F s F(e) = - mco~ 1 + ~ ~ e, (5) 

(2) 
and the corresponding pseudopotential in the z-direction 
can be integrated as 

qbp(i, = ~q mco~2 I1 + ~ 22z (~o)21 (6, 

with 

3 3 a~ + 2q 2 + 3q~/32 
2,~ - 4 C4f~(a~, q~) = - ~ C, a~ + q~/2 (7) 

The expression for the pseudopotential in the r-direction 
can be obtained in a similar way. 

For an actual quadrupole trap with truncation, holes 
and other imperfections, we follow the approach given by 
Brown and Gabrielse [3] and assume a small octupole 
potential: 

(3) 
A~b=Vdc+ VaoCOsOtC4( 3 ~ )  

2 z-~- Z4 -- 3z2r2 + 

as the leading anharmonic correction, where C~ is the 
expanding coefficient in Lagendre polynomials, which in- 
dicates the scale of this octupole potential. The magnitude 
and sign of C~ depend on the actual configuration of the 
trap and its absolute value is typically between 10-1 and 
10-2 for the trap without compensation E3]. 

Following Dehmelt's approach, the extended 
pseudopotential created by time-dependent quadrupole 
and octupole potentials ~b(r, z; t) + Aq~ is easily derived. 
Firstly, the dc voltage is supposed to be equal to zero and 
the coupling between the z and r directions is neglected 
[3]; then the force acting on an ion in the z-direction is 

Fz(t) = -w-  z(t) 1 cosQt (4) 
Zo 

which produces a macromotion by an equivalent alternat- 
ing electric field Eo [z(t)] cos f2t = - Fz(t)/q superposed 
by a micromotion with amplitude 4o(i)= qEo(i)/mf22. 
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Fig. l. The relationship between the anharmonic coefficient origin- 
ating from imperfect trap configuration and operation parameters 
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It is obvious that this extended pseudopotential has 
not merely been a simple harmonic potential as there is 
a fourth-order term of 5 arisen. Because the pseudopoten- 
tial describes the time-averaged effects of the confining 
voltage over a micromotion cycle, not only the harmonic 
but also the anharmonic term of this pseudopotential is 
related to the operating parameters a~ and q~. From (7) we 
see that the introduced anharmonic coefficient 2z~ is dir- 
ectly proportional to octupole structural coefficient 
C4 and varies with different operation parameters. When 
V~ = 0, 2~ is identical with that for a Penning trap [3], 
For an ideal trap configuration, C¢ is equal to zero and 
the anharmonic term of the pseudopotential vanishes; so, 
the secular motion of the trapped ion is dominated only 
by a harmonic potential. But the motion of an ion in 
a trap with imperfect configuration will exhibit the nonlin- 
ear characteristics which are scaled by 2z~. In Fig. 1, 
a series of curves of iso-~ is plotted, from which it ,can be 
seen that f~ is always positive in the first stability region 
and increases as q~ increases along a certain iso-fi~ line. It 
is worth noting that the iso-f~ lines are valid only in the 
region of [a~l<<[q~[<<l, although they are plotted in the 
whole stability chart. 

2 Nonlinearity resulting from ion charge distribution 

Ion clouds in Paul traps enjoy continuing interest because 
of its high signal-to-noise ratio due to the large ion num- 
ber obtainable. However, this advantage is achieved at the 
cost of unavoidable asymmetric effects dominantly caused 
by the space-charge potential of the trapped ions. A self- 
consistent calculation of the distribution and energy of an 
ion cloud was given by Meis et al. [19]. They started with 
a spherical pseudopotential by means of restricting 
az = - q2/4 and consequently ~oi~ = ~% = oi = Oqz/4. 

Supposing the ion cloud is in thermal equilibrium 
through a heating bath and then, with a Gaussian-like 
spherical distribution as 

n(R) = n(0)exp(-- R2/R~), (8) 

where n(0) = g2/3N/R3 is the central density of the ion 
cloud, R = x / ~  + z 2 is the distance from the centre of the 

space-charge potential without angular dependence and 
obtained [19] 

qN 
@so(R) = 47Ceo~ erf(R/Rc). 

Then, the total effective potential is 

(bt(R) = 'mc°2R2 + 4~oR erf(R/R~), (9) 

2 x 
where the error ~function eft(x) = ~ e x2 dx. 

tn their opinion, the observed secular frequency was 
the mean value of the local frequency corn(R) averaged over 
the distribution (8) to read 

(corn(R)) = { co2i -- [ qZn(O)l#1/meo] } 1/2 

with # = - 0.23. The effects of this charge distribution 
were all converted into the shift in the second-order term 
of the effective potential or the secular frequency. 

In this paper, we concentrate on the motion of an ion 
cloud confined in the Paul trap detected by rf resonance 
absorption with an applied weak detection voltage 
Vdcos ~ot in the axial direction. As every ion in the cloud 
has about the same phase near resonance, the ion cloud 
maintains its distribution in motion. Hence, the motion of 
the ion cloud is similar to the motion of a single giant 
particle along the axis. The forces acting on the ion cloud 
mainly originate from the confining field and the 
Coulomb interaction between the ions. The effect of the 
confining field is approximately described by the 
pseudopotential, while the space-charge potential is deter- 
mined by the ion distribution. Assuming that the centre of 
mass of the ion cloud is at z~, corresponding to a distribu- 
tion n (R, zo) = n(0) e x p { -  Ix 2 + y2 __ (Z -- zc)Z]/R2},  
then the total energy of the cloud is 

U(zo) = ~ qcbt(R)n(R, z~)d3R. (10) 

Because the detection field is weak, the movement of the 
ion cloud along the z-axis is so small that I zol<<Rc is 
satisfied in most cases. By writing the error function 
eft(R/Ro) in powers of R/R~ and performing somewhat 
lengthy calculations, one obtains 

n(O)Nq 2 2 { ~ (_  1)"[(n - 1)!(2n + 1 ) R 2 n + 1 ]  - 1  U(zo) = C + ~ Nmo~Zz 2 + 2~3/2e ~ zo ,,=1 

X 5R 2(n- 1)exp(- R/R2ld3R + .=2 ~ ( -  1)"2[(n -- 1)! (2n + l lR 2"+ 1] - 1  ~z2e2(n-2)exp(_ R2/R2)d3R} 

on(O)Nq2 4 { ~ (_  1)"[2(n 2)'(2n + 1)R~ "+t]  ~R2("-2)exp(- R2/R2)d3R 
_[_ 2 9 3 / 2 8 - -  Zc _ . 1 

~t=2 

+ y, ( -  1)"2[(n - 3)!(2,~ + 1)R~"+l] -~ ~zaR2("-3)exp( - R2/R2)d3R 
n = 3  

+ ,=4 ~ ( -  1)"~ [ ( n - 4 ) , ( 2 n  + 1 ) R Z " + l ] - l y z 4 R Z ( n - 4 ) e x p (  - R 2 / R a c ) d 3 R } +  . . . ,  

trap and Rc is the characteristic radius of the cloud scaling 
its dimension. Meis et al. solved Poisson's equation for the 

where C is a constant not involving zo and all terms of odd 
powers of zo vanish because of symmetry. Calculating 
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these integrals and ignoring divergent infinite series a, we 
obtain 

1 1 n(0)q 2 
U(zo) m C' + 7 Nmco/2z2 - 2 Nm Iff l~ 

mgo 

1 
+-~ N m - -  

with 

#' = ( -  1)" (n - 1)!(2n + 1) 
n = l  

( 2 n -  1)!! 
x 2" 1 - 0.174, 

i 
v = (-- 1)" (n-- 2)!(2n + 1) 

! = 2  

(2n - 3)!! 
X 

The averaging force 
particle is 

F(zo) - 
1 OU(zo) 

N ~zc 

n(O)q 2 
+ - . ,  (11t 

with 

2 co/2 03 c ~ -  

and 

")~c-- 

qZn(O)lg ' l  

mSo 

0.046. 

acting on each ion of this giant 

8 \2-1 

(12) 

(13) 

3n(O)q2lvl 
4me°co 2 (>  0). (14) 

It can be seen that the presence of the space charge not 
only shifts the central frequency coc of the ion cloud from 
the secular frequency coi calculated from the trap potential 
but also yields an anharmonic term scaling with 2~. For 
the operating points with a given co~, the less the ion mass 
m and/or the higher the ion number N, which is propor- 
tional to n(0) for a fixed Rc, the larger the frequency shift 
and 2o. The values of o~ and 2~ can be obtained from the 
operating parameters and n(0) with the method given by 
Meis et al. [19]. 

In practice, the higher-order effects to the motion of 
the ion cloud in a Paul trap are caused by the non-ideal 
trap configuration and charge distribution together, 
which, in first-order approximation, are the superposition 
of these two effects. When the pseudopotential is isotropic, 
the anharmonic coefficient introduced by the imperfect 
trap configuration will become 

3 21 
/~iz = - -  "4 C4L(a=, q=) ~ -- -~ C4. 

They are negligible physically because the displacement  of the ion 
cloud is small  or I zo I c< R c; mathemat ica l ly  zc is but  a vir tual  displace- 
men t  and  we take the limit zo -~ 0 to advance  

Taking this into account, from a similar treatment we get 
the total central frequency and the total anharmonic coef- 
ficient as 

R2 q2n(O)Nul ~ 
coc 2 ~ oi 2 1 -- 21C4 z2 meoco2 /# (15) 

and 

3n(O)q21vl 21 oJi2Rc2 
2or ~ 4meoco~ 4 C4 2 ~ '  (16) 

COcZ 0 

where 2ot is a positive quantity unless C~ > 0, and the 
contribution to the anharmonicity from the trap imperfec- 
tion is larger than that from the ion cloud, in which 2ot will 
be negative. 

3 Measurement of anharmonic effects with rf 
absorption detection 

Under the action of a detection voltage Vdcos cot applied 
to the end caps of the trap, the equivalent circuit is shown 
schematically in Fig. 2 [23]. It follows that the equation of 
motion of the ion cloud, when LoCo parallel circuit is 
tuned to the same frequency as the detecting voltage, is 

/ Z c , 2  ] 

q~c Vd cos cot 

- 2mzo 1 + RfGo' (17) 

where Go = 1/Ro is the resonant admittance of LoCo 
parallel circuit; ~c is included to account for the fact that 
the mean detecting field is not simply Va cos cot/2Zo; the 
damping term is 7 = 71 + 72 with 72 = 2/% and 

= N ¢  qK '~ 2 Re 

71 m \2mzo] 1 + RfG o 

describing the damping of motion due to the collision with 
the residual gas (r; the phase coherence time) and coup- 
ling to the external resistance, respectively. Equation (17) 
mathematically describes the forced oscillation of the 
Duffing equation with damping [24]. 

With an anharmonic term much smaller than the 
driving term on the right-hand side of (17), the forced 
oscillation of the ion cloud described by the solution to 
the equation is still basically harmonic [3], i.e., 

zo = a c o s  (cot - ¢ )  (18) 

with amplitude 

z ~2 /4  
a 2 = a m 

[co _ coot(a)] 2 + 72/4 (19) 

and 

qtc Vd )2 
a2 = 2mZoco7 1 + RfGo] ' 

coot(a) = coot 1 + 2ct • 
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Fig. 2. Equivalent circuit scheme of rf absorption detection 
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Fig. 3. Hysteresis signal of the trapped ions with rf absorption 
detection 

Because the Oct(a) is related to the amplitude of motion, 
the line shape of a 2 is not Lorentzian but possesses nonlin- 
ear characteristics. The motional stability of a single trap- 
ped ion in the presence of a small anharmonic potential 
will generally depend on the magnitudes of the parameters 
a~, q= and the initial position and velocity of the ion. Even 
with a tiny 2ct , an  ion with large values of the initial 
coordinates in the stability region of (a> qz) may escape 
from the trap after some time. This stability dependence 
for a single ion trapped in a new ring trap has been 
numerically studied in [10]. However, for an ion cloud 
consisting of ions which have been stably confined (unsta- 
ble ions excluded), the driven oscillation by the rf detec- 
tion voltage is stable and shows the relationship between 
the motion amplitude and frequency as (19) in our case of 
a minute 2~t. 

The movement of the trapped ion cloud will induce 
a current i = ~cN@c/(2Zo) and consequently, energy ab- 
sorption near resonance. The measured signal 
Y = ]viol - jr1] is the difference between the amplitude of 
voltage Vlo when there is no ion in the trap and that of the 
voltage vl near resonance (Fig. 2). Transforming kinetic 
quantities into electric ones, we get 

72/4 
Y "~ Ym [0,) - -  m~t(a)] 2 + 72/4 , (20) 

with 

1 Va [ 1 _ ( 7 2 " ]  2 ] (21) 
Y m -  2 1 + ReGo \ T /  J" 

The signal is obviously of a line shape similar to a 2. 

Introducing the dimensionless parameter 1/ 
which is analogous to that in [3], 

,~ct Ym(Dct 
r / -  R~ 7 (22) 

it is proved that the line shape of the signal is determined 
by 

4t/2y 3 -- 4tlxy 2 + (1 + x2)y  -- 1 = O, (23) 

with y = Y / Y , ,  and x = 2(e) - c%)/y. When rl approaches 
zero, the line shape reduces to a Lorentzian, but as long as 

Table 1. Critical hysteresis values for different 71 

17 )c A YA XB YB XB --  XA 

10 4.98 0.00 20.01 0.999 15.03 
9 4.80 0.00 18.01 0.999 13.22 
8 4.60 0.103 16.02 0.999 11.42 
7 4.38 0.113 14.02 0.998 9.63 
6 4.15 0.126 12.02 0.998 7.88 
5 3.89 0.143 10.03 0.997 6.15 
4 3.57 0.167 8.03 0.996 4.46 
3 3.20 0.206 6.04 0.993 2.84 
2 2.72 0.279 4.06 0.984 1.34 
1 2.00 0.500 2.13 0.920 0.14 
0.9 1.89 0.560 1.95 0.891 0.06 

I />  4/(3x/3 ) ~ 0.77, the line shape of the signal shows 
hysteresis, a characteristic nonlinear phenomenon as 
shown in Fig. 3. The signal for sweeping the detection 
frequency forwards is along the route of points MCBEN 
but NEADM for sweeping backwards. In other words, the 
detected signal line shape depends on not only motion 
parameters of the ion cloud in the trap and the probing 
conditions but also on the sweeping directions. For  differ- 
ent i/, the critical points A and B for hysteresis and relative 
distance xB - XA between the descending and ascending 
edges are calculated in Table 1. When x = 2t/, the signal 
reaches its maximum value Ym. In addition, the full width 
at half-maximum of y, Ax, is equal to 2. From the meas- 
ured frequencies corresponding to maximum and de- 
scending and ascending edges, one can obtain the para- 
meter t /and the total central frequency coot. 

In our preliminary experiment [14], the hysteresis of 
the rf spectra of N2 + and Ba ÷ were observed. N~ was 
produced by electron bombarding the background gases 
and Ba ÷ (isotope 137) by heating the platinum filament on 
which the Ba(NO3)2 was deposited. We had seen that 
t /and thus £ot for N~ and Ba ÷ were positive and negative, 
respectively, which implied that C4 for our trap was posit- 
ive. For  Ba +, tl increased as the confinement voltages 
Vac and Vao increased under a fixed detection frequency 
co(iso-fiz line) or it decreased as Vac increased under a fixed 
Vao, which was basically in agreement with (7). When the 
number of the ions was changed by selecting a different 
heating current or the time delay between the ion produc- 
tion and signal acquisition, we observed the variation of 



426 

width and height of the hysteresis signals. Though the 
operation points were not selected on a spherical 
pseudopotential  line, the variation of t /with ion number 
could be qualitatively explained by (14). F rom eq (21) and 
(22), we know that the magnitude of q is proport ional  to 
detection voltage Vd and this dependence was noticable in 
the experiment. These experimental results thus justified, 
to some extent, our theoretical analyses about  the origin 
of the anharmonic potential in an actual Paul trap. If the 
values of 72 , R c and total ion number  N can be extracted 
from the signal intensity analysis and circuit parameters  in 
eq (21) are known, 2ct will be evaluated from (22). And 
finally, from (15) and (16) important  information about  
the trap-structure coefficient C, can be derived, in prin- 
ciple, and our model and assumptions can be further 
checked, which all needs experimental verification. 

Conclusion 

The extended pseudopotential expression for a Paul trap 
with an additive octupole potential originating from an 
imperfect trap configuration is derived. Under  the spheri- 
cal pseudopotential operation condition, the nonlinear 
terms of the effective potential for a giant particle 
modeling the ion cloud in a weak probing field are ob- 
tained. For  a single-species ion cloud in an actual Paul 
trap both the imperfect trap configuration and the ion- 
cloud potential are origins of the anharmonicity, which 
manifests itself in the line shape of the rf resonance signals 
of the ions. Therefore, some important  information of the 
trap configuration and ion cloud could be extracted by 
analyzing the features of the line shape. The present study 
will provide some clues for eliminating the anharmonici ty 
and improving the line shape of the signals, which are of 
significance for precision measurements and other ap- 
plications. Furthermore,  it will also furnish another  means 
for studying anharmonici ty and hysteresis, which are 
wide-spread in various fields. 
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