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Abstract. We discuss experimental and theoretical results 
which show that when wavelength-modulation spectro- 
scopy is used to monitor concentration fluctuations of 
gaseous species, greater sensitivity may be obtained if one 
uses high-order detection. We also show that, depending 
on the ambient concentration being monitored, there are 
regions in which the commonly used second derivative 
would show a negligible variation of signal magnitude 
with concentration fluctuations, whereas measurement 
with a higher harmonic would result in a much improved 
signal. Theoretical results for the measurements of any 
transition that can be described by the Voigt profile are 
given. The technique discussed is illustrated by presenting 
the results of measurements of wavelength-modulation 
spectroscopy of lines in the oxygen A band. Different 
detection harmonic orders are suitable for different ambi- 
ent concentrations, and a related criterion that helps in 
the determination of a suitable detection harmonic order 
is given. 

PACS: 07.65; 42.60; 42.80 

Wavelength-modulation spectroscopy has been used by 
many researchers [1-5] in the past to perform sensitive 
absorption measurements. Recent advances in diode laser 
technology have allowed the method to be applied in 
a wide range of environments, and it is expected that, with 
the development of diode lasers in the shorter-wavelength 
region of the visible spectrum, the number of applications 
of this technique will increase even more. 

In addition to being easily tunable, diode lasers are 
particularly suitable for performing modulation spectro- 
scopy, because the band gap and intensity are dependent 
on the injected current, making amplitude and frequency 
(wavelength) modulation particularly simple. When such 
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wavelength-modulation spectroscopy is performed with 
small modulation indices, and detection is performed at 
a harmonic of the modulation frequency, derivative 
spectra are obtained. In particular, second-harmonic 
detection has been utilized quite extensively. While often 
the second-harmonic detection technique is quite ad- 
equate, there are instances in which the use of higher- 
order detection has advantages [6-8]. In this paper, we 
demonstrate experimentally how, when one performs 
higher-order-harmonic detection, the sensitivity with 
which fluctuations around an ambient density can be 
measured is increased. A theoretical treatment which de- 
scribes the behavior of the signal expected, using any 
detection harmonic order, is given for any transition de- 
scribed by a Voigt function. Experimental results are 
given and compared to the ones predicted by theory. 

1 Theoretical background 

It can be shown [1, 2] that the signal (in W cm -2) meas- 
ured using Nth-harmonic detection, when the modulation 
index used is small, is given by 

21 -N 
SN = IoL ~ aSn6gN(v). (1) 

Here, a is the frequency-modulation amplitude (in Hz), 
n (in cm 3) is the absorber density, 6ab, is the length of 
the absorbing path (in cm), integrated absorption cross- 
section (in cmz Hz), and gN(v) (in Hz -(~'+1) is the N-th 
derivative of the line shape function. (This expression 
needs to be modified when the modulation index is not 
small, and the correction terms are given in Sect. 1.1.) 

1.1 Collision-broadened regime 

If the line shape function is a Lorentzian (as in the colli- 
sion-broadened regime, in which AvcoH = no-couV, where 
n is the density, O-coil is the collision cross-section and v the 
relative velocity during molecular collisions), then it is 
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relatively straightforward to show [7,8] that with 
(Y - -  Y0) 2 "-[- (AVcou/2) 2 = y ,  the N-th derivative ~gU/OvS = 
gU is given by 

(Av) (-1)N [ N ] / 2 ~  yN+~ \/fAv'2k 
g~= Z Czk,S[~-) (v--Vo) s-2k, (2) 

k=0 

where [N] = N - 1 if N is odd, and [N] = N if N is even, 
and where 

C e k N = ( - - .  ~ , with =(2k)!(N-2k)!" 

(3) 

It follows then that at line center, %, the signal (when N is 
even) becomes 

aN ~abs 1 
SNL(V0) = (--1) N/2 IoL2 2 

(O.coll/))N + 1 y/N (4) 

(Note that for an odd derivative order, N, the signal at line 
center is zero, but the discussion may be extended to odd 
derivatives by calculating, for example, the magnitude of 
the signal at the first turning point. The subscript L de- 
notes a Lorentzian line. Further, we have used the fact 
that the integrated absorption coefficient is c~ = ffabsg/, 
w h e r e  ~abs is the integrated absorption cross-section.) 
Equation (4) shows that, in the collision-broadened re- 
gime, one expects the signal magnitude to vary as n -N. 
(Strictly speaking, of course, the signal obtained on the 
detector will be proportional to the right-hand side of (4), 
because the latter does not account for the responsivity of 
the detector for example in V W -  ~ cm-  2). 

1.2 Doppler-broadened regime 

Similarly, it can be shown [7, 8] that the Nth derivative, 
g~(v), of a Gaussian line can be written as 

g~(v) = g(v) 1 IN]/2 __ 
F 1 y '  c ~ , N ( ~ ) ~ f v  - ~°)~-2k '  (5) 
~/rc k=0 

where 

C2k, N ( - 1 )  k N! ( - 2 )  u-2k = and 
(N - 2k)! k! 

[ N j = ~ N - 1  for N odd, 
for N even 

and 

9(v) = exp ( - -  ( v ~  Vo)2.~. 
(Av~) ~ J 

Here, AVD is the Doppler width given by 

= 2(_2kTln2) 1/2 
~YD ~ Mc 2 Vo' 

and 

A~D - A vD 
, / 4  In 2 

Hence, for even N, the signal, measured at line center, Vo, 
in the low-pressure Doppler-broadened region (once 

again assuming a small modulation index) is given by 

1 1 1 SNG(VO) = ( --1)N/2/°L21 -NaN~abs  '*/ ~ ~DN+ 1 (N/2)[ " 

(6) 

In the Doppler regime, the magnitude of the derivative 
signal, measured at line center, increases linearly with 
density, as might be expected. 

1.3 Voigt regime 

A more complete treatment of modulation spectroscopy 
should address lines that are given by the Voigt line shape 
function. 

For a Voigt profile, one can show that [7] 

jvN(vo) = 0 for N odd (7a) 

and 

_w _ 2 I(Esl~)-i [-(N-2k-2)/2 
gv (V0)(AYYD)~ ~. k=0 C2k'NL p~=O (DN-2k'pb2P) 

_ 1)(N- 2k)/2 ~ b N- 2k - 1 exp(b 2) erfc(b)-] + ( 
2 3 

+ CN, N ~ exp(b2)erfc(b) (7b) 

for even N. 
Here, the Voigt line shape function gv(V) is given [9] by 

(8), which is written for convenience in a normalized form, 
Ov(V): 

_ y2 
gv(V) dye 

gv(V) = (lffc3/2)(b2/bVo) = o~ (x + y)2 + b 2, (8) 

A Vcoll OY0 
b - (9) 

2AVD AvD 

and 

Y0 - -  y 

x = _ (10) 
AVD 

In the equation for the Nth derivative of the Voigt line 
shape function (7b), 

(--1)kN! 1 1 2N k (11) 
C2k,N -- (N - 2k)! 2 k k! 

and 

~--~/~ [2(4q_ 4 - i1]! 1 (12) D2q, i z ( - 1 )  i -i (q - 1 - i ) !  

Equation (7b) is derived from 

dy e-Y2 
~v(X) D - ~ e [ y ° ] ,  (13) . /  

where 

D = (x + y)2 + b 2 (14) 
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and the operator 5a[y  m] is defined by 

- f [ y " ]  = ~ dye-Y--~ymo (15) 
D - a o  

Hence, an alternative way to write (7b) is 

c~xN - Sy lk~= ° c2k,.,~Y ; .  (16) 

The strength of the Nth derivative signal of a Voigt line, 
measured at line center v = Vo, can then be obtained by 
substituting (8) and (7b) into (1). The proofs of (2), (5) and 
(7) are relatively easily obtained in the following manner. 
For the Lorentzian and Gaussian profiles, the repeated 
derivatives are seen to form a recognizable pattern. Once 
this is found, a formal proof by induction follows. For the 
Voigt profile, a similar procedure is followed except that 
the pattern is discerned after a repeated integral, derived 
from (15), is evaluated. A formal proof by induction then 
gives (7a) and (7b) above [7, 8]. Note that while (2) and (5) 
are valid for all v, (7a) and (7b) apply at line center, v = v0. 
Note also that (7b) should reduce to (5) and (2), respective- 
ly, when the latter two are evaluated at line center, in the 
limits that b ~ 0 and b ~ Go, respectively. This is relatively 
straightforward to show [10].) 

1.4 Corrections due to finite modulation index 

Equation (1) is valid in the limit of small modulation 
indices; in other words, one would get pure derivatives of 
the line shape functions only for small modulation indices. 
in practice, however, one needs to use finite modulation 
indices and therefore has to account for correction terms 
that appear. It can be shown by following the approach of 
Myers and Putzer [2] that the corrected terms for a Voigt 
signal can be written as 

SCv = SNOv 1 + (m)2C 22cd!(N + E) T 
t = l  

/ v ' [N+2d] /2 I  " 649 [ - , ,N+2¢-2k] \7)[  
[ Z.~k= 0 "~2k,N + 2d ~'z" yk3' 

x (    Nve 7;q • (17) 
\ Z . ,k= 0 "~2k,N~Z'yLY J 

Here, m is the modulation index, given by m = a /Av  D. 
Hence, for example, the signal with the first-order correc- 
tion term included, in an experiment employing second- 
harmonic detection, can be obtained by using d = 1 in 
(17): 

S2Cv~-S°v 1-~ 12 

Co + c2,,,s,D 2] + °] 

Similarly, the absorption signal (for a Voigt line shape 
function) with corrections up to second order is given by 
using d = 2 in (17), and so on. Note that (17) can be 
evaluated explicitly since the correction terms are 
weighted higher pure derivatives, and these latter terms 
can be obtained by using 7(b). 

2 Sample numerical results 

The results of some computations for signals at line center 
for second-, fourth- and sixth-harmonic detection using 
(7b), (17) and (1) are shown in Fig. 1. fit is clear from (17) 
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Fig. la -e .  Computed signal magnitudes, for Voigt line shape func- 
tions, at the line center for second-, fourth- and sixth-harmonic 
detection; signals corrected for finite modulation index distortions 
(m = 0.8). Note the vertical scale is in units of (IoL#/~ 3/z) (2/a~ouv) 
(21 -N/N!) m N. (a) Second-harmonic detection with corrections up to 
third order. (b) Fourth-harmonic detection with correction terms up 
to second order. (e) Sixth-harmonic detection with correction term 
up to first order 
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1st Order Correction in 2nd Derivative 
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Fig. 2a-c. Computed sensitivities, of signal magnitudes at line 
center to density fluctuations; derivatives of signal magnitudes with 
respect to the parameter b. The vertical scale is in units of 
(IoLg/g 3/2) (2/aconV) (21 -N/N!) mN; (a) Second-harmonic detection; 
(b) fourth-harmonic detection; (e) sixth-harmonic detection 

that the signal corrected for finite modulation index, m, 
must depend on the latter. In Fig. 1, we have used a value 
of m = 0.8.] These results have been computed using the 
Voigt line shape function. Note also that the signals are 
plotted as a function of the parameter b, given by (9); for 
the conditions of our experiment, namely a fixed temper- 
ature, b is directly proportional to the density n, since 
ZJVcoll = nOcollV. It is seen from these figures that the be- 
havior of the signal is as predicted by (4) and (6), being 
directly proportional to density in the Gaussian regime, 
and falling as n -N in the collision-broadened region. Note 
that we have denoted the turning points of the signal 
(plotted against b) as b~,N. Defining n~,N = b6,N/acollV, it 
follows that the sensitivity of measurement of a density 
fluctuation around n0,N, using Nth-harmonic detection, 
will be small. On the other hand, if the detection harmonic 
is changed then the sensitivity will be increased. (Clearly, 
this only applies over a certain range of N values, because 
other experimental effects would come into play that 

Table 1. Computed variation of bo, N with modulation index 

Modulation ba,2, corrected ba,4, corrected b0,6, corrected 
index m to second order to second order to first order 

0.1 0.552 0.374 0.300 
0.2 0.555 0.375 0.301 
0.3 0.560 0.376 0.302 
0.4 0.565 0.378 0.303 
0.5 0.575 0.382 0.306 
0.6 0.582 0.387 0.309 
0.7 0.595 0.392 0.313 
0.8 0.608 0.395 0.320 
0.9 0.620 0.402 0.328 
0.99 0.632 0.406 0.340 

could result in a deterioration of the signal-to-noise ratio 
as N is increased.) This is shown in Fig. 2, which shows the 
derivative of the signal measured with respect to b, and 
hence the density n for N = 2, 4 and 6. Moreover, by 
definition of b0,2, the derivative of the second-harmonic 
signal with respect to b is zero at b~,2, the derivatives of the 
fourth- and sixth-harmonic signals are non-zero at ha,2, 
and vice versa. 

It is seen by using (17) that when corrections for a finite 
modulation index are included, the values of b~,N and n0,N 
change somewhat. We have computed these values for 
modulation indices up to 0.99 and assuming a Voigt line 
shape function. Table 1 shows the values of bo,N that 
would be obtained if one incorporates corrections due to 
a finite value of m, the modulation index. From (17), it is 
seen that in order to obtain corrections up to second order 
for Nth-harmonic detection, one needs to evaluate O N for 
N = N, N + 2 and N + 4. Hence, the second-order cor- 
rections in b~, 2 and ha,4 require a computation of 0v ° and 
08 respectively; the first-order corrections to ba,6 require 
the computation of jv s. The uncorrected values for b0.2, 
b6,4 and bo ,6  are ba,2 = 0.550, ba,4 = 0.370 and 
ba,6 = 0.300. Hence, it is seen that the density at which the 
signal at line center peaks, for a given order of harmonic 
detection, varies with m. It should be pointed out that the 
discussion given above regarding the sensitivities to den- 
sity fluctuations remains unchanged because the values of 
bo, u for different values of N all increase monotonically 
with the wavelength modulation index, m. 

3 Experimental results 

Experimental measurements of the oxygen A band (the 
rotational lines in the 0 e - 0  vibrational rung of the 
b lN~+--X3Zg  low-lying electronic transition) RR 
(15, 15) line, at various derivative orders, were taken by 
using an apparatus that has been described previously [6]. 
Figure 3 shows the results for pure 02.  The results are 
given in a normalized form, such a formulation being 
more illustrative when one considers percentage changes. 
The normalization is done so that the peak values of all 
the curves correspond to unity. (In practice, the magni- 
tudes of the curves have to be multiplied by (2 t -NmN)/N!.) 
One sees that the predictions of the theory above are 
borne out experimentally. For  example, Fig. 3 shows that 
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Fig. 3. Signal magnitudes at RR (15, 15) line center vs 02 concentra- 
tion for second-, fourth- and sixth harmonic detection. For conveni- 
ence, all the signals have been normalized so that the peaks corres- 
pond to unity. The effective normalization factor is (21-N/N!)mN 

the variation of the signal, with respect to density in the 
collision-dominated region, is higher for higher deriva- 
tives (the factor 1/n N in (1).) l i t  should be pointed out that 
in Fig. 3 we are displaying only the magnitudes of the 
signals - from (4), (6) and (Tb), the sign of the signal is given 
by ( -1 )  N/2, as is depicted in Figs. la-c.]  

The above experimental results show that the sensitiv- 
ity of derivative absorption spectroscopy in the collision- 
broadened regimes can be increased, over given ranges of 
n, by increasing N. This is illustrated further in the experi- 
mental results shown in Fig. 4, which shows the absorp- 
tion signal due to the RQ (13, 14) oxygen line (this line is 
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centered at 13153.4219cm -1 and has a strength of 
5.521 x 10 .24 cm 2 molecule-t  cm-1 [11]) in air, at vari- 
ous concentrations of 02 measured in the second and 
sixth derivatives. In this measurement, air was evacuated 
from and pumped into the chamber in order to ensure that 
the relative densities of the constituents were constant. 
(The concentration of oxygen is 0.21 x 2.7 x 1019 cm -3 at 
the zero of the horizontal scale, it is 0.22 x 2.7 x 1019 cm-3 
at A n =  1%, it is 0.20x2.7 x 1019cm -3 at An = - 1%, 
etc. Such measurements are of interest in several applica- 
tions, for example in monitoring and optimizing the per- 
formance of combustion-driven wind tunnels, by varying 
the relative concentrations of the fuel). It is clearly seen 
that the slope of the sixth derivative signal is larger than 
that of the second derivative signal. 

Small concentration variations around an ambient 
value can be measured from the magnitude of the signal 
by using higher detection harmonic order even when the 
concentration is such that one would not obtain any 
changes in the magnitude of the signal at lower orders. 
The experimental results shown in Fig. 4 illustrate this. 
These results show that the second-derivative (harmonic) 
signal magnitude exhibits a low sensitivity with respect to 
the density changes around the operating pressure under 
consideration (because one happens to be at a concentra- 
tion close to n~, 2 - i.e. the value of the density where the 
second-derivative (harmonic) signal is stationary with re- 
spect to density fluctuations), whereas the sixth-harmonic 
signal is highly sensitive to concentration changes in this 
range. 

4 D i s c u s s i o n  

We have shown that when wavelength-modulation spec- 
troscopy is used, the signal increases linearly with densit- 
ies, peaking at densities given by n~,N = b~.N/aoonV, after 
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Fig. 4. Percentage change in signal magnitude at line 
center vs percentage change in oxygen concentration, 
around n~,2 (air was used in the chamber, and the 
relative concentrations of constituents were fixed) 
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which the signal magnitude falls approximately as n - s .  
The densities no, N serve to delineate the effective Doppler 
regime from the effective collision-broadened regime, and 
these densities can be evaluated for detection with any 
order harmonic (Table 1). 

This behavior of the measured signal allows one to 
obtain greater sensitivities in measurements of density 
fluctuations when using higher-harmonic detection. It 
is also seen that when monitoring density fluctuations, 
by measuring the magnitude of the signal at line center, 
around n~,N, one should avoid using Nth-harmonic detec- 
tion. For  example, one would want to avoid using second- 
harmonic detection to monitor fluctuations of density 
around no,2; at these densities, one would want to use 
higher-harmonic detection. Extending this discussion, it is 
seen that, in order to measure the variations o f  density 
around concentrations correspondin 9 to n~, N, one should use 
a detection harmonic other than N.  

Since the sensitivity of a detection technique depends 
on the signal-to-noise ratio and not just the signal itself, 
the ultimate choice of N will depend on aspects such as the 
noise environment in the particular experiment, and the 
dynamic range of the phase-sensitive measurement appar- 
atus. As one goes to higher-harmonic detection, the band- 
width required by the phase-sensitive electronic detection 
system increases. One also has to ensure that the overall 
noise at this frequency does not negate any advantage that 
would otherwise be obtained. In practice, the latter is 
relatively easily satisfied in the case where the modulation 
frequency is relatively low and, in fact, in many situations 
where 1 I f  noise dominates, one would actually obtain 
a reduction in the noise and, hence, an increase in the 

signal-to-noise ratio just by operating in the higher-fre- 
quency domain. Nonetheless, ultimately, the most suitable 
order would have to be determined experimentally. The 
results of the present work, however, show that one could 
use a diode laser sensor to measure fluctuations of concen- 
trations, in a large range of practical interest, if one 
chooses the detection harmonic order carefully. 
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