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Summary 

This paper describes a mathematical model for analyzing progressive failure 
in a stratified and jointed rock mass dipping parallel to the slope face. The rela- 
tionship between the necessary support forces and permissible displacement in the 
rock mass is discussed. An analytical expression is provided for the minimum re- 
quired support force corresponding to a critical displacement. This expression is 
used to evaluate the potential of unstable failure propagation. The effect of time 
on progressive failure is considered by using a simple rheological model for joints. 
A case study, involving an excavation in a stratified medium, is used to compare 
model prediction with monitored performance. 

1. Introduction 

Sliding of stratified and jointed rock is often accompanied by internal 
deformation leading to a non uniform shear stress distribution along the 
discontinuity planes, which causes the development of progressive failure. 
Once strain softening behavior of overconsolidated clays became known, 
it was a logical extension to consider the mechanism of progressive failure 
in stability analysis of earth and rock slopes (Skempton ,  1964; Bishop,  
1967; M/i l ler ,  1966). Probably, the first and most complete description of 
progressive failure has been given by Bj er r  um (1967) for overconsolidated 
clay shales sliding along surfaces striking parallel to the slope. This was 
followed by successful approaches to analyze the mechanism as described 
by B j e r r u m  (Mfil ler  and M a l i n a ,  1968; C h r i s t i a n  and W h i t m a n ,  
1969; Sukl je ,  1971; P a l m e r  and Rice,  1973). However, these studies are 
based on some restrictive hypotheses and do not take into account the de- 
pendency between permissible displacements on the one hand and the re- 
quired support forces on the other hand. This interaction is considered by 
D e s c o e u d r e s  and G e n c e r  (1979) employing a numerical approach and 
physical model tests. 

This paper constitutes an extension of this earlier work (see also 
Gence r ,  1982). The interaction between the required support forces and 
displacements is discussed. An analytical expression is given for the mini- 
mum required support force. It will also be shown how this minimum 
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force can be used to evaluate the unstable propagation of failure in a 
stratified rock mass dipping parallel to the slope face. 

The mathematical model is verified by applying it to an actual excava- 
tion and comparing observed and analytically predicted displacements. 

2. Mechanism of Progressive Failure 

A stratified and jointed rock mass is shown in Fig. 1. It is assumed 
that an excavation is made down to the depth H and that failure occurs 
along the bedding plane passing through the base of the excavation. Accord- 
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Fig. 1. A stratified and jointed rock mass dipping parallel to the slope surface, initial 
equilibrium and possible shapes of the sliding mass after excavation 

ing to Rank ine ' s  hypothesis the stability of the slope can be defined by 
considering the equilibrium of a unit slice (Fig. 1). Initially the only shear 
stress existing along the bedding plane is that due to gravity 

=TH sin fl cos/3 (1) 

where 7 is the unit weight and the other parameters as shown in Fig. 1. It 
is assumed that the slope is stable before excavation and ~ is smaller than 
peak shear strength. The lateral forces Q0 acting at both sides of the slice 
are equal and opposite, they are thus uniformly distributed inside the rock 
mass. This force represents, e.g., the lateral stresses remaining in a over- 
consolidated soil mass after the removal of the overburden pressure by 
erosion. In the case of rock slopes, Q0 is related to the global influence of 
geological history (action of tectonic forces, overburden pressure of glaciers, 
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overconsolidation of sedimentary rocks). An excavation will affect a rela- 
tively small zone within the rock mass compared to its geological dimen- 
sions. Thus for practical purposes, the uniform distribution of Q0 in that 
zone before excavation is a reasonable assumption. Uniform distribution of 
Q0 means it does not affect the equilibrium of the individual slice; therefore 
stability can only exist if the driving force (i. e. mobilized shearing resistance) 
is smaller than peak shear strength. This justifies the assumption made above. 
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Fig. 2. Variation of the shearing resistance with displacements for rough rock joints 

The removal of this lateral support force Q0 by the excavation will 
cause a redistribution of the stresses inside the rock mass. The failure is 
initiated somewhere along the bedding plane where shear stresses exceed 
the peak shear strength. This lateral unloading will cause the rock mass to 
move towards the excavation by sliding along the bedding plane. Since 
rough joints and some filled joints typically follow a strain-softening be- 
haviour (as shown in Fig. 2), increasing displacements will lead to a reduc- 
tion of shearing resistance from peak to residual. Therefore failure will prog- 
ress along the bedding plane up to a point where the mobilized shear 
stresses are less than the shearing resistance. 

The initiation and progression of failure will depend on the magnitude 
of the lateral force Q0, on the lateral deformability due to the cross joints 
and most significantly on the shear stress-displacement behaviour of slope 
parallel joints (parallel to sliding plane). As pointed out by B j e r r u m  (1967) 
the rate of decay of the shear strength and the value of residual shear 
strength with respect to the initial shear stress T due to the gravity, play a 
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very important role in the progression of failure. If the residual shear strength 
"rr is greater than l :=7H cos fi sin fl (the dip angle of the bedding plane is 
less then the residual friction angle) the failure will stop at a certain distance 
from the face of excavation when the removed natural force Q0 is entirely 
redistributed along the bedding plane. 

On the other hand if vr is less than "~ (the dip is greater than the residual 
friction angle), a given size of rock block will continue to slide downhill 
under the effect of the gravity. This will cause the reduction of the natural 
force Q0 at a certain distance from the excavation face. Failure is initiated 
again at this point and the size of sliding block will increase continuously. 
This unstable progression of failure may be prevented by replacing the re- 
moved force Q0 with a relatively modest support force before the excessive 
displacements occur in the rock mass ( D e s c o e u d r e s ,  1974). 

3. Mathematical Model for Progressive Failure 

The simplified geometry of a layer in a stratified rock mass dipping 
parallel to the slope surface which will be considered in the analysis is 
shown in Fig. 3 a. The layer is divided into identical individual blocks (the 
weight W is the same for all blocks) by a set of cross joints and the lateral 
force Q0 acts perpendicularly to the cross joints, as mentioned before. 

~" ~.o 

a J' ~ / N  

Fig. 3. Simplified geometry of the rock mass 
a) Initial distribution of the forces 

N = W cos  

7o:Wsin 

Before excavation each block is in equilibrium without displacement, 
i. e., the forces Qi between blocks are all equal to Q0, and the component 
of gravity weight parallel to bedding plane is compensated by the shearing 
resistance To mobilized on the bedding plane (Fig. 3 a): 

To = W sin ft. (2) 
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It is assumed that To is less than the available peak shear strength on 
the bedding plane. Each block is then initially stable. 

The excavation is simulated either by gradually reducing the initial 
force, i. e., a support force Q1 less then Q0 is applied (Fig. 3 b) on the first 
block or by imposing a progressively increased displacement Ul to the same 

Pi = q i + l  - Qi § W 

Fig. 3 b) Distribution of the forces a~ter excavation 
Fig. 3 c) Equilibrium of a single block 

5i, ~-Ti 
0 

block. In both cases a new distribution of displacements and forces occurs 
within the layer. As Q1 in further reduced (or ul increased) the number of 
blocks affected by this operation increases. 

Different force-displacements relationships describing the behaviour of 
joints can be taken into account. The simplest relation between Qi and 
displacements is linear (Fig. 4a). 

Q~ = Q0 - K• (u~ - u~-l) (3) 

ui, u~-i are displacements of neighbouring blocks, K~ is the normal stiffness 
of cross joints. A bilinear relation with two different normal stiffnesses 
K~, K~ '  or a hyperbolic relation with variable stiffness as defined by Go od-  
man  (1974) can also be used in the modes (Fig. 4a). 

The variation of the shear force with displacement for each block is 
shown in Fig. 4b. Four parameters are necessary to describe the complete 
behaviour; T~) and Tr are respectively peak and residual shear strength, K, 
and K** are shear stiffnesses. 

u~ < up T~ = To + K8 u~ 

u~ < ui < Ur Ti  = T ,  - K 2 "  (u~ - up) (4) 

u~ > ur T~ = Tr 
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uv and Ur represent the displacements corresponding to peak and residual 
shear strength. 

The algorithm representing the motion of blocks is similar to the ap- 
proach developed by C u n d a l l  (1971), relying on dynamic relaxation, which 
will be briefly explained: 
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Fig. 4. Force-displacement relationships of joints 
a) normal deformability; b) shearing behaviour 

The forces acting on a block i are shown in Fig. 3c. These forces vary 
with displacements according to the relations defined above. The resultant 
force Pi is obtained from the equilibrium of the block. 

Pi = Q / + l  - Q i  + w s in  fl - T~ (5) 

The equation of motion for a block is given by the second law of 
N e w t o n :  

d g ui 
p~ = m dt~ (6) 

where m is the mass of a block, t represents the time. 
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Since a dynamic equation is used, the blocks-will be continuously mov- 
ing under the effect of the resultant force. The oscillations will occur due 
to the kinetic energy being developed in the block system. In order to 
ensure the convergence of displacements to a steady value equal to that of 
the static equilibrium an additional damping force Ri, acting on each block 
opposite to P~, is introduced. The equation of motion is written as follows: 

where 

d E Ul 
Pi - Ri  = m at 2 (7) 

Ri =/~ v~ (8) 

s is a damping constant and vi is the velocity of a block. The physical 
analogy of the model may be illustrated as follows: Assume that P~ rep- 
resents a spring force which varies with displacements 

e~ = - s  m (9) 

s is a equivalent spring constant corresponding to the global stiffness of a 
block. The Eq. (7) becomes the equation of motion of a parallel spring 
dashpot system 

d 2 ui d u~ 
m ~ + s ~ + su~ = 0. (10) 

The damping constant considered here is an artifical one. The goal is 
to reach a static equilibrium state where the velocities, the forces Pi, Ri  are 
equal to "zero" for all blocks. The integration of the equation of motion 
with respect to time is accomplished in time iteration steps (see Appendix). 
This is called dynamic relaxation, a numerical procedure to solve static 
problems with dynamic equilibrium equations (Ot te r  et al., 1966) is used. 

4. Interpretation of the Results 

Characteristic curves as used in the analysis of underground openings 
are used to present the results. The variation of the force Q1 which is re- 
quired for equilibrium is related to the displacement of the first block. A 
typical result is shown in Fig. 5. Two principal cases (curves 1 and 2 in 
Fig. 5) can be distinguished: 

Case 1: The residual shear strength Tr is higher than T o = W  sin fl 
(curve 1). The necessary support force vanishes after a certain amount of 
displacement uz. In other words the progression of failure is stopped when 
the natural force Qo is completely distributed in the layer and taken up by 
shearing resistance along the bedding plane. This case will not be further 
pursued since it is inherently stable. Nevertheless the displacements may be 
of interest. 

Case 2: Instability may occur if Tr is less than To (Curve 2). Three dif- 
ferent zones in the Q l - u l  diagram (Fig. 5) have to be considered: 
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Fig. 5. Typical curves "support force Ql-displacement" for different shearing resistance- 
displacement behaviour of the bedding plane 
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(a) The necessary support force decreases with displacements towards a 
minimum value Qlmin corresponding to an optimal mobilization of the 
shearing resistance along the bedding plane. The displacement at Q1 
is the critical displacement ///lmin. Propagation of failure is stable up to 
this point. 

(b) The support force increases more or less rapidly with increasing dis- 
placements depending on the post peak behaviour of the bedding plane 
shearing resistance. In this domain the propagation of failure becomes 
unstable but it is still possible to stop it by increasing the required 
support force. 

(c) The displacement reaches a limit value denoted by Uli m where a gener- 
alized failure occurs in the layer. The residual shear strength is mo- 
bilized everywhere and the final support force Qlim depends on the 
length of layer, i. e., on the number n of blocks. 

Qlim = Q0 + n (W sin fl - Tr) (6) 

Physical model tests have been carried out by D e s c o e u d r e s  and 
G e n c e r  (1979) to simulate progressive failure. The experimental support 
force displacement relationships are similar to those computed with the 
numerical model and shown in Fig. 5 (see D e s c o e u d r e s  and Gence r ,  
1979, Fig. 12). The existence of a minimum of support force and a limit dis- 
placement causing the failure of the entire layer was verified with these 
physical model tests. 

Parametric studies were conducted on a large number of cases in which 
Kn, Ks, Ks':', T~, Tr and the force Q0 were varied, typical results are shown 
in Fig. 6 from which the following conclusions can be drawn: 

Unstable propagation of failure does not always occur even if the resi- 
dual shear strength Tr is less than To. This depends on the combina- 
tion of parameters introduced in the analysis. 

Specifically: 
1. The progression of failure is accompanied by differential displacements 

between blocks. They must be sufficiently large (low values of Kn) to 
make the mobilization of peak shear displacement possible when the 
initial normal forces between blocks are reduced. 

2. The potential of unstable failure propagation will increase with ratio 
Qo/T~. The individual influence of Q0 and T~ is shown in Fig. 6e and f. 
As expected unstable failure propagation does not occur for low values 
of Q0 and high values of T~0. Thus, there is no failure for the extreme 
case T~ = oo (elastic shear behaviour Curve 1 in Fig. 63) or relatively 
high Tp (curve 3 in Fig. 6e). 

3. The potential for unstable failure propagation also increases with rapid 
decay of shear strength (high values of Kd:, as illustrated by curves 3 
and 4 in Fig. 6c). If Ks* decreases the shape of shear strength-dis- 
placement relations tends toward curve 2 in Fig. 6d representing a 
stable case (T~0 = Tr and Ks': =0). 

19 Rock Mechanics,  VoI. 18/4 
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The progression of failure in the layer is illustrated in Fig. 7. The distri- 
bution of the shear forces and displacement is shown for three different 
levels of displacements imposed on the first block; the displacements cor- 
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Fig. 7. Progression of failure (shear stress and displacements of blocks) 
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respond to points A, B, and C in Fig. 6d. The failure is initiated in the first 
block for a displacement corresponding to point A. Increasing displacements 
lead to the reduction of shearing resistance under the blocks down to its 
residual value and the failure advances progressively in the layer. 

5. Criterion for Unstable Failure Propagation 

The initiation of unstable failure propagation occurs for a critical dis- 
placement Ulmin corresponding to the minimum support force Qlmin. The 
values of Ulmin obtained from support force - -  displacement curves can be 
related to shear forces in the shear force displacement relationships. The 
critical displacement Ulmin is practically equal to the displacement u* (Fig. 5) 
where the mobilized shear strength is reduced to the value of To. It is in- 
teresting to notice that this critical displacement depends only on the shear 
behaviour of the bedding plane (Figs. 6b and 6c) and does not depend on 
Q0 and K,, (see Figs. 6a and 6f), where Kn and Q0 are varied but Ulml. 
remains constant. 

From the parametric studies it is evident that the magnitude of Qlmin 
is influenced by the shear stiffnesses Ks, Kd: and the lateral force Q0. Several 
attempts have been made to establish a relationship between these param- 
eters and Qlmi.. Fig. 8 shows a relation between two dimensionless ratios 

d Q/Tp" and Kn (K~+Ks*) where 
K, Ks* 

d Q = Q 0 - Q l m i n  represents the difference between the initial force 
Q0 and Qlmin. 

T j =  T p - T o  is the shearing resistance available beyond that re- 
quired to compensate the component of the weight 
To = W sin/3. 

Kn (Ks+Ks*) 
is the ratio representing parameters describing the K.~ Kd ~ 
deformability of joints. 

The points in Fig. 8 are determined from parametric studies and are fitted 
visually with the heavy curve; the dash-dotted curve shown in Fig. 8 can 
be expressed analytically as 

aQ (11) Tp' - -  ~ 

K,z (Ks + Kd t) ] 1/2 
where o~ = K, K* 

The minimum support force Qlrnin can  then be obtained from Eq. (11) 

Q1 m,n = Q0 - Ts0'. ~. (12) 

The relation (12) can be used to determine the stability of an unsupported 
slope after excavation. Setting Q l m i n = 0  in Eq. (12) leads to the following 

Qo = Tp'. oc. (13) 
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This expression gives the minimum lateral force Q0 which would cause un- 
stable failure propagation. The same expression may be written in terms 
of a safety factor: 

Tp r 
Fs = Q ~  " o~ (14) 

Fs must be greater than unity for a stable slope. 
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Fig. 8. Relation between bedding surface properties and minimum support force 

Eqs. (12) or (14) depend on a number of parameters that need to be 
determined. Parameters Ks, K?", K,, and T~ can be obtained from shear 
tests on rock joints. However while T~, Ks and Kn are usually measured 
when conducting direct shear tests this is not so for Ks*. Thus information 
on Ks '~ is not or only to a limited extent available in the literature ( G o o d -  
man,  1969; K u l h a w y ,  1975). The determination of the lateral ("Tectonic") 
force Q0 is somewhat problematic; stress measurements in situ would have 
to be conducted, and this often near the surface (Rocha  et al., 1966). 

Relation (14) for Qlmin can also be obtained by considering the energy 
balance of the system (Gencer ,  1982). The shaded area in Fig. 9a represents 
the work Je-Jg done by the shear force over displacement u*. Jc is the 
total work due to the shear force and Jg represents the work done by 
gravity. The quantity of the relevant elastic energy Jq due to the reduction 
of lateral force Q0 is shown as a shaded area in Fig. 9b. The latter repre- 
sents in fact the energy stored in the layer during its geological history. It 
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is transformed into work performed by the shear force during the move- 
ment of blocks. 

Equilibrium requires that both quantities must be equal 

Jc -Jg =Jr (15) 
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Fig. 9. Determination of the minimum support force with an energy approach 

The total stored energy in the layer is given by: 

J0 = Q0~. (16) 
2Kn 

If J0 is less than Jc -Jg ,  stored energy is not sufficient to cause initiation of 
unstable propagation failure. 

6. Effect of Time on Progressive Failure 

Throughout  this presentation the effect of time was neglected. However 
the reduction of the shearing resistance along the bedding surface is usually 
a function of both displacement and time. 

The actual time dependent behaviour of rock discontinuities is not well 
understood and a simplified rheological model will be used here. 

The forces acting on block i at time t are shown in Fig. 10a. The 
shear force Ti is assumed to be time dependent while the interblock forces 
Q~ vary only with displacements (see Eq. 3). The rheological model, shown 
in Fig. 10b, is a modified form of the Kelv in ' s  viscoelastic model. The 
shear force T~ has two components. Ts, representing the instantaneous value 
which depends only on displacement of the block, and Ta which changes 
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linearly with respect to the velocity of the same block. At time t the shear 
force Ti is obtained from the equilibrium of a b]ock i. 

T~ = Q i + l  - Q i  - W sin fl (17) 

(1 

t = t r  b 

"la 
D P 

vi u i 

Fig. 10. Time dependent model for shearing behaviour of a rock joint 
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Fig. 11. Variation of the support-force with displacements different amounts of elapsed 
time (for time dependent shearing resistance) 
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The value of Ts is computed according to Eqs. (4) and the time depen- 
dent component is obtained simply as follows: 

T~ = Tr - Ts. (18) 

The velocity of the block is obtained from 

Ta 
v~ (t) = - -  (19) 

where  ~ is the coeff ic ient  of viscosity.  The  displacement  of block i at t ime 
t + A  t is g iven by 

u{ (t + A  t) = ut (t) + v~ (t) �9 d t (20) 

where At is the time step. Eqs. (17) to (20) are applied to each block by 
increasing the time steps. As before, the lateral force Q0 is reduced to a 
value Q1 but now the distribution of the forces and displacement can also 
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Fig. 12. Time displacement curves for different constant values of applied support pressure Q1 

be obtained with respect to time. The results of an example are presented 
in Fig. 11. (Q1 is plotted versus u, for different amounts of elapsed time). 
The displacements increase rapidly with time when the applied force Q1 is 



284 M. Gencer: 

o 

o 

~o 

o ~ 

~o 
E 

t~ 

g 

o 

o 

I~ ~ "' S~ 4 

I ~ 

o 

0 

'I ~ o~ 

1 
0 

i i i I I I 1 

[w ]  4)d~ 0 

o 

.= 

= 

O 

k) 

0 
~-~ 

u = 

0 



Progressive Failure in Stratified and Jointed Rock Mass 285 

less than the minimum support force Qlmin. For this case tertiary creep like 
behaviour is reached as illustrated by Fig. 12, which shows the variation of 
the displacements with time for different values of Q1. For Q1 greater than 
Qlmin the displacements reach a finite value, while failure occurs for sup- 
port forces below Qlmin. 
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Fig. 14. Typical behaviour of clay sheared parallel to the bedding case study 
(From Burland et aI., 1977) 

The time dependent support force-displacement curves in Fig. 11 may 
be used to determine the optimum time of support application. Assume that 
the initial force Q0 is completely removed by excavation and the support 
is applied after a some amount of elapsed time. The support force will 
vary in time with increasing displacements at the excavation face. This 
variation is expressed by the following linear relationship: 

Q1 = C (Ul - ut). (21) 

where C is the stiffness of the support (e. g. anchor cables), u~ represents 
the displacement for a given time. This displacement u~ is obtained from 
the intersection of the time dependent support force-displacement curves 
(Fig. 11) with the ul axis. For example the line 1 in the Fig. 11 represents a 
support applied after 25 hours. (The slope of that line corresponds to the 
support stiffness which in this case is taken equal to Kn). The final support 
force is ahnost equal to Qlmin. Line 2 represents the same type of support 
applied after 50 hours. It is still possible to stabilize the excavation, but the 
final support force is greater than Qzmin and located in the zone of unstable 
propagation of failure (The dashed curve represents the time independent 
support force-displacement curve described previously). Line 3 corresponds 
again to the same type of support applied too late (no intersection point 
exists with the time independent Q t - u l  relationships). The support force 
will increase until an eventual rupture occurs in the support. 



286 M. Gencer: 

o 

o 

@ 
r 

I~--- ~--~~,~ ~ 
0 

W 

o~ 

L ~~ I 
I ~ I 
L_ ~-J 
L _  g 

o 

o 



Progressive Failure in Stratified and Jointed Rock Mass 287 

7. Case Study 

The progressive failure model was applied to the case study by Bur-  
l and  et al. (1977) which describes an excavation of about 25 m in the highly 
overconsolidated Oxford Clay at Saxon Pit in England. 

The Oxford Clay is horizontally bedded and its most obvious structural 
features are near vertical major joints. The underlying formation consists of 
Kelleway Sand and Clay, and limestone (Fig. 13). The process of excavation 
was carried out in steps A to G which lead to a stepwise reduction of 
in situ horizontal stress in the surrounding ground. In each step the clay 
mass moved as a block, that is the displacements were almost equal at the 
excavation bottom and at the ground surface. Over thrusting relative to 
lower beds occurred by sliding along a shear band which developed pro- 
gressive failure as the maximum shear stress exceeded the peak shear strength 
along bedding planes near the pit base level. The exceptionally brittle be- 
haviour of intact specimens (taken near the base of the face) when sheared 
parallel to the bedding, is shown in Fig. 14. ( B u r l a n d  et al., 1977). 

Instrumentation was installed to measure displacements both at depth 
and near the surface. The observed behaviour can be summarized as follows; 
the release of horizontal stresses at the face of the excavation induces shear 
stresses some distance away from the face. As the face advances the shear 
stress at a given location increases until it reaches the peak shear strength 
along the bedding planes. Relative displacement is then initiated and the 
shearing resistance drops to a residual value. 

To compare the observations with the progressive failure model, the 
clay mass was discretized into 33 blocks (Fig. 15). The first blocks were re- 
moved progressively to simulate the advancing excavation face. Only hori- 
zontal displacements are considered since those reflect the dominant be- 
haviour. 

Parameters describing the shear behaviour of the bedding planes near 
the pit base were obtained from the shear tests shown in Fig. 14. However 
since the horizontal in-situ stress and the horizontal Young ' s  Modulus of 
the clay mass had not been measured, they had to be estimated: 

It is realistic to assume that for such a highly overconsolidated clay 
the stress ratio K0 (horizontal stress to vertical stress) is greater than one. 
On the other hand K0 should be less than 3.3 corresponding to the value 
of the passive earth pressure coefficient calculated for average values of ef- 
fective shearing resistance of clay (r  ~ c ' = 8 0 k N / m  2) obtained from 
drained triaxial tests ( B u r l a n d  et al., 1977). This range of 1 <K0 <3.3 pro- 
vides an estimate for the in-situ stresses. 

A linear relationship between behaviour horizontal stress and displace- 
ment is assumed: 

2 ( u l - 1  - -  u*) 
~rh = (rho- EI~ h-~ + h (22) 

where ui-i,  u~ and li-1, li are the displacements and width of two neigh- 
bouring blocks respectively, En is horizontal Young ' s  Modulus, r is the 
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in-situ horizontal stress before excavation defined as 

ano =K0 7 H (23) 

where 7 is the unit weight of soil and H the height of excavation. 
In Fig. 16 different values were assumed for the initially unknown pa- 

rameters K0 and En. The results are compared with the displacements mea- 
sured by inclinometers I3 and I4 and at surface reference point 29 (see 
Fig. 15). Fig. 16 shows the comparison of calculated and observed hori- 
zontal displacements as a function of distance between inclinometer I3 and 
the advancing face. The shaded area in Fig. 16 represents the observed dis- 
placements at the surface and near the base level. The first results obtained 
with a constant value of En are unsatisfactory. The slope of the curves in- 
crease significantly as the distance to I3 becomes smaller. This is probably 
due to the opening of the major joints which causes a significant reduction 
of the horizontal Young ' s  Modulus. Thus a hyperbolic relation, as pro- 
posed by G o o d m a n  (1974), which describes the deformation of the joints 
with no tensile strength under normal loading, is used to represent the 
horizontal deformability of the clay mass due to the opening of major joints; 

du 
an = (rno vine --/1 u + ~no. (24) 

Where zlu is the relative displacement between two adjacent blocks 
and vmc is the maximum closure of the joint. Fig. 17 shows the results ob- 
tained for different values for vmc. The joint block model provides a satis- 
factory representation of the observed behaviour of the excavation. 

8. Conclusions 

The proposed mathematical model can correctly simulate the mechanism 
of progressive failure in a stratified and jointed rock mass. Support forces 
required to ensure stability vary with the displacement at the excavation face. 

Unstable failure propagation is initiated for a critical displacement Ulmin 
corresponding to a minimum support force. For displacements greater than 
this critical value the required support force increases until failure occurs 
in the rock mass. 

The critical displacement Ulmin depends only on the shear force-displace- 
ment behaviour of the discontinuities (bedding plane) while the minimum 
support force depends on the initial state of stress, the stiffness parameters 
describing the shear behaviour and the normal deformability of joints. An 
analytical expression for the minimum support force was developed which 
can be used to evaluate safety against unstable failure propagation. The 
effect of time on progressive failure can also be included. 

A case study showed that the model is adequate. Even though no mea- 
sured values were available for some parameters there was good agreement 
between measured and calculated displacements. 

Since the model is essentially one dimensional and slope parallel strata 
have to be assumed a number of further developments are desirable; these 
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include extension to two dimensions, and considering more complex geo- 
metries of stratified and jointed rock masses. 
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Appendix 

The integration of the equation of motion with respect to time is carried 
out for each block as follows: 

1) The resultant force P~ (t) acting on a block i at time t is derived from 
the Eq. (5). 

2) The damping force Ri (t) is calculated by the relation 

dui (A1) Ri (t) = k~ dt 

where k~ is the damping constant or coefficient of viscosity. 

3) The final resultant force to be considered in the equation of motion is 
defined 

Fi (t)= Pi ( t ) -  Rt (t). (A2) 

d 2 ui 
4) The equation of motion Ft ( t )=m ~ (m is the mass of the block) 

is integrated by finite difference technique, the velocity v~ and the dis- 
placement ui of the block i at time t + d t  are calculated. 

v~ (t + AI t) = v~ (t) + F~ (t) d t (A3) m 

u~ (t +A t) = u~ (t) + v~ (t +A t) - A t (A4) 

zl t is the time increment. 

The calculation cycle 1 to 4 is repeated for all blocks at each time 
iteration step defined by At. The static equilibrium state is reached by 
increasing the time until the velocities and the resultant forces of all blocks 
converge to "zero" and their displacements remain unchanged. 

The integration parameters At and ~: must be chosen adequately in 
order to assure the numerical stability, for the case considered in this work 
the following condition must be held for dt .  

~/[  m l 
A t_< ~ (A5) 

where Ks is the normal stiffness modulus. The damping constant s is 

20 Rock Mechanics, Vol. 18/4 
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chosen as a fraction of the critical damping of a parallel dashpot-spring 
system 

= 2 [ V ~  (a6) 

where [ may be chosen between 0.6 and 0.9. 
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