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In this paper we describe a combinatorial method of computing intersection indices of 
divisors on the moduli space of curves with marked points. The corresponding generating 
function is the logarithm of the partition function for some (new?) matrix model. By Wit- 
ten's conjecture [i], this partition function must be a T-function for a hierarchy of 
Korteweg-de Vries equations (see [2]). 

i. Notations. Let the integers g, n satisfy the inequalities 

g ~ O ,  n ~ O ,  2 - - 2 g - - n < O .  

Let Mg,n be the moduli o~bispace of nonsingular complete complex curves of genus g with 

n distinct marked points xl, ..., x n. Let Mg,n denote the Deligne-Mumford compactifica- 

tion [3]. Recall that Mg,n is the moduli space of connected complete curves with distinct 

marked points that satisfy the following conditions: 

a) all singularities of the curve are simple selfintersections; 

b) the marked points are nonsingular; 

c) all components of the nonsingular affine curve obtained by removing the marked 
points and the selfintersection points are of hyperbolic type (i.e., have negative Euler 
characteristic). 

Let f£(O, i = i, ..., n denote the linear bundles over Mg,n, where the fiber of fC(O 

is the cotangent space to the curve at the point x. Consider a sequence of commuting sym- 
bols T o , Tl, .... Let d I, ..., d n be nonnegative integers whose sum equals dimcMg,n = 3g - 

3 + n. Let <~d~ "-" Tdn> denote the intersection index 

f i i  c~,~(O) , /G xdi 

.~Ig, h i:=l 

t i 
and let F(to, t I .... ) = 2 <T'o~"TI~ "" "> "/=o hi! a formal series in the variables to, t I ..... 

2. The Main Result. Let A be an N × N positive definite Hermitian matrix, where N 
is arbitrary, and let d~A(X) denote the measure on the space of N × N Hermitian matrices 

given by the density 

const × exp (--Tr X2A/2), 

l where the constant is chosen from the condition d~A(X) = i. Then for t i = -(2i - i)!! × 

TrA -(2i+I) the series F(t0, t I .... ) is an asymptotic series for log (S exp(£--[/6 × Tr 

X 3) dDA(X)), when A ÷ +~. There exists a universal, not depending on N mapping 

h Q [x .  x3, x5 . . . .  l - ~  Q [ l l ,  l a, 15 . . . .  ] 

such t h a t  f o r  any po lynomia l  P, 
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l p (Tr X, Tr X ~ . . . .  ) d~A (X) = I (P) (Tr A- ' ,  Tr A -~ . . . .  ). 

3. A C o m b i n a t o r i a l  Model f o r  Mg,h = By a band g r a p h  we s h a l l  mean a f i n i t e  u n d i r e c t e d  
g r a p h  ( p o s s i b l y  w i t h  l o o p s  and m u l t i p l e  a r c s )  in  wh ich  f o r  e a c h  v e r t e x  t h e r e  i s  f i x e d  a 
c y c l i c  o r d e r  on t h e  s e t  o f  e d g e s  e n t e r i n g  t h e  v e r t e x .  Fo r  e x a m p l e ,  any  p l a n a r  g r a p h  i s  
a u t o m a t i c a l l y  a band g r a p h .  To e a c h  band g r a p h  t h e r e  c o r r e s p o n d s  an o r i e n t a b l e  s u r f a c e  
w i t h  b o u n d a r y :  one has  t o  r e p l a c e  e d g e s  by l o n g  o r i e n t e d  p a p e r  s t r i p s  and g l u e  t h e s e  a t  
v e r t i c e s ,  o b s e r v i n g  t h e  c y c l i c  o r d e r .  A band g r a p h  can  be a l t e r n a t i v e l y  d e f i n e d  as  a 
finite set X together with two permutations sl, s 2 of the elements of X such that x~ is 
an involution with no fixed points. X is the set of orientations of the edges of the graph, 
s~ is the change of orientation, the vertices correspond to the orbits of the permutation 
s2, and the components of the boundary of the surface correspond to the orbits of the permu ~ 
tation sls 2. Let X 0 and X~ denote the set of vertices and the set of edges of the graph, 
respectively. A graph with a metric is by definition a graph in which to each edge there 
is assigned a positive number (its length). To each band graph with a metric one can asr 
sociate a noncompact surface with an almost everywhere defined flat metric; this surface 
is obtained by glueing to each side of any edge x e X of the graph a strip ]0, I (x)] × 
[0, +~), where I (x) is the length of x, and identifying the infinite sides of the strips 
for neighboring edges. On this surface there exists a unique complex structure compatible 
with the Riemannian metric; the surface can be obtained by removing a finite number of points 
from a complete complex curve. 

Fix numbers g and n as in Sec. i. Let Mg,nC°mb denote the orbispace of equivalence 
classes of connected band graphs with a metric, with the property that each vertex is en- 
tered by at least three edges, and the corresponding surface with boundary has genus g and 
a boundary with n components, labeled by the numbers i, ..., n. On Mg,nc°mb there is a 

natural topology: if the length of a graph edge that is not a loop tends to 0, then in 
the limit one obtains a new graph with a contracted edge. Mg,nC°mD consists of finitely 
many open cells, which correspond to distinct combinatorial types of graphs. The dimension 
of such a cell is equal to the number of edges of the graph. The cells that correspond to 
graphs in which any vertex is entered by exactly ~ edges have maximal dimension, namely, 
6g - 6 + 3n. Let p~, "'', Pn denote the sequence of the perimeters of the boundary com- 
ponents of the corresponding surface. Thus, we constructed mappings from Mg,nC°mb into 
Mg,n (the complex structure described above) and into R$ (the functions Pl ..... Pn)" 

From the results of Strebel (see [4] for n e 2 and [5] for n = i) one derives the follow- 
ing 

comb into Mg × R~ is a homeomorphism. Assertion. The resulting mapping from Mg,n ,n 

4. BU(1) c°mb BU(1) c°mb is defined to be the orbispace of finite sequences of real 

numbers (l I ..... In) , n~1, l~0, where two sequences are identified if one is obtained from 

another by a cyclic permutation. In other words BU(1) c°mb is the moduli space of connected 
band graphs with a metric, with the property that each vertex is entered by exactly two 
edges and the connected components of the boundary of the corresponding surface (cylinder) 
are enumerated. BU(1) c°mb is the union of the increasing sequence of subsets 

B U  com~j (i)<N = {(l~ . . . . .  l~) [ ~ < n <  N}. 

On e a c h  BU(1)~NCbmb one can  i n t r o d u c e  a n a t u r a l  t o p o l o g y ,  and BU(1) c°mb i s  endowed w i t h  
t h e  i n d u c t i v e  l i m i t  t o p o l o g y .  The mapping  

is proper on BU(1)~NC°mb. Over BU(1) c°mb there is a fiber bundle whose fibers are homeo- 

morphic to $I; specifically, the fiber over the point (11, ..., In) is the boundary of the 
n-side polygon whose side lengths, in increasing order, are 11 ..... l~. It is not difficult 
to show that the total space of this fiber bundle is contractible, and hence its base is 
homotopy equivalent to BU(1) z~CP~. 

Let ~ denote the natural mapping of Mg,n c°mb into [BU(1)c°mb] n which sends each band 
graph with a metric into the n components of the boundary of the corresponding surface. 

5. Compactification. The mapping • is an embedding into [BU(1)~NC°mb] n for N large 

enough (to the extent to which this is possible in the world of orbispaces). Let M--g,nC°mb 
denote the closure of the image of % 
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Assertion. Mg,n c°mb is homeomorphic to M'g,n × Hi, where M'g,n is the quotient 

space of Mg,n with respect to a certain equivalence relation, the fundamental class of 

Mg,n goes into the fundamental class of M'g,n, and the SZ-bundles associated to(oi are 

induced under the map q from [BU(1)c°mb] n. 

The aforementioned equivalence relation on Mg,n is as follows: two stable curves with 

marked points are regarded as equivalent if there exists a homeomorphism between the curves 
that is complex-analytic on the components containing the marked points. 

6. The Chern Classes on BU(1) c°mb. Let tl, t2, ... be a sequence of variables. Let 

ak(t) denote the k-form ~ d t ~ / ~ d t ~ / ~  . . .  / ~  d t~ .  Choose the following coordinates on 

BU(1)comb:  p ,  t 1 . . . . .  t n ,  w h e r e  p = l 1 +  . . .  ~- l ,~ ,  t~ : l J p .  

LEMMA. The f o r m  ~ = k ( t )  = k!  × a 2 k ( t  1 . . . . .  t n _  l )  i s  c o r r e c t l y  d e f i n e d ,  c l o s e d ,  and  
k r e p r e s e n t s  t h e  c o h o m o l o g y  c l a s s  c~ 

" C o r r e c t l y  d e f i n e d "  m e a n s  t h a t  

a )  a 2 k ( t  1 . . . . .  t n -  1) = ~ 2 k ( t =  . . . . .  t n )  i f  t l  + . . .  + t n = 1;  

b) a2k(tl, ..., tn_ 2, O) = a2k(tl, ..., tn_1). 

comb Let ~ (resp. ~) denote the projection of Mg,n c°mb 7. A Poisson Structure on Mg,n _ 
- comb) onto R~ which sends each band graph with a metric into the sequence (resp. Mg,n 

Pl, .... Pn of perimeters of components of the boundary; ~ and ~ are trivial bundles with 

fibers homeomorphic to Mg,n and M'g,n, respectively. 

On the highest dimensional cells in Mg,nc°mb the 2-vector 

gives a Poisson structure. 

Assertion. Ker B = ~*T*~R~ • 

Proof. Ker $ is the space of functions f defined on the edges of the graph that satis- 
fy the following condition: for any section similar to that shown in Fig. 1 one has that 
fl + f3 = f2 + f4. Let us show that there exists a unique function g on the set of com- 
ponents of the boundary such that the value of f at any edge is equal to the sum of the 
values of g at the components of the boundary that are adjacent to the edge. On a section 
adjacent to an arbitrary vertex the function g is uniquely recoverable from f (see Fig. 2): 
gl = (f2 + f3 - fl)/2. The condition given above guarantees that the value of g at any 
component of the boundary, recovered from a vertex adjacent to that component, does not 
depend on the choice of the vertex. This establishes the assertion, as well as the fact 
that T*~: T* R'i • ÷ T* (highest dimensional cell) is an embedding. Thus, in some sense, 

Mg,n c°mb is a Poisson manifold whose symplectic leaves are the fibers of the projection ~. 

We will need an explicit formula for B-l on Ker T~. Let t, (i) denote the inverse image 

of the coordinates £, under the mapping Mg,nC°mb ÷ BU(1) c°mb, corresponding to the boundary 
component with number i. 

Assertion. on z-1((pl .... Pn)) one has 4~ -~ = ~p~ x ~o(t (0~ 

- comb Assertion. The nondegenerate volume form exp(4$ i) × dp I A ... A dPn on Mg,n 

gives an orientation compatible on the one-dimensional cells. 

From this it follows that for all (p,) e R~ the fiber ~-1((p,)) is a cycle homologous 
to Mg,n. 
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\ gl 

Fig. 1 Fig. 2 

8. The Volume of the Fiber. We have 

v o l  (zV ~ (Pl . . . . .  P~,)) = 
!( (4~-~/ _ 

d! 
~-:L p~)) 

f i , 2 c 1 X (p~c~ (~o)) ~- . "  --u p , , q  (o~(.))) = 

i1. 

2 ' I I y ,  d, = Ngn X ~ X i X <Td~... Tdn> X ~ ,  
dl,, . . ,  d n i 

~ d~=d 

d = dimcMg, n. 

Here sgn equals ±I depending on whether the orientation derived from the symplectic struc- 
ture is compatible with that derived from the complex structure or not. One can show that 
the sheaf ~(~)@ ... @~(n) is ample on M'o n, and consequently sgn = +i (the volume and 
the integral of a product of Chern classes are positive). 

9. The Laplace Transformation. Let h i > 0, i = i, .... n. Then 

0 

<Td~ . . . ~dn> X ~T i i 2d. -%'Pi P i  ,e , d p i =  

i ~ 1  0 

(d,A i=1  di] i * 

Let us write the left-hand side of this chain of equalities in the form 

l e-Y'~'P' X r' X [ [  IdZ(x)l, 
comb a'~X1 

Mg, n 

where P is the positive function on the highest dimensional cells given as the ratio of 

(I] I dl(x)l • Clearly, p is constant on any cell and equals a 
(4~-1/ H 

m e a s u r e s  ]dp¢] X dl [] : 
• x ~ X 1  

p o s i t i v e  r a t i o n a l  n u m b e r .  The  p r o o f  o f  t h e  f a c t  t h a t  Ke r  ~ = ~*T*R+ w o r k s  o v e r  t h e  r i n g  

Z [ 1 / 2 ] ;  h e n c e  p i s  an  i n v e r t i b l e  e l e m e n t  i n  t h i s  r i n g ,  i . e . ,  a p o w e r  o f  2 .  One c a n  show 
t h a t  

p ~ 2 2~+5g-5 - -  4 d X 21-g  : 2 d + # x ~ - ~ x o .  

The integrand exp(-r%ip i) equals 

1] exp (-- l (x) × (~ + ~A)- 
x ~ X 1  
x = i l i  

T h e r e f o r e ,  we o b t a i n e d  t h e  e q u a l i t y  
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5 

Fig. 3 

% < ~ a , . . . ' q ~ >  X 1 - I (2d~- -1 ) ! !  x )~(2~t~) = 
(d~)  i 

(2di ) ! )  -(2d~+~) ~ 
= 2 - d x  2<Td,...Td,t> X ~i T i 

(d~) 

cells of h'[ghes£ edges ~-c )~7 " 
dimension 

3). 
Example. g = 0, n = 3. 

In this case 

2 
2 ~ ( ~  + ~ ) ( h  + ~) 

In this case one has 4 cells of highest dimension (see Fig. 

2 2 "-  + 
2>,2 (~. 4- 2.3) (X2 .-5 %1) 2).a (x3 + ~.1) (k3 n- )~2) @ 

2 I 

:-- "%lk2k3 " 

The only intersection index figuring in this example is <ToT0~0> = i. 

i0. A Matrix Model. Let A be a positive definite matrix, suppose A tends to +~, and 

let (As), a e A, be the set of eigenvalues. Denote by t k the expression 

- - ( 2 k  - -  t)!! × TrA-(2~+~). 

In the formula below summation is carried out over all g and n: 

~' ( to ,  ~1 . . . .  ) = ~ \ ( r . , 1 . . . ,  _ ~:d,~> >: ,qg., × td.  x • • • × td, ~ = 

( _  t),~ 
--  , n! ( T ~ . . .  "~d,) X ~ (2d i - -  t)l[ × Tr ,\-(2,1~) _ 

~ > 0 ;  dl dt~ i 

= ~ ~ ( - i f  ~ 
' __,~ ~ tl,---T---. <Tdl" '"  Tdn> ~ I  (2d~ - -  t ) ! [  X ).%-(2d ÷i) = 

71>o; ~I  . . . . .  ~x n dl . . . . .  d n i 

= 2 (]I~----~/2)#X° X d~g e 2 
@ Aut (graph) e s )'c~ -i- )~a '  

graphs:~r aii a' 

In the last formula F denotes the set of equivalence classes of nonempty connected band 
graphs of valence 3, for which the components of the boundary of the corresponding surface 
are colored with colors from the set A. By the Feynman rules (see [6]), this sum is an 
asymptotic series for 

log (I exp ( ] / - - t / 6  × T rX  ~) d~ (X)), 

where d~(X) is the Gaussian measure on the space of Hermitian matrices of shape A × A, such 

that <X~I~, Xa3~4> = 6~Ia46~2~3 x 2/(~i + ~2 ). It is readily seen that this is precisely 

the measure d~A(X) considered in Sec. 2, and we thus obtained a formula for the generating 
function F. 

ii. Other Moduli Spaces. The formula obtained above allows one to determine the value 
of the universal map I given in Sec. 2 on the polynomials x3 k, k = 0, i, .... The existence 
of I(P) for other monomials can be established according to the same scheme: 
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0) fix a sequence of nonnegative integers m0, ml, ... and another positive integer n; 

i) consider the moduli space Mm,,n of band graphs with a metric with the property that 

there are exactly m i vertices of degree 2i + 1 and no vertices of even degree, and the com- 

ponents of the boundary of the corresponding surface are labeled by numbers from 1 to n; 

2) define M as the closure of M in [BU(1)~NC°mb]n , where N is sufficiently large; 

3) introduce a Poisson structure $ on M (to this end it is necessary to assume that 
all the vertices of the graph are of odd degree), the leaves of this Poisson structure are 
the fibres of the projection ~, and the 2-form ~-l is given by the same formula as in Sec. 
7; 

4) check that M, equipped with the orientation derived from the Poisson structure, 
is a cyclewith closed support; 

5) denote by <Tdl ... Tdn>m0,m I .... the rational number 

f ~ c,(2:(~,)d' × fund (R$), 

[here fund(" ) denotes the fundamental cohomology class with compact supports]; 

6) compute the ratio of the measures p (as in Sec. 9); this will be a constant on M, 
equal to 4 d × 21-g, where d = i/2(dim M-n); 

7) compute the Laplace transform of the volume of the fibers of the projection 11 in 
two ways : 

a) as a polynomial whose coefficients are equal to <~ ...>, 

b) as the sum over all components of M of the products I/(X i + Xj), taken over all 
edges ; 

8) now, as above, pass to the matrix model, taking the contribution of the integrals 

over Mm,,n with the weight sj~, where sj are new independent variables. 
7=0 

Then for t i = "(2i - i)!! × Tr A -(2i+l) we conclude that the expression 

S "° ~' - -  X Sj <370 T1-.->n~o,~ . . . . . .  X H t~q ~ i  
~,, n~, i=0 hi! J=o 

is an asymptotic series for 

oo /2]+i 

7~0 

12. Remarks and Conjectures. i) For m = 0 the cycles M described in the preceding 
section lie in Mg,n c°mb They are all even-dimensional, and the number of cycles in co- 

dimension 2N is equal to the number of partitions p(N). It is natural to expect that these 
cycles are images of cycles on Mo ~ that are dual to all polynomials in the Chern classes 
of some vector bundle (or elemen~'of K 0) over Mg,n" It is possible that this bundle is 
the tangent bundle. 

2) The function F gives an asymptotic expansion at infinity for the matrix analogue 
of the Airy function: 

I e~P (V~-~I (Tr XV6-- T~ XY/2)) dX = 

f exp ( ] / ' - - i  (Tr (X - -  Y~)3/6 - -  Tr (X- -  yV.) Y/2)) dX 

× S 
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3) Apparently the partition function of a matrix model depending on the parameters 
So, sl, is a ~-function in the variables Tr A -l Tr A-3/3, ..,. , o... 

lo 

2. 

3. 

4. 
5. 

6. 
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REGULAR FACTORIZATIONS OF A CHARACTERISTIC FUNCTION AND 

SINGULAR OPERATOR-FUNCTIONS 

V. F. Veselov UDC 517.9 

This paper is devoted to a study of the regularity of factorizations of characteristic 
functions of bounded operators L with kernel imaginary parts. In the papers from the Odessa 
school on the operator theory it was demonstrated that an invariant subspace of an operator 
admits a certain nontrivial factorization of its characteristic function [1-3]. In the 
indicated papers there was also shown that, conversely, to every factorization of a charac- 
teristic function there corresponds a subspace which is invariant with respect to an oper- 
ator that is distinguishable from L by an orthogonal component which, in turn, represents 
a self-adjoint operator. The resulting problem asks for a description of such factoriza- 
tions, called regular, which generate subspaces invariant with respect to the same given 
operator. In [4] there were obtained necessary and sufficient conditions for the regularity 
of factorizations of contractive operator-functions. Below, there will be formulated cri- 
teria showing that a transition from the case of contractive operator-functions to the case 
of J-contractive operator-functions yields an additional source of irregularity due to the 
presence of a singular [5-7] (see the definition below) operator-function in each of the 
factors. From this criterion there follows immediately the regularity of~the product of 
singular and regular [5-7] (see below) operator-functions and also, proven in the paper 
[8], the regularity of the canonical factorization of J-contractive functions into J-inner 
and J-outer factors. 

Let E be a Hilbert space, @(I): E + E be a J-contractive operator-function (J - @*(I) × 
J@(1) ~ 0, Im I > 0, J: E ÷ E, J = J*, j2 = I). We will say that @(k) ~ ~jl, if @(i) 

~j [i] and I - @(I) e o I for all numbers I e C with sufficiently large moduli. In [I] 
there was shown that any operator function @(i) e ~j is a characteristic function of some 
bounded operator L, acting in a Hilbert space H, L = A + i$J$*/2, A: H + H, A = A*, $: 
E ÷ H, J: E ÷ E, j2 = I. If @(I) ~ ~j1, then, as it is easily seen, ~ ~ o 2. By using 
an argument, analogous to that in the paper [9], one can establish that @(I) e ~j admits 
a representation (in the upper and lower semiplane) in the form of a relation between two 
bounded analytic operator-functions; 

® (~) = @~i (~) @~(~), ImP> 0~ (i) 

e (~) = e~ I (~) e~ (~), ~m ~ < 0 
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