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SKLYANIN ELLIPTIC ALGEBRAS 

A. V. Odesskii and B. L. Feigin UDC 517.9 

In [2, 3] Sklyanin has constructed the family of the algebras A(@ , ~), parametrized 
by the set of pairs ( ~ , ~), where ~ is an elliptic curve and • is a point on it. This 
family has the following properties: 

i. The algebra A(~ , T) is graded, dimA(~ , T) i = 0 for i < 0, and dimA(~ ~ T) i = 
Ci+s i. The algebra A(I~ , T) is generated by the four-dimensional space A($ , ~)l and quad- 
ratic relations: the six-dimensional space 

The algebra A(~ , 0) is isomorphic to the algebra of polynomials in four variables. 

2. Let the symbol r n denote the finite Heisenberg group, i.e., the group generated 
by elements x, y, and s and the relations x n = yn = sn = i, xg = ex, y~ = sy, xy = Eyx. 
The group F~ acts by graduation-preserving automorphisms on the algebra A(~ , ~). The 
space A (@ , ~)l is an irreducible representation F 4. 

3. Let G [V] be the ring of polynomials generated by the space V and a ~ End V. Let 
us form the semidirect product of G It] and G [V]. This is the algebra generated by its 
subalgebra C [V] and the element t and the relations tv = ( a v)t, where v runs over V. Let 
GJV, al denote the subalgebra of C[t] ~ G[V] generated by the subspace C-I Q iV; CiV, a] ; it 
is called the algebra of skew polynomials. 

Let • be a point of fourth order on ~. Let us identify the group of points of fourth 
order on $ with the quotient of r~ modulo the center. Let X(~) be a lifting of • in F 4. 
The algebra A (~ , T) is isomorphic to the algebra C[A (~ , ~)l, X(T)]. 
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4. The set of the graded A(~ , ~)-modules M = ® Mi, i > 0, such that dimM i = 1 for 
all i and M is generated by M I c M, is parametrized by points of the curve ~ if • is not a 
point of fourth order. 

5. If ~ is not a point of finite order, then the center of the algebra A(~ , T) is 
generated by two elements of second degree. By continuity, these elements exist for all 

• ~. For T = 0, the corresponding two polynomials are equations for ~cCP s. The 
level curves of these polynomials are symplectic leaves of the algebra A (~ , T), consider- 
ed as a deformation of the algebra A (~ , 0). 

In this article we construct a family of associative algebras, denoted by Qn,k (~ , ~), 
with analogous properties. Here ~ is an elliptic curve, • • ~ ; and n and k are relatively 
prime numbers such that k < n. Thus, the family of algebras depends on two continuous param- 
eters. In addition, A (~, ~) = Q4,z (~, ~). The algebras with p2 generators, construct- 
ed by Cherednikov [6], correspond to the case n = p2, k = p - i. 

Following [2], we will call a graded associative algebra B = ® Bi, i e 0, such that 
B 0 a C , B is generated by B I with quadratic relations, and dimB i = Ci+n_z i, wheren = 
dimB1, a Sklyanin algebra. This means that B = T(B)/I(S), where T(B) = C ® B I ® (B I • 
BI)... is a tensor algebra and I(S) is the two-sided ideal generated by a space of quad- 
ratic relations S c B I ® Bz, such that dims = n(n - 1)/2. It is necessary that the dimen- 
sion of B i is equal to the dimension of the space of homogeneous polynomials of degree i 
in n variables. 

We will call the set of all, up to isomorphism, linear modules the characteristic var- 
iety ch(B) of the Sklyanin algebra B. A module M = M l • M 2 • ... is said to be linear if 
dimM i = 1 for all i and M is graded and is generated by M I. Let @(M) = @(M) l • 8(M) 2 ® ... 
denote a linear module such that O(M) i =Mi+ . We get a l mapping @: ch(B) + ch(B). Set 
V = {v • BI, vM I - 0}. Then dimV = n Let S(M) = V c Bl* denote the annihilator of 
V. The mapping M + S(M) • CP n-1 is an embedding for Sklyanin algebras of general position. 
Thus, the structure of a projective algebraic variety is defined on ch(B). In this case, 
@ is an algebraic automorphism of ch(B). 

If B is a deformation of a polynomial ring, then the cone over ch(B) coincides with 
the join of homogeneous two-dimensional symplectic leaves, defined by the deformation. 

We assume that the Sklyanin algebra B is associated with an elliptic curve $ if the 
group @ acts on its characteristic variety ch(B) and the mapping @: ch(B) + ch(B) is the 
translation by an element T • ~. 

Let N be an algebraic variety, $ be a linear fibering on N, and Z be a subvariety of 
N × N. Let Z 0 = N, Z z = Z, and Z k be the set of the collections (n I .... , nk), such that 
ni e N and (nj, nj+ I) e Z for all i and j. Let Sk be the fibering ~ on N ~, restricted 

to Z k c N k. It is clear that there exists a mapping Zi+ i ÷ Z i x Z i for all i and j that 
induces a homomorphism H°($i ) ® H°($i ) a H0(~i~ $i) ÷ H~($i+j )" These homomorphisms de- 
fine the structure of a graded algebra on the space ~ H°(~i ) = A(N, Z, ~). 

If B is a Sklyanin algebra, R c ch(B) × ch(B) is the graph of the mapping @, and ~ is 
the image of the standard fibering on the projective space P(Bz*) under the mapping S: 
ch(B) + P(BI*) , then there exists a graded homomorphism of algebras B ÷ A(ch B, R, $). 

The problem of reconstruction of a Sklyanin algebra from its characteristic variety 
N, the mapping 8: N + N, and the fibering $ arises naturally. It is clear that by far for 
an arbitrary triple (N, O, ~) there exists an algebra and there may be several such alge- 
bras. In this article, we construct algebras whose characteristic varieties are products 
of identical elliptic curves and varieties close to them. 

In Sec. 1 we introduce notation for 0-functions of order n, define Sklyanin algebras, 
and describe the connection of these algebras with the Belavin R-matrices. In Sec. 2 we 
give an explicit construction for the algebras Qn ( ~ , ~ )  = Q ~ , I ( ~ , T ) - I n  Sec. 3 we describe 
certain properties of the algebras Qn,k(~ , ~). Let ~ = S~GC [t, ~i~ be a loop algebra 
and set g(k) = ~/(~_~)~ Then dim ~(~) = kn 2. In [5, 6] algebras A ~..~ A (k) (k = i, 2, 
~( I' such that A is an elliptic deformation of the universal enveloping algebras U(~), 

- is an elliptic deformation of U(~(~)) and A (k) is a homomorphic image of A for all k, 
are constructed. There exists a comultiplication ~: A + A • A, with respect to which A 
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is a Hopf aleebra. Let j(k) be the kernel of the mapping A + A (k). Then &(JK~+k2)) c j!k~) 
• A # A • J(E2). This means that there exists ahomomorphism of algebras A(k~+k2) + A(k~)® 
A(k2). Thus, the tensor product of a representation of the algebra A(k~) with a represent- 
ation of the algebra A(k2 ) is a representation of A(k~+k2). In this article we construct 
a family of coproducts on the algebras Qn,k (~ , ~) that is a generalization of the indicat- 

• -(d) ed family. Let us observe that a = Qn2d,nd_~ (~ , ~) in our notaton. 

A part of results of this article is contained in the preprint [8] of the authors. 

SECTION 1 

i. Let ~ be an elliptic curve, $ be a positive linear fibering on ~ and n = dim x 
H°($). We know (see [i]) that the translation by a point of order n transforms ~ into an 
isomorphic fibering. In addition, an irreducible projective representation of the group 
~n of points of n-th order is realized on the space H°($). This means that the Heisen- 
berg group F n (the central extension of @n ) acts on H°($) in an irreducible manner. Let 
us identify ~ m C/F, where F is the lattice generated by 1 and q, such that Im (q) > 0. 
The space H°(~) is identified with the space On(F) of the functions that are holomorphic 
on the whole complex plane and satisfy the relations f(z + i) = f(z), f(z + q) = -e -2~inzx 
f(z). Let us identify the group ~n with (I/n)F/F. The images of i/n and q/n form a basis 
in@n • Fixing a basis in ~~, we can choose a basis in On(F). Ler us define a collection 
of functions @~(z), ~ e Z~ , by means of the functional equation Ba(z + i/n) = exp (2~i~/n) x 
8~(z), n = 2P(2~ + i), 8a(z + q/n) = exp(-2~iz - ~i/2P + ((n - l)~iq)/n)8a+1(z). The 
functions 8a(z) e 9n(F) are called the 8-functions of n-th order. The zero set of the 
function 8a(z) is {-(~/n)q + (m/n) + F[m e Z }. It is easily verified that (,)8a(-z) = 
--e-2~inz8_~(z), if n is odd, and 8~(-z) = -exp [-2vinz + (~~i)/(2P-1)]8_~(z), if n is even. 

2. We fix a natural number n e 3 and let k e Z,~ be a residue modulo n, invertible in 
the ring Z~ [i.e., H.C.F. (n, k) = i]. The algebra Qn,k(~ , ~), where • e ~ , is defined 
as the algebra with the n generators xi, i e Z~ and the relations 

~~z~ 0~-~-r(--~)0~(~) x~(~-r)x~(~+O = O. 

Here i, j e Z~. These relations can be written in a somewhat simpler form by using (,), 
but the form of expression would be different for odd and eren n. 

Remarks. I. It follows from the transformation formulas for 8-functions that for 
~ ~n the algebra Qn,k (~ , ~) is isomorphic to an algebra of skew polynomials. In parti- 

cular, Qn,k(~ , 0) is simply a ring of polynomials in n variables. The algebra Qn,n_~($ , 
<) is an algebra of polynomials for each ~. 

2. Setting deg x i = i, we get a Z,~ -graduation on the algebra Qn,k ($ , ~). Moreover, 
the algebra Qn,k(~ , ~) is invariant with respect to the automorphism x i ÷ xi+ z. There- 
fore, the group F n acts on the algebra Qn,k (~ , <) by automorphisms (its generators act 
by the formula x i ÷ ~ixi, x i + xi+z, where ~ is a primitive root of degree n of I). In- 
deed, the space of relations is invariant with respect to the action of F n. 

3. It is easily verified that Qn,k ($ , ~) ~ Qn,k'( ~ , ~), where kk' = 1 in the ring 
Zn • If < ~ ~ù , then there are no other isomorphisms between the algebras Qn,k (~ , ~)- 

3. The algebras Qn,k (~ , ~) are closely connected with the Belavin elliptic R-mat- 
rices (see [6]). Again let (n, k) be a pair of relatively prime numbers such that k < n. 
We will identify k with the corresponding residue modulo n. The Zamolodchikov algebra 
Zn, k (~ , <) is defined as the algebra with an infinite number of generators xi(u) , where 
i e Z~, u e C, and the relations 

Kx~~ (~) (~) 
r ~ Z  n 

Here 

K = 
01 ( 0 ) . . .  0ù_ 1 (0) Oo (v - -  ~ + ~ ) . . .  O._ 1 (v - -  ~ ÷ ~) 

Oo ( ~ ) . . .  0~_ 1 (~) Oo (v - -  u) . . .  On_ 1 (v - -  u) 
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Let V(u) denote the space with a basis {xi(u), i e Z~ }. We can consider the above rel- 
ations as the matrix of the operator 

R~,~ (u, ~ :  v (u) ® v (3  - ~  v (v) ® v (u). 

The group of translations {U s , s e C }, Us(xi(u)) = xi(u + s) acts on the algebra Zn, k x 
(@ , ~) by automorphisms. Let us identify the space V(u) with V(0) m V by means of the map- 
ping U_ u. The matrix Rn,kT(U, v): V ® V ÷ V ® V satisfies the triangle equality (see [4]) 
and is called a Belavin R-matrix. The kernel of the operator Rn,k~(U, u + T) is a space 
of relations in the algebra Qn,k (@ , ~). 

Let there be given an R-matrix R(u, v): V • V + V • V. It is clear that the matrices 
R*(u, v): V* ® V* + V* ® V* and R ® R*(u, v): (V • V*) • (V • V*) + (V • V*) • (V ® V*) 
also satisfy the triangle equality. The Zamolodchikov algebra, corresponding to the matrix 
R ® R*(u, v), is called the algebra of L-operators. Let us identify V(u) ® V(u)* m Hom × 
(V(u), V(u)). Let Lij(u) • Hom (V(u), V(u)) be a matrix element. By [4] the algebra of 
L-operators is a Hopf algebra with the comultiplication ALij(u) = ~ Li£(u) • L£j(u). 

Thus, we can multiply representations of the algebra of L-operators tensorially. 
There exists a natural representation in the space V(u). The operator R(u, v): V(u) 
V(v) + V(v) ® V(u) commutes with the action of the algebra of L-operators. If det R(u, 
v) # 0, then the representations V(u) • V(v) and V(v) ® V(u) are isomorphic, 

d e t R  ~ (u,v)=[Oo(v--u--z)...O~,_l(v--u--x)) 2 
~' ~ ~ Oo ~ ~-~ ~ 7 o~_~ (~ - u + T) ' 

i . e . ,  t h e  d e t e r m i n a n t  i s  e q u a l  t o  z e r o ,  i f  v - u = • + x ,  a n d  h a s  a p o l e  i f  v - u = - ~  + 
x, where x • @~. Thus, there exists a nontrivial subrepresentation of h2(u) in the space 
V(u) ® V(u + T): fihe kernel of the operator Rn,k~(U, u + z). The range of this operator 
is the representation S2(u) c V(u + ~) ® V(u). In addition, V(u + ~) ® V(u)/S2(u) m A2(u), 
V(u) ® V(u + ~)/A2(u) m S2(u), dimA2(u) = n(n - 1)/2, dimS2(u) = n(n- 1)/2. 

By [6] there exists a symmetrization operator 

~ , ( u ) :  V ( u ) ® V ( u + T ) ® . . . ® V [ u + ( s - t ) ~ ] - ~ v [ ~ + ( s - l ) ~ l ® . . . ® V ( u ) .  

Let SS(u) = Im ~<(u); then dimSS(u) = n(n - l)...(n + s - l)/s! and SS(u) is a represent- 
ation of the algebra of L-operators. Let S s = Ss(O) m U-uSS(u). 

Let us set A s = V((s - i)~) s...® V(~) ® V(O). Let us define the structure of a grad- 
ed coalgebra on the space A = G As by the formula 

s 

h (r 1 ® . . .  ® r~) = ~ U(p_~)~ (r 1 ® . . .  ® rp) ® (rv+ 1 ® . . .  ® r ~ ) .  
P 

I f  i s  c l e a r  t h a t  t h e  c o a l g e b r a  A i s  d u a l  t o  t h e  f r e e  a l g e b r a  w i t h  n g e n e r a t o r s .  The  s u b -  
s p a c e  S = • S s c A i s  a s u b c o a l g e b r a .  L e t  Qn ,k (@ , x )  = S* b e  t h e  d u a l  a l g e b r a .  The  a l -  

g e b r a  A n , k ( ~ , ~ ) =  E x t q n . ~ ( ~ , ~ ) ( C , C ) i s  d u a l  t o  Q n , k ( @  , x ) "  The a l g e b r a  An, k ($ , x )  c a n  be  o b -  
t a i n e d  a n a l o g o u s l y  i f  i n  p l a c e  o f  t h e  m a t r i x  R n , k X ( U ,  v )  we u s e  t h e  m a t r i x  R n , k X ( U ,  v ) .  

The  r a n g e  o f  t h e  o p e r a t o r  R n , k X ( U ,  u + ~ ) * :  V * ( u  + ~)  ® V * ( u )  + V * ( u )  * V * ( u  + ~)  i s  
a r e p r e s e n t a t i o n  o f  t h e  a l g e b r a  o f  L - o p e r a t o r s  o f  d i m e n s i o n  n ( n  - 1 ) / 2 .  T h i s  i s  t h e  a n a l o g  
o f  t h e  s e c o n d  o u t e r  p o w e r .  I n  t h e  m o d u l e  B s ( u )  = V * ( u )  ® V*(u  + ~)  * . . . *  V*(u  + ( s  - 1 ) x )  
we c a n  f i n d  a s u b m o d u l e  A S ( u )  o f  d i m e n s i o n  n ( n  - 1 ) . . . ( n  - s + 1 ) / s ! ;  A S ( u )  i s  t h e  g e n e r a l -  
i z e d  s - t h  o u t e r  p o w e r .  The  c o a l g e b r a  B = ~ b s h a s  a s u b a l g e b r a  ~ = ~ A s • The  d u a l  a l -  

s $ 

g e b r a  o f  ~ i s  An,  k (@ , z ) .  

SECTION 2 

L e t  ~ b e  t h e  s - t h  t e n s o r  p o w e r  o f  t h e  f i b e r i n g  $ ,  i . e . ,  t h e  f i b e r i n g  o n  Ss, H ° x 

( ~ [ )  m ®sv a n d  d i m V  = n .  L e t  D s d e n o t e  t h e  s p a c e  o f  s e c t i o n s  o f  t h e  f i b e r i n g  ~ [  t h a t  

h a v e  t h e  f o l l o w i n g  p r o p e r t i e s :  

a) A section f • D s vanishes on (x~, .... x s) if x~ - x a = (n -- 2(~ -- a))~ for certain 
> e. In other words, the divisor of the section f is represented in the form N ~ + L ~, 

where N ~ = ~ Na,~ ~, N~,~ ~ = {(x I ..... Xs)IX ~ -- xe = (n - 2(~ - ~))~}. 
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b) The divisor L ~ is symmetric with respect to the twisted action of the permutation 
group S s on ~s. Under this action the transposition (~, ~ + i) transforms the collection 

(x i ..... x~, x~+i, ..., x s) into (x i ..... xa+ i + 2~, x a - 2T ..... Xs). Let M~, 6 be the 
set of fixed points of the transposition (~, 6). Then L ~ =~ pM~, 6 + Q, where p is an 

~<~ 
even number and M~,~ does not occur in Q. 

Proposition i. The dimension of the space sD s is equal to the dimension of the space 
of the skew-symmetric sections of the fibering ~. 

Indeed, the skew-symmetric sections are defined so that their divisor has the form 
D = D' + qM, where q is odd, D' is symmetric, M = N °, and D' and M do not have any cormnon 
component. We write D in the form D = (D' + (q - I)M) + M. Let us observe that N ~ is the 
translation of the divisor of M by the element (0, (n - 2)~, ..., (s - l)(n - 2)T). Let 
us set D ~ = [D' + (q - I)MI~ + N T, where (D' + (q - I)M) ~ is the translation of D' + (q - 
I)M by the element (0, -2~ ..... -2(s - i)~). It is easily verified that D and D ~ are 
equivalent. Thus, D ~ is the divisor of a certain section from the space D s. We can con- 
struct a skew-symmetric section with respect to an element from D s analogously. 

Using Proposition I, we can construct a basis in D s. 

Let 0 ~ i I < i 2 <...< i s < n. Let us set 

Alt (0i~ (zi) 0k, (z2 - -  2 v ) . . .  0is (z - -  2 (s - -  t) ~)) ~ 0 (z~ - -  za - -  (n - -  2 (~ - -  a)) T)- 
0~ ..... ~ ( z ~ , .  • . ,  z~) - H 0 (% - ~ -  ~ (~ - ~) ~) ~<~ 

~<~ 

The a l t e r n a t i o n  i s  c a r r i e d  o u t  w i t h  r e s p e c t  t o  t h e  i n d i c e s  i i ,  . . . ,  i s ;  z i ,  . . . ,  z s a r e  t h e  
c o o r d i n a t e s  on t h e  u n i v e r s a l  c o v e r i n g  o f  t h e  v a r i e t y  ~s a n d  O(z )  i s  a 0 - f u n c t i o n  o f  f i r s t  
o r d e r  s u c h  t h a t  O(0 )  = 0 .  

L e t  V = H ° ( $ ) , ~ V ~  a H ° ( ~  ~)  a n d  T(V)  a O H 0 ( ~  ~)  b e  t h e  t e n s o r  a l g e b r a  g e n e r a t e d  
8 

{ 

by  V. On T(V)  we i n t r o d u c e  t h e  s t r u c t u r e  o f  a c o a l g e b r a  w i t h  t h e  c o m u l t i p l i c a t i o n  H ° ( ~ ) +  
® H e(~ ~) • H e i-p ( ~ ) .  

P r o p o s i t i o n  2 .  The  s u b s p a c e  D = * D s c T(V) i s  a s u b a l g e b r a  i n  T ( V ) .  

L e t  f e D s .  L e t  u s  s e t  ~ ( x  i . . . . .  x ~ )  = f ( x  i . . . . .  x ~ ,  aT+ 1 . . . . .  a~). 

H e r e  aA~ . . . . .  as i s  a c o l l e c t i o n  o f  p o i n t s  o f  ~ a n d  ~ i s  a s e c t i o n  o f  t h e  f i b e r i n g  

~ .  To p r o v e  P r o p o s i t i o n  2 i t  i s  s u f f i c i e n t  t o  show t h a t  f e D~. I n d e e d ,  i t  f o l l o w s  
f r o m  a )  a n d  b )  t h a t  t h e  d i v i s o r  o f  t h e  s e c t i o n  ~ i s  d e c o m p o s e d  i n t o  two p a r t s  N'  a n d  L ' ,  
where L' is determined by condition a) and N' is symmetric with respect to the twisted action 
of the symmetric group. The last assertion is valid since N' = N i + N~, where N i = 

{(xi, .... x~ )I ~ , 6: xa = a~ - (n - 2(~ - a))~} and N2 = (f) fl(~[X (aLi ..... a~)). Both 
divisors have the desired symmetry. 

On the other hand, we will consider D~ c V s V as the space of quadratic relations in 
the algebra T(V) and let (D 2) be the ideal generated by Df. 

Proposition 3. Q~ (~,~)ae--JQn, i(~,~ ) = T(V)/(Df). The dual algebra of the coalgebra D 

i s  A~ (~, ~) = A ~ ,  ~ (~, ~). a ~  

To prove Proposition 3 it is necessary to verify that the formulas from Sec. i (rela- 
tions in Qn ($ , ~)) and {0i,O(zi, z=)} give the same subspace in the space of 0-functions 
of two variables. It is easily seen that this is true if • e ~. The desired identity 
for gneral • is a relation between 0-functions of order at most 2n. It is identically ful- 
filled since it is valid at n = points. 

We have shown, in particular, that the relations from Sec. 1 really define a Sklyanin 
algebra. We describe the symplectic leaves of the algebra Qn (~ , ~)" Let ~GCP n-i be the 
embedding defined by the linear system ~. The join of all j-dimensional planes, passing 
through j + 1 points of ~ , in GP n-i is called the variety of j-chords. Let Kj be the cone 
over the variety of j-chords (K 0 is the cone over ~). Then dimKj = 2(j + i), K0 c K i c 
K2 c ... c Kj c .... and Kj is the variety of singularities of Kj+i, if dimDj+ i < n. 

The homogeneous symplectic leaves of Qn (~ , ~) are K;, where 0 ~ j < (n/2) - i. A 
J 

maximal homogeneous leaf has dimension n - 1 if n is odd and n - 2 if n is even. 
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SECTION 3 

We describe some properties of the algebra Qn,k'(~ , x) for general ~. 

i. Q~.~(~,~)ooQ~.w(~,~ ) , where kk' ~ 1 mod n. There is no other isomorphism be- 
tween the algebras of this family. 

2. Let c = HCF (n, k + I). Then the center of the algebra Qn,k (~ , ~) is a ring of 
polynomials in c elements, the degree of each of which is n/c. The action of Zn X Z n on 
the algebra Qn,k (~ , ~) reduces to the irreducible projective action of Zc X Z~ on the 
space of generators of the center. In particular, Qn,n-i (~ , ~)is commutative. 

3. We describe the characteristic variety of the algebra Qn,k (~, ~). Let n/k = 
n l-(I/(n2 -...- (i/np)), where n i ~ 2 for 1 ~ i g p. It is clear that such an expansion 
in a continued fraction exists and is unique. It is easily verified that n/k' = np - 
(i/np-~...-(i/n~)), where kk' ~ 1 modn, k' < n. It is also clear that 

n = det  

l nl --J O; 0 0h 
. o . : -_ t ._%, ' .o  

0 o 0 1 % /  

In the sequel we will use the notation 

/ ni --1 I 0 x 
} k = d e t  (_~i___nt-__), k ' = d e t  

\ 0 O]np] \ 0 O;np_ 1] 

° ° 1 
m2 --i 0 

d (m. . . . ,  = d o t  o - ,  

< ~ o oimq/ 
(d (m) = m, d (m l, m~) = mlm 2 - -  i e t c . ) .  

L e t ~ l  = ~ = . . .  = ~ p  = ~ be  p c o p i e s  o f  t h e  c u r v e  ~. L e t  u s  d e f i n e  a f i b e r i n g  C i ( 1  
i ~ p )  on t h e  c u r v e  ~i  s u c h  t h a t  ~ l  h a s  n i + 1 s e c t i o n s ,  ~p h a s  np  + 1 s e c t i o n s ,  a n d  ~ i ,  
1 < i < p ,  h a s  ~ i  + 2 s e c t i o n s .  The  f i b e r i n g  gP =~1 × . . .  × Fp ( t h e  p r o d u c t  o f  f i b e r i n g s )  
i s  d e f i n e d  on  ~ ~ l ~ - . . ~ p .  L e t  A i , i + l  (1  ~ i < p )  b e  t h e  d i v i s o r  on ~P t h a t  c o n s i s t s  
o f  t h e  p o i n t s  ( z ~ ,  z 2 . . . .  , Z p ) ,  s u c h  t h a t  z i + z i +  ~ = O. 

L e t  ~ b e  t h e  f i b e r i n g  on FP o b t a i n e d  f r o m  ~ by  t h e  s u b t r a c t i o n  o f  t h e  d i v i s o r  A~,2 + 
~2 ~ + - - . +  Ap-~ ~ .  Then  C h a s  n s e c t i o n s  a n d  t h e  r e s t r i c t i o n  o f  C t o  g i  h a s  n i s e c t i o n s .  
I n ' g e n e r a l ,  t h e ' ~ e s t r i c t i o n  o f  ~ t o  ~i  × ~i+~ × . . .  × ~ i  h a s  d ( n  i ,  n i +  ~, . . . .  n j )  s e c t i o n s .  

The  f i b e r i n g  ~ d e f i n e s  a m a p p i n g  o f  ~P i n t o  CP n - i ,  a n d  t h e  r a n g e  i s  i n v a r i a n t  w i t h  
respect to a certain irreducible projective action of Z~ × Z~ , since the group of trans- 
lations on ~P,, preserving ~, is isomorphic to Z n × Z~ This range is the 
characteristic variety for the algebra Q~,~ (~,~) . The dimension of the characteristic 
variety is equal to p. If n i > 2 for 1 ~ i ~ p, then the described mapping is an embedding 
and the characteristic variety is isomorphic to ~. If some of n i are equal to 2, then the 
characteristic variety is covered in unramified manner by a product of the curves ~ and pro- 
jective spaces, where the dimension of each space is equal to n i = 2, running in succession. 
For example, if p = 4 and (n~, n=, n3, n~)= (3, 2, 2, 3), then the characteristic variety 
is equal to ~ × CP ~ X ~/Z~. The translation on the characteristic variety is equal to 
(~i .... , ~p), where ~ = (n - k - i)~, ~p = (n - k' - i)~; for 1 < i < p, ~i = (n - d(nl, 

..., ni_ ~) - d(ni+~, .. , np))~. 

4. The algebras Qn,k~(~ , ~) are connected with each other for various n and k. We 
need some notation to describe this connection. Let ~ be a fibering on ~. Let L(~) de- 
note the space of sections of ~. 

Let dimL(~) = m and set Lm(~ 'f~) =rom C ® L(~) ® L(~ x ® ~) ® L(.~ ~ ® ~x • ~) ® .... 
wh re ~ is the fibering obtained ~ bv translation by i~. The natural bilinear map- 
pings L($ ix ®...® $) ® L($J x ®...® $) ÷ L($[i+j)x ®..., ~) define on Lm(~ , ~) the struct- 
ure of a graded associative algebra with unity, and dimL($ i~ -...® $) = i + l)m. The irre- 
ducible projective action of Zm X Zmon L($) can be extended to automorphisms of the alge- 
bra Lm(~ , ~). 

' Let A(i) = C ® Al(i ~ ® A2(i) ®... be graded associative algebras with unity whose auto- 
morphism groups contain nm× Zm , acting projectively on Ai(i). Then (A (~) ®...- A(t))Zm ~ 
is also a graded associative algebra with unity. It consists of the elements A (~) o...s 
A (t), invariant with respect to Z~. 
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There exist the following graded homomorphisms of algebras: 

a) Qn,k(~ , ~) + (Lnk(~, ((n - k - l)/k)~) + Qk,k3($, ((n/k)~)))Zk2, where ks = d(n3, 
nu .... np) ; 

,b) Qn,k(~ , ~) ÷ (Lnk'(~ ,((n - k' - l)/k')~) + Qk',k ,(~, ((n/k')~),))Zk '2, where 
kp- = d(n~, n 2 .... n~_2); P-2 

2 ' i~ Z2 
' n n - - a - -  b n ab 

C) Qn,k( ~ ,  T)-+ (Qa, a(~,--~-%)@nnab(~, ab T)@Qb,~(~,-~--T)) ,: where a : d(n I ..... 

ni_1), a = d(n~, ..., ni-2)- b = d(ni_~," .... np), ~ = d(ni+ 2, .... np) (l<i<p,d(~)~_~l). 

5. There exists a method to obtain other formulas, analogous to the ones described 
in Part 4c), for Qn,k($ , ~). To show this, let us observe that 

n = d (n~ . . . . .  np) = d (nx . . . . .  ni-~, n~ -~ I, t ,  ni+z + l ,  ni,~ . . . . .  n~). 

Let (N~, ..., Nq) (q > p) be the sequence obtained from (nz, .... n v) by applying the above- 
described procedure a certain number of times. Then n = d(N~ ..... ~Na) and the formula 
from Part 4c) remains valid after the replacement of (n~ ..... np) by-(N~ .... , Nq). 

6. Formula 4c) is of special interest in the case n =.a + b, since in this case the 

algebra L~ab(~, n--a--b ) ( ab T is commutative and we get a comultiplication Q~,~($,T)-+Qa,= ~, 

) (°) T @Qb.~ ~,-6-~ that depends on a parameter. This is possible when (n~, .... np) is 

replaced by (N~ .... , Ni, i, Ni+ ~ ..... Nq) and n = d(N~ ..... N i) + d(Ni+ ~ ..... Nq). 

Each such comultiplication has the form 

Q(a+b)n, (a+b)p-~ --+ Q~=, ap-1 @ Qbn, bq~, 

where q ~ -(p/( ap - l))modn, HCF (a p - I, n) = HCF ((a + b)p - 1, n) = HCF (p, n) = i. 
In particular, there exists a comultiplication 

We call Qn,k ($ , ~) indecomposable if there exists no such comultiplication for it. It is 
easy to prove that the decomposition into irreducible factors is unique. The algebra 
Qn2,np_1($ , ~) is decomposed into ~ (n) irreducible factors, where ~ (n) is the number of 
the numbers that are less than n and are relatively prime to it, and the decompositions 
for different p are obtained from each other by cyclic permutation [HCF (p, n) = i]. For 

example, Q9,2 + Q6 s Q3, QIs,3 + Q8 ® Q8,5, Q2s,4 + Q10 s Qs,3 • Qs • Qs,2. 

7. The indicated formulas enable us in principle to find all symplectic leaves of 
the algebra Qn,k ($ , ~) since the leaves of the algebras Qn (~ , ~) are known. In particu- 
lar, it follows from formulas 4a) and b) that Qn,k (~ , ~) has the leaves K ($ × CP~-I/Z] ) 
and K( ~ X CP~'-I/Z~ , ) and from 6c) that K(CP ~-I × ~ × Cp~-i/Z~b) is a leaf. 

We describe homogeneous leaves for the case of the algebra Qud, 2d-~( ~ , ~). In this 
case, for 1 g j g d the join of the 2j-dimensional leaves consists of j components. Let 
us denote them by Mij, where 1 ~ i ~ j. Here 

4d(d +i - - i ) !  
dim M~=d' -b~] '  d e g l M ~  = (2 i - - i ) ! (d  - - / ) ! ( 2 ] ' - - 2 i ~  t ) ! "  

The inclusion relation between leaves is described by the formulas 

In addition 

M~j = M~, ~+1 ~ Mi+l, J+x, M~j N M~+p, j = Mij ~ Mi+~, j ~ . . .  ~ Mi+p,j = M~, i-v" 

C r,2J-2~/Z2 Mij c,o gj+l_i,j ~ K (CP 2i-2 X ,~ X CP d-j-1 X ~ X 1:- / (2i-1)(d-j)(2j-2i+1] 

(if 1 < i < j, then this is a variety in C 4d with self-intersections and K(N) denotes the 
cone over N c Cp4d-1 ). In particular, the characteristic variety of the algebra Q4d,2d-l × 
($ , ~) is isomorphic to ~ × CP d-= × ~/Z~-1. Let us consider, in particular, the case d = 
2, i.e., the algebra Qs,3(~ , ~). The center of this algebra is generated by four elements 
of second degree. The restriction of the automorphism group of the algebra Qs,3(~ , ~) to 
this space gives there an irreducible projective representation of Z 4 X Z 4. Let Ci~, i e 
Z 4 be the central elements and C i be the corresponding polynomials for • = 0. The homo- 
geneous leaves are given by the equations {C i = 0 I i e Z4 }. This variety, whose degree 
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is 24 = 16, decomposes into two isomorphic components of degree 8 (M~2 and M22 in our nota- 
tion). Each of these components is the cone over @ × Cp2/Z~ and is a homogeneous four- 
dimensional leaf. In addition, M11 = M12 n M22 is the cone over ~ X ~ and is a join of 
homogeneous two-dimensional leaves. The algebra Q8,3(~ , ~) has no other homogeneous 
leaves. Now we describe the nonhomogeneous leaves. Let us consider the algebra Q4(~,2~) 
Q~(~, 2~). It is generated by the generators {Pi, qi{ i aZ41}, where Piqj = qjPi and {Pi}, 
{qi} separately generate the algebra Q4(~ , 2~). There exists a family of homomorphisms 
(see 4c) Qs.~(~, T)--+~4(~,2T)Q~4(~, 2T)parametrized by the element z E ~ , or a homomorph- 
ism Q8,3(~,~)-+ L8(~)@~4(~,2~)~4($, 2~), where Ls(~) is the commutative algebra generat- 
ed by e-functions of order 8. This homomorphism is an embedding. In other words, the 
elements x i = 8i(z)p0q_2i + 8i+2(z)plq_2i+l + 0i+4(z)p2q_2i+2 + ei+6(z)p~q_2i+~ , where 
i e Z~ , 2i e Z 4 is the corresponding element under the homomorphism Zs-+Z~ , define a sub- 
algebra of Ls(~')Q~4(~,2T)G~4(~,2~) that is isomorphic toQs,s(~ , ~). In addition, C2i~ = 
~i(z)Si+~(z)~i+~(z)C~'~C~i+~ ''~ + 8i+~(z)Si+~(z)C0'~C~i ''~, where C .'~ and Cj ''~ are central 3 
elements of the algebras Q~( ~ , 2~), j e ~. Therefore, the general nonhomogeneous leaf 
of the algebra Qs,~(@ , ~), defined by the equations {C i = ~i I i e Z~}, where ~i are such 
that this variety is nonsingular, is the direct product of two nonsingular nonhomogeneous 
leaves of the algebra Q~(~ , 2~). If ~i are such that the variety {C i = ~i I i e Z~ } is 
singular, then its variety of singularities is also a leaf (or a join of leaves). Let us 
consider the join of all leaves, obtained in this manner. This variety consists of the 
following components: 

i) x~ = x~ = x~ = xv = 0, x 0 = x~, x 2 = x~ and three more components, obtained from 
this by the action of Z~= Z~/Z~ Each point of these components is an O-dimensional leaf. 

2) x i = ~i(z)q_~i + ~i+~(z)q_=i+~, i e Zs. This five-dimensional component is the 
join of the spaces C ~ (with the coordinates qi, i ~ %~), parametrized by the point z e $. 
Each of these C A is a join of two-dimensional leaves. These are defined by the equations 
{Co" = ~0, C~" = ~}. The leaves that belong to the component being described are precise- 
ly the leaves of the algebra Q~($ , 2~), numbered by the point z e ~. 

The algebra Q~,~(I~ , ~) has no other leaves. The component 2 contains two-dimensional 
homogeneous leaves. We have ~0 = ~ = 0 on them. If $~ # 0 or $~ # 0, then the correspond- 
ing leaves are nonhomogeneous. If ~0 and ~ are such that the corresponding leaf is sing- 
ular, then the singularities also belong to the component i. This is precisely the whole 
of the component i. 
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