
where ~ = O(~-v). Further, we use for the denominators the integral representation 

(xi-Ei-i0)- '=t  ~ exp{-i~ (xi-E~-iO)}d~i. 
0 

The i n t e g r a l  J 0 ( ~ ,  E z, E 2) i s  t h e n  t r a n s f o r m e d  i n t o  a f o u r f o l d  i n t e g r a l  w i t h  r e s p e c t  
t o  t h e  v a r i a b l e s  x z, x 2 and ~z,  ~2. The i n t e g r a l s  w i t h  r e s p e c t  t o  t h e  v a r i a b l e s  x 1 and x 2 
can be c a l c u l a t e d  by means o f  t h e  we l l -known  f o r m u l a  f o r  t h e  F o u r i e r  t r a n s f o r m  o f  t h e  
e x p o n e n t i a l  o f  a q u a d r a t i c  form o f  a symmet r i c  m a t r i x  [ 9 ] .  The r e m a i n i n g  i n t e g r a l  o v e r  
t h e  v a r i a b l e s  %z and T 2 can be r e d u c e d  by an o b v i o u s  change  o f  v a r i a b l e s  t o  t h e  i n t e g r a l  
r ~, A): 

~+hCt-~) 

in terms of which the asymptotic behavior of the integral J0(k, El, E 2) can also be 
expressed. 
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DYNAMICS OF AN ENSEMBLE OF SINGLE-DOMAIN MAGNETIC PARTICLES 

D. A. Garanin, V. V. Ishchenko, and L. V. Panina 

The dynamics of an ensemble of noninteracting single-domain magnetic 
particles is investigated both on the basis of analytic solution of the 
Fokker-Planck equation and in the framework of the reduced-description 
method. It is shown that in the general case the shape of the resonance 
and relaxation curves is not Lorentzian. In the isotropic case, the 
deviations from Lorentzian form reach 7%. In the presence of anisotropy, 
the main source of broadening of a resonance is thermal spread of the 
precession frequencies of the magnetic moments. An exact expression is 
obtained for the integral time of longitudinal relaxation of magnetic 
particles with axial anisotropy; it is valid for any value of the potential 
barrier. It is shown that for isotropic particles the description based 
on one and two lowest moments of the distribution function is in good 
agreement with the obtained exact results. In the first approximation of 
the moment method a generalized equation of Landau-Lifshitz-Bloch type is 
obtained; it gives a reduced description of the dynamics of the ensemble of 
magnetic particles in the general nonlinear case. 

i. Introduction 

Among the various magnetic materials, magnetic composites -- magnetic polymers and 
magnetic liquids -- occupy a special position. In them, particles of a ferromagnet (iron, 
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magnetite, etc.) which contain macroscopic numbers of atoms, behave at temperatures T ~ T c as 
single magnetic moments ~ that interact both with the nonmagnetic matrix and with one 
another through a dipole-dipole interaction. The contact of a magnetic particle with the 
matrix, which plays the part of a thermal reservoir, leads to significant complications in 
its dynamics, which at nonzero temperatures cannot be formulated in the framework of the 
notion of motion of the magnetization vector of the particle. A similar situation arises 
in the case of a quantum spin that interacts with a thermal reservoir, for which one must 
use a density matrix. However, the behavior of the ensemble of single-domain magnetic 
particles, which can be ascribed an effective spin S m i, can be described by the classical 
analog of the equation for the density matrix - the Fokker-Planck (FP) equation. 

The standard arguments that lead to the FP equation for an ensemble of magnetic 
particles reduce to the following. The characteristic frequencies mchar of the problem 
have the order of the precession frequency of the magnetic moments in the magnetic field: 
mo=g~H/h (the frequency does not depend on the number N of atoms in the particle), or the 
still smaller relaxation frequency F. Further, a need to introduce a distribution function 
of the particles with respect to the directions of the magnetic moment arises at tempera ~ 
tures kBT Z ~H = g~BSoNH, where S o is the effective spin per atom. The thermal reservoir 
acts on a magnetic particle through random fields, the spectrum of which is truncated at 
frequencies of order ~max~kBT/~- It is readily seen that ~max/~char ~ SoN m i, i.e., for 
"heavy" particles, containing a macroscopically large number of magnetic atoms, conditions 
that enable us to treat the thermal reservoir as a source of delta-correlated noise holdo 
In its turn, the stochastic equation of motion of the magnetic particle with coefficients 
of white-noise type can be reduced to an FP equation for the distribution function. At 
the same time, since the white noise in the given problem arises as the limiting case of 
a process with finite correlation time, the stochastic equation of motion for the magnetic 
particle must be given the Stratonovich interpretation. We note in passing that allowance 
for the finiteness of the correlation time of the random fields that act on the magnetic 
particle leads, when the most natural models of the thermal reservoir are chosen, to noise 
correlation functions that are nonexponential. For example, if it is assumed that the 
required random field is proportional to the elastic deformation u of the lattice at the 
position r of the particle, then the corresponding correlation function f(t) ~ <u(r~ O)~(r~t)> 
will, in the harmonic approximation for T ~ 0D, have the form f(t) = i/t 2 -- y~/sinh=(YTt), 
where 7r=~kBT/~. It is easy to see that with respect to functions that vary weakly over 
the time I/TT the correlation function f(t) plays the part of a delta function: f(t) = 
T6(t). 

The fact that the behavior of even one magnetic particle is, when allowance is made 
for its interaction with the thermal reservoir, described by a partial differential 
equation that cannot, in general, be reduced to an equation for the mean magnetization 
makes the status of the usually employed phenomenological equations for many-particle 
magnetic systems, formulated in terms of macroscopic variables, into a nontrival problem. 
In particular, this applies to the Landau-Lifshitz equation for an ordinary ferromagnet, 
the validity of which at higher temperatures (T ~ T c) is not obvious. 

Although the basic physical ideas about the behavior of an ensemble of feromagnetic 
particles without allowance for their interaction with each other were already formulated 
by N@el, [i], a systematic investigation of the dynamical processes in such systems on the 
basis of the solution of the corresponding FP equation has not yet been made. At the same 
time, detailed study of the simplest model -- isotropic particles in a magnetic field H 
for different values of $ = g~BSoNH/kBT -- would make it possible to clarify the status of 
the usually employed approximations of the type of the moment method (see, for example, 
[2]), to estimate the deviations of the resonance and relaxation curves from Lorentzian 
form, and, finally, to pose the problem of a reduced description of the dynamics of the 
ensemble of magnetic particles in the general nonlinear case. 

The exact results for the problem of the linear susceptibilities X of an ensemble of 
magnetic particles obtained in this paper show that the deviation of X from Lorentzian 
behavior does not exceed 7%; the deviations are maximal for static field corresponding to 

~ i and are small in the limiting cases ~ << 1 and $ >> i. For the analytic description 
of X in the complete range of fields and frequencies, it is customary to use the method of 
modeling the distribution function -- the method of moments. It is well known that in the 
simplest form (in which only the first moment is retained) the results for X have 
Lorentzian form (see, for example, [3]). The following approximation of the method makes 

170 



it possible to determine the deviation of the line shape X(~) from a Lorentzian curve. As 
is shown in this paper, the second approximation of the moment method gives a fairly good 
description of the deviations for the longitudinal susceptibility at $ ~ 1 and, moreover, 
has asymptotic behaviors that agree with those of the exact solution of the FP equation in 
the different limiting cases. 

The analysis of the linear susceptibilities provides a basis for writing down a closed 
nonlinear equation for the magnetization of the ensemble of ferromagnetic particles. This 
equation, which may be called the Landau-Lifshitz-Bloch (LLB) equation, describes both the 
transverse and longitudinal relaxation of the magnetization; moreover, the relaxation 
frequencies F l and F 2 that occur in the equation depend on the magnetization itself. In 
the region of low and high temperatures, the LLB equation goes over into the Landau-Lifshitz 
and Bloch equations, respectively. We note that in the nonlinear case the treatment of the 
higher approximations of the moment method is inconvenient from the computational point 
of view. 

More realistic models of a magnetic particle also contain an anisotropy energy, both 
crystallographic and magnetostatic, with dependence on the shape of the particle. In 
particular, if the ferromagnetic particle is elongated along a certain axis, the smallest 
value of the magnetostatic energy is attained for orientation of the vector ~ along this 
axis. In many cases, the contribution of the magnetostatic energy to the anisotropy is 
predominant. The main physical manifestations of the anisotropy are already evident in 
the simplest case of easy-axis ferromagnetic particles. The first effect is due to the 
fact that the precession frequency of the magnetic moment around the z axis depends on its 
projection ~z" At nonzero temperatures, this leads to a smearing of the resonance in the 
transverse susceptibility that is appreciably greater than the broadening that is associated 
with the true damping and is described in the framework of the moment method in [2]. In 
the presence of anisotropy, the evolution of a certain smooth initial distribution with 
<~i> = 0 leads to reversible mixing and to a loss of the smoothness property by the 
distribution function, and this, in turn, leads to difficulties in numerical solution of 
the FP equation by grid methods. We note also that the mixing which arises because of 
the nonlinearity strongly increases the importance of the true damping, since the large 
gradients of the distribution function which arise as a result of the mixing lead to 
enhanced diffusion. As a result of these processes, the distribution function tends 
rapidly to a form that depends only on the energy, this corresponding in quantum language 
to a diagonal density matrix. 

Specific effects can also arise if the magnetic particle has a barrier, associated with 
the anisotropy, between energy minima, its height satisfying AE m kBT. Then the relaxation 
time for transitions through the barrier is exponentially long. Great efforts have been 
expended on the solution of this problem, beginning with [4], in which the time of transi- 
tion through the barrier was related to the smallest eigenvalue of the Fokker-Planck 
operator (approximation of a "long-lived" exponential). In the general case AE ~ kBT, 
such an approach gives an order of magnitude estimate for the relaxation time, ~ but to 
determine the shape of the relaxation curve the complete FP equation must be solved. On 
the other hand, a more informative quantity (and, moreover, one that can be compared with 
experiment) is the integral relaxation time, which is proportional to the area under the 
curve that describes the relaxation of the magnetization after an abrupt change of the 
longitudinal magnetic field. In the linear case (for small jump of the magnetic field), 
it is possible to obtain a general expression for the integral relaxation time of a magnetic 
particle for all values of the parameter AE/kBT. 

2: Fokker-Planck Equation for Ensemble of 

Ferromagnetic Particles 

To simplify the expressions, we shall in what follows use a system of units in which 
g~SoN=kB=~=l. Then the equation of motion of the unit vector u of the ferromagnetic 
particle can be written in the form 

d~ 
- -  [~, (H~,t+H~I)]-R, (1) 

dt 

where ~,fr=-OiY{</Op, J{ is the energy of the particle with allowance for the external field 
and the anisotropy, Hi: is the fluctuation field exerted by the thermal reservoir, and R is 
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a relaxation term, the form of which will be determined below. To be specific, we restrict 
ourselves to considering magnetic particles with axial anisotropy: ~=-H~-D~ 2, where H is 
the external magnetic field, and D is the anisotropy constant. In this case, the fluctua- 
tion field Htl must have the form 

K,~=; (t) +~(~)~, 
where ~(t) and ~(t) are a stochastic vector and a stochastic second-rank tensor, their 
correlation functions being given by 

<[,(t)~(t')>=2l~jT6(t--t'), <•215 <~(t)z~(t')>=2L, j~T6(t--F). (2 )  

Using the standard methods [5], we can pass from the stochastic equation (I) to the 
FP equation for the probability density /(M,t)=<6(M-~(t))>, which has the form 

0t aM [M,H~f~]-R+T M,C M, /, (3) 

where  Gij=~o-F (%~,j~+kj. ~) M~+L~,~tM~Mt. 
The r e l a x a t i o n  t e rm  R i s  now u n i q u e l y  d e t e r m i n e d  from t h e  c o n d i t i o n  f o r  t h e  e x i s t e n c e  

o f  t h e  e q u i l i b r i u m  Gibbs d i s t r i b u t i o n  f0 ~ exp (-9~/T) and i s  e q u a l  t o  R=[M,  d[M, Ho~]]. I t  
i s  r e a d i l y  s e e n  t h a t  f o r  a r b i t r a r y  form o f  t h e  t e n s o r  f u n c t i o n  ~ t h e  r e l a x a t i o n  t e rm  R 
does  n o t  r e d u c e  t o  t h e  s t a n d a r d  e x p r e s s i o n  p r o p o s e d  by Landau and L i f s h i t z  and can have  
a more c o m p l i c a t e d  form.  Th i s  can be e x p e c t e d  i f  t h e  a n i s o t r o p y  e n e r g y  i s  a p p r e c i a b l e .  
However,  f o r  t h e  sake  o f  s i m p l i c i t y ,  we s h a l l  in  t h i s  p a p e r  r e s t r i c t  o u r s e l v e s  t o  con-  
s i d e r i n g  t h e  c a s e  o f  i s o t r o p i c  f l u c t u a t i o n s ,  when in  t h e  e x p r e s s i o n  (2)  

In  t h i s  c a s e ,  Gij  = ( l l  + ~ 2 ) 6 i j ,  and t h e  FP e q u a t i o n  t a k e s  t h e  s t a n d a r d  form 

a/ a M a 

where k : k z + k 2. 

In what follows, we require equations for the first two moments of the distribution 
function f: 

0 
<~>=< [ ~H~:~] >-~ {2T<~> +< [~ [~H~,] ] > }, (5) 

a 

Note that in the isotropic case (Ho,=H) and in the region of high temperatures 
(T m H), Eq. (5) becomes independent of the remaining moment equations. In the resulting 
equation for the magnetization m=<~>, the relaxation term has isotropic Bloch form, which 
is a radical simplification and leads to Lorentzian expressions for the susceptibilities. 
However, in the presence of anisotropy, when ~=He~(~), such simplifications arise only 
when the much stronger condition IT >> Hef f, which leads to vanishing of the transverse 
resonance, holds. At temperatures Hef f ~ T % Heff/k there is no closed equation for the 
magnetization, and the shape of the transverse resonance line is determined by the mixing 
effect mentioned in the Introduction. 

3. Linear Susqeptibilities of the Ensemble 

of Magnetic Particles: Exact Results 

We consider the case when the constant magnetic field is directed along the anisotropy 
axis, i.e., the energy of the magnetic particle has the form ~=-H~--D~ z. Then the mean 
static susceptibility of the particle is determined by the expression 

mz~<~,>= i X/o(x)dx=~lnZ=B(~,a), 
- - i  

where I 

i 
/0 = - ~ e x p ( - - ~ / T ) ,  Z =~  exp(-tg/T)dx 

- - t  
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and we have introduced the notation ~=H/T, a=D/T,x=M~. 
I n  t h e  p r e s e n c e  o f  a s m a l l  a l t e r n a t i n g  l o n g i t u d i n a l  f i e l d ,  h z = hz0 e x p ( - - i m t ) ,  t h e r e  

i s  a s m a l l  d e v i a t i o n  o f  t h e  d i s t r i b u t i o n  f u n c t i o n  f rom t h e  e q u i l i b r i u m  f u n c t i o n ,  

5/=(hJT)/o(x)q(x), 

where  t h e  f u n c t i o n  q ( x )  s a t i s f i e s  an e q u a t i o n  t h a t  f o l l o w s  f rom Eq. ( 4 ) ,  

( d ) dq +i__~q=(t_x~)(~+2~x)_Zx ' (7 )  ~ x  + ~+2ax ( l - x 0  d-~ 

where  ~ = ~ / T .  The e n s e m b l e  l o n g i t u d i n a l  s u s c e p t i b i l i t y  • i s  d e t e r m i n e d  f rom t h e  f u n c t i o n  
q ( x )  by t h e  e x p r e s s i o n  

t 

- - I  

Analytic solution of Eq. (7) is possible only in various limiting cases. The most 
interesting case is expansion of q(x) with respect to low frequencies, corresponding to a 
representation of the susceptibility in the form 

%ll=X0tl(t+ioT+ . . . ) ,  

where  ZoII=B'/T and B'=~B(~, a)/O~. Using  l i n e a r  r e s p o n s e  t h e o r y ,  we can  r e a d i l y  show t h a t  
in  (8 )  i s  none  o t h e r  t h a n  t h e  i n t e g r a l  r e l a x a t i o n  t i m e  d e t e r m i n e d  by t h e  a r e a  u n d e r  t h e  

c u r v e  t h a t  d e s c r i b e s  t h e  r e l a x a t i o n  o f  t h e  m a g n e t i z a t i o n  a f t e r  an a b r u p t  change  o f  t h e  
l o n g i t u d i n a l  m a g n e t i c  f i e l d :  

x=y 6m~(t)dt/6m~(O), 
o 

(8) 

where 6mz(t) = mz(t ) -- mz(=). The finding of the terms of the series (8) is facilitated 
by the lowering of the order of Eq. (7) when the expansion with respect to the low frequen- 
cies is made; the value of the integral relaxation time T is given by 

! 

2 f dx 2 
j ~ r (x)//o (x), 

x 

where u = 2~T and @ ( x ) = ~ ( x ~ - - B ) / o ( x ' ) d x  '. 
--I  

The form of the function r simplifies in two special cases. For zero external 
field (g = 0) 

In the isotropic case (~ = 0) 

d) ( x ) : / 0  (x) { l - e x p  [a (t--x2)] }/(2g).  

q) (x) =]0 (x) {cth ~ - -x -exp  (--~x)/sh ~}/~. 

We g i v e  t h e  mos t  i m p o r t a n t  a s y m p t o t i c  b e h a v i o r s  o f  t h e  i n t e g r a l  r e l a x a t i o n  t i m e  ~: 

2 -~s -~, ~=0, a>l, 
i 

T 
?~, a = 0 ,  ~>>t, 

/ l _  2 2 ~ t 2), ~,laj<<l. - ~  + - ~  + -~  

The f i r s t  o f  t h e s e ,  c o r r e s p o n d i n g  t o  t h e  c a s e  o f  a h i g h - e n e r g y  b a r r i e r ,  a g r e e s  w i t h  t h e  
s m a l l e s t  e i g e n v a l u e  A 1 o f  t h e  F o k k e r - P l a n c k  o p e r a t o r  c a l c u l a t e d  by Brown [4] in  t h e  same 
l i m i t .  T h i s  i s  no s u r p r i s e ,  s i n c e  f o r  a h i g h  b a r r i e r  t h e  c o n d i t i o n  A 1 << A n (n > 2) h o l d s .  
In  t h i s  c a s e ,  t h e  m a g n e t i z a t i o n  r e l a x e s  in  a c c o r d a n c e  w i t h  a " p u r e "  e x p o n e n t i a l  w i t h  
�9 -~ = A . The s e c o n d  and t h i r d  a s y m p t o t i c  b e h a v i o r s  c o r r e s p o n d  t o  t h e  a b s e n c e  o f  an e n e r g y  
b a r r i e r Z a n d  t o  low t e m p e r a t u r e s .  I n  t h e s e  c a s e s ,  ~-z  does  n o t  depend on t h e  t e m p e r a t u r e  
and has  t h e  o r d e r  o f  max(kH, XD). The l a s t  a s y m p t o t i c  b e h a v i o r  d e s c r i b e s  t h e  c o r r e c t i o n s  
t o  t h e  h i g h - t e m p e r a t u r e  Bloch  b e h a v i o r .  We n o t e  t h e  n u m e r i c a l  p r o x i m i t y  o f  t h i s  r e s u l t  

(9) 
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to the high-temperature expansion of A~ [4], in which coefficients ~2 and ~2 are equal to 
48/875 and i/i0, respectively. For arbitrary values of the parameters of the problem, the 
use of the integral relaxation time ~ is preferable to the use of A z, since, on the one 
hand, there exists for x the general analytic expression (9), which can be readily 
extended to arbitrary form of the axial anisotropy of the magnetic particle, and, on the 
other, x is directly related to an experimentally observable quantity -- the area under 
the relaxation curve. 

The calculation of the following terms of the low-frequency expansion of the suscepti- 
bility XII (Eq. (8)) would be a too laborious task. On the other hand, the high,frequency 
expansion of XI] is straightforward and can be carried through to high orders, giving 
information about the shape of the line of relaxation absorption. For example, for the 
case D = 0 we obtain 

where 

x,=X0,[r,,l-~+(r,J-~)~+( ,~ l -~s '+  -], (lO) 

" /~B] , B=c th%- l /~ .  (11)  L~=TB/~B, F,~=?[ (~-2B)/~B'I  '/~, F~=7 [ ( B ~ + 7 B - 2 ~ )  ' '/~ 

The values of Fzi are close to each other and coincide in limiting cases: F1i u y for 
<< 1 and Flim y~ for $ >> i. The relative deviations ~ = Ii -- Fzi/Fzl I reach 0.06 for 
-- 2.5, indicating a nearly Lorentzian line shape. 

We also give expressions for the longitudinal susceptibility Xll in the complete 
region of frequencies for D = 0 in the limits H << T and H >> T. In the first case ($ << I), 
the solution of Eq. (7) leads to the result 

1 " (12) 

In the opposite limit (~ ~ I), the calculations give 

r [ I ~ + 2 i~r(3/2F-i~) ] t + -  (13) 

where r = y~. Analysis of the expressions (8)-(13) makes it possible to elucidate the 
nature of the deviation, obtained in the following section, of the longitudinal suscepti- 
bility of the ensemble of single-domain magnetic particles from the Lorentz expression. 

We now turn to investigation of the transverse susceptibility of an ensemble of 
magnetic particles. In the case of a circular alternating field, h x + ihy = h 0 exp(--i~t), 
the correction to the equilibrium distribution function can be expressed in the form 

5 /=  (ho/T)/o(X) [p, (x) sin ( ~ - o t )  +p2(x) cos ( r  ], 

where  T i s  t h e  a z i m u t h a l  a n g l e  o f  t h e  v e c t o r  ~. The l i n e a r  c o m b i n a t i o n  g ( x )  = p l ( x )  -- i p 2 ( x )  
s a t i s f i e s  t h e  d i f f e r e n t i a l  e q u a t i o n  

dg . 
(-~x-4-~+2czx)(i--x2)~x -t--~(~+2ax--ff})g=--)~-'}"l--x~[2)~+2,x(~q-2ax)--i(~+2ccx)] , (14)  

which follows from the basic equation (4). The complex susceptibility Xi is determined 
by the formula 

I 

x• = ~ ~ ~ - x  ~ Io (x) g (~) dz. 
- - [  

For  a sy s t e m  o f  i s o t r o p i c  m a g n e t i c  p a r t i c l e s  (a  = 0 ) ,  a n a l y t i c  s o l u t i o n  o f  Eq. (14)  i s  
p o s s i b l e  o n l y  in  two l i m i t i n g  c a s e s .  Fa r  f rom r e s o n a n c e ,  XI can be e x p r e s s e d  in  t h e  form 
of  t h e  e x p a n s i o n  

Xz=Z0• l+i H_  ~ 71 F\ I-~--~--~ ! "-H+ . . . .  (15) 

where X0• = B(~)/H and 

Fz~=(?/2) (~/B--I), r ~ = ( ~ / 2 ) Y F + 4 ,  (16)  

Thequantities F21 and F2z have equal limits (F2i m y for ~ << I and Fzi m ~g/2 for ~ ~ i), 
and their relative deviation 6 = Ii -- F22/F211 reaches 0.04 when g ~ 3.0, indicating that: 
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Fig. 1 

the shape of the transverse resonance line is nearly Lorentzian. 

We also give the high-temperature expansion of X• 

i 
(17) %• 

As noted in the Introduction, the presence of anisotropy gives rise to a new source of 
broadening of the transverse resonance line associated with the spread of the precession 
frequencies of the magnetic moments in the effective anisotropy field. Since this effect, 
which to a certain degree is analogous to inhomogeneous broadening, appreciably exceeds the 
true damping in real cases, to solve Eq. (14) we can set % = O, after which the result can 
be written down directly for the circular susceptibility: 

t i ~+2~x 
~• = ~- (l-x2)/0 (x) ~+2ax_~_iodX. 

--1 

The final expression for Xi has the form 

z~ = 2T ( 2 f ~ J ) ~  Z 

The v a l u e s  o f  •  a r e  n o n z e r o  in  t h e  i n t e r v a l  (~ -- ~)2 ~ ( 2 a ) 2 ;  a t  low t e m p e r a t u r e s ,  t h e  
s p e c t r a l  d e n s i t y  o f  t h e  f l u c t u a t i o n s  S(~)  = Xi /~  d e g e n e r a t e s  i n t o  na r row peaks .  For  t h e  
e a s y - a x i s  model (~ > 0 ) ,  t h e s e  peaks  a r e  a t  t h e  b o u n d a r i e s  o f  t h e  i n t e r v a l  and have  
d i f f e r e n t  m a g n i t u d e s  when ~ ~ O. I n  t h e  c a s e  o f  e a s y - p l a n e  a n i s o t r o p y  (a  < 0 ) ,  t h e r e  i s  
one peak ( a t  ~ = 0 w i t h  G a u s s i a n  shape ,  c e n t e r e d  a t  z e r o  f r e q u e n c y ) .  As t h e  t e m p e r a t u r e  i s  
r a i s e d ,  t h e  peaks  s p r e a d ,  and in  t h e  l i m i t  T § ~ t h e  s p e c t r a l  d e n s i t y  o f  t h e  f l u c t u a t i o n s  
in  b o t h  models  i s  d e t e r m i n e d  by t h e  p u r e l y  g e o m e t r i c a l  f a c t o r  (2a)  2 - (~ - ~)2.  The 
b e h a v i o r  o f  S(w) f o r  t h e  e a s y - a x i s  model w i t h  ~ = 0 i s  shown s c h e m a t i c a l l y  in  F i g .  1 f o r  
d i f f e r e n t  t e m p e r a t u r e s .  The two maxima in  t h e  c u r v e  o f  S(~)  merge i n t o  a s i n g l e  maximum 
for ~ = i. 

4. Linear Susceptibilities of the Ensemble 

of Magnetic Particles: The Moment Method 

Our investigation has shown that for a system of isotropic magnetic particles the 
deviations of the linear susceptibilities from Lorentzian form are not too large. This 
suggests the possibility of constructing approximate solutions of the Fokker-Planck equa- 
tion in closed form for all parameter values of the problem. To this end, one can use the 
well-known moment method (see, for example, [2,3]), which consists of parametrizing the 
distribution function by means of a certain number of variables in such a way as to satisfy 
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the same number of lowest moment equations of the type (5), (6). In contrast to the well- 
known Galerkin method, we shall find it more convenient to represent the distribution 
function f as the exponential of some polynomial in powers of the components of the vector 
M (see (3)) 

/(M, t ) = Z - '  exp(~(t)M+M(~(t)M+...) .  (18) 

For isotropic particles and small deviations from equilibrium ~(t)=~0§ where ~0=H/T 
and 6~<<~0 (in what follows, we shall generally omit the index in the symbol for 60). The 
remaining parameters of the distribution function (18), including the tensor ~(t), must also 
be small under the considered conditions compared with 60. 

In the first approximation of the moment method, we retain just the single parameter 
~(t), whose dynamics is determined by Eq. (5). For the longitudinal and circular transverse 
susceptibilities, we obtain the expressions 

F, 
%11 =%0, - -  ( 19 ) 

and 

(2o) 
7•176177 H - ~ - W 2  ' 

where the  l o n g i t u d i n a l  and t r a n s v e r s e  r e l a x a t i o n  r a t e s  F 1 and F 2 a r e  equa l  to  t he  p r e v i o u s l y  
i n t r o d u c e d  Flz and F2z ( s ee  the  e x p r e s s i o n s  (11) and (16))o The e x p r e s s i o n s  (19) and (20) 
a re  the  L o r e n t z i a n  e x p r e s s i o n s  wi th  which we must compare the  e x a c t  r e s u l t s  o b t a i n e d  in  
the previous section. 

In the second approximation of the method of moments, we must retain in the expression 
(18) two parameters: ~ and ~, the equations of motion for which follow from Eqs. (5) and 
(6). The result obtained for the longitudinal susceptibility has the form 

F I ' F t " - ~ F ,  (21) 
X,=Z,, (IV-i~) (Fi"-i~) 

The corresponding calculations and expressions for F{ and F~ are given in the Appendix. 
Since F{ is numerically close to F z, the expression (21) is close to a Lorentzian curve. 
It can be Shown that the expansion of (21) with respect to high frequencies reproduces the 
first two terms of the exact expression (i0). Moreover, the expansions of (21) also agree, 
at small ~ to accuracy 62 and large ~ to accuracy 6 -2 , with the exact results (12) and (13). 
The expansion (21) at low frequencies analogous to the expansion (8) makes it possible to 
determine the integral relaxation time in the second approximation of the moment method: 

F,'F," 
x2 -~ = ( 2 2 )  

L'+r" F i -- i 

Comparing the expression (22) with the exact result (9), and also with T[ l = F l obtained in 
the first approximation of the moment method, we can estimate the convergence of the method 
for arbitrary values of the parameter 6 = H/T. Figure 2 shows the dependences of the 
relative deviations 6 = ~i/~z -- 1 of the integral relaxation time from the Lorentzian 
result T z = F[ I as a function of the parameter 6. As can be seen from the graph, the 
largest deviations from the exact result (to which the upper curve corresponds) are 
attained when 6 = 3. These deviations are equal to 0.07 and 0.007, respectively, for the 
first and second approximations of the moment method. Thus, the second approximation of the 
moment method almost completely describes the deviation of XII(~) from the Lorentzian 
expression. The graph of the spectral density of the fluctuations S(~) is everywhere above 
the Lorentzian curve, and the deviation is maximal at ~ = 0 and disappears as w + ~. With 
regard to the real part of the longitudinal susceptibility, for ~ = 0 all the approxima- 
tions give the exact result X011, while for ~ ~ 0 the exact solution lies above the 
Lorentzian result. This can be seen, in particular, from the expansion (i0), in which 
FI2>F~I. 

We could consider similarly the transverse susceptibility X• in higher approximations 
of the moment method. However, the calculations in this case are much more cumbersome 
compared with the longitudinal case because of the need to retain in the expression (18) 
various cost components of the tensor ~. 

The moment method cannot be used to describe the dynamics of a system of easy-axis 
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magnetic particles if the energy barrier is high: 5E m T. The calculation shows that by 
means of the first few approximations of the moment method it is not possible to describe 
the exponentially long relaxation times characteristic of this case. The question of the 
calculation of the transverse susceptibility in the presence of anisotropy in the framework 
of the moment method does not even arise, since we have already obtained a solution that is 
exact in the limit of weak damping. This solution does not correspond to the one found 
in [3] by means of the moment method. 

5. Nonlinear Dynamical Processes in a System 

of Ferromagnetic Particles. The Landau-Lifshitz 

-Bloch Equation 

Our analysis in the previous sections of the linear susceptibilities of an ensemble 
of single-domain magnetic particles has shown that in the isotropic case the successive 
approximations of the moment method give rapid convergence to the exact results for all 
values of the parameter $ = H/T. With regard to the more complicated nonlinear problems, 
it is meaningful, accepting a 5-7% accuracy, to restrict ourselves to the first approxima- 
tion of the moment method. Besides the sharp increase in the number of variables, the 
retention in the expression (18) of the quantities ~ij(t), etc., leads to a further 
difficulty associated with the necessity for numerical calculations to find the various 
moments of the distribution function. This reduces to nothing the advantages of all the 
approximations of the moment method beginning with second as compared with numerical 
solution of the original Fokker-Planck equation (3). 

Thus, restricting ourselves to the first approximation of the moment method, we retain 
in the expression (18) only terms that contain the vector parameter ~ ("thermodynamic 
field"), and we use the chosen distribution function to calculate the left- and right-hand 
sides of the equation of motion for the magnetization (5). As a result, we arrive at a 
differential equation for the parameter ~(t): 

d~ 
d t  - -  [~H]-F~ { 1 -  (~o)/~2} ~ -F~[~[~0]  ]/~2, (23)  

in  which  t h e  l o n g i t u d i n a l  and t r a n s v e r s e  r e l a x a t i o n  c o e f f i c i e n t s  depend on t h e  unknown 
v a r i a b l e  $: 

We recall that ~o=H/T. 
of a particle: 

m=B(~)~/~ .  

Of course, Eq. (23) admits reformulation in terms of the magnetization itself, but the 
corresponding equation is inconvenient for practical calculations, since it contains a 
function that is the inverse of the Langevin function: $(m). 

One further form of expression of Eq. (23) is 

L=2~TB(~)/~B'(~), r~=~T(~/B(~)--i). 

From the solution of Eq. (23) we can calculate the mean magnetization 

(24) 
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- (r -ro ( 2 5 )  
dt 

It can be seen from this that at high temperatures, when $, ~o ~ i and the coefficients 
F l and r 2 become equal (F I ~ F 2 ~ ~ = 2%T), Eq. (25) goes over into the Bloch equation. 
On the other hand, at low temperatures, when ~, $0 m i, the dependence of the magnitude of 
the vector m on g disappears (saturation). At the same time, the term in Eq. (23)that 
describes the relaxation of the vector ~ in magnitude ceases to play a part, and we return 
to the Landau-Lifshitz equation. For parameter values $, g0 ~ 1Eq. (23) describes an 
intermediate situation and can be called the LLB equation. 

The proposed method can be used to investigate, for example, a dynamical problem for 
a system of magnetic particles such as that of the relaxation from some initial state. We 
first demonstrate the possibility of such a description by means of the following example, 
which admits an exact analytic solution. Suppose that a system of magnetic particles at 
zero temperature is in a zero magnetic field, and that the initial distribution function is 
isotropic. After instantaneous switching on of a static magnetic field H the magnetization 
grows with the time in accordance with the law 

m (t) = cth ~ ( i - 2 ~ / s h  2~), 

where t = ~Ht. This same quantity can be calculated approximately by numerical solution 
of Eq. (23). As can be seen from Fig. 3, two curves run close to each other (the exact 
curve is the lower one), and the integral relaxation times corresponding to them are 
I/%H and 0.936/%H. As in the linear case, the difference between these quantities does not 
exceed 7%. 

Having shown that Eq. (23) describes satisfactorily the nonlinear relaxation of the 
system of isotropic magnetic particles, we illustrate its use by the example of the problem 
of the switching of the external magnetic field through an angle 8 at an arbitrary tempera- 
ture. In this case, the LLB equation for the vector ~ can be conveniently expressed in a 
coordinate system that rotates with frequency ~ = H around the axis zIIH. Its numerical 
solution permits determination ofthe time dependence of the magnetization of the system. 
For 8 > ~/2, the behavior of the transverse component of the magnetization of the system, 
m• is very different in the regions of high ($ ~ i) and low ($ ~ i) temperatures. 
In the first case, we have an exponential decrease of m• which corresponds to the 
Bloch equation. For $ m i, we obtain a result that agrees with the Landau-Lifshitz 
equation, i.e., the vector m is rotated, and its projection m• passes through a maximum, 
With increasing temperature, this maximum gradually decreases and at $ ~ 1 disappears. 
The behavior of m• for different temperatures is shown in Fig. 4 ($ = 50, i0, 0~I; 
curves I, II, III, respectively). Note that these results could have been predicted on 
the basis of qualitative considerations. 

Thus, the proposed equation (23) can be used to describe, with a satisfactory degree 
of accuracy, various nonlinear dynamical processes in systems of noninteracting magnetic 
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particles. Hitherto, these questions have been investigated only in various limiting 
cases (see, for example, [6]). 

The LLB equation is also valid for description of the dynamics of a system of mutually 
interacting magnetic particles in situations when the static properties of the system can 
be satisfactorily described by mean-field theory. To take into account the interaction in 
the LLB:equation, it is necessary to replace the external magnetic field by a self-consistent 
field, which depends on the magnetizations of the particles that are the neighbors of the 
considered particle. If the magnetization varies weakly over the mean interparticle 
separation, the LLB equation reduces to a differential equation with respect to the 
spatial variables. Such an equation admits a parallel with the well-known Landau-Lifshitz 
equation for an ordinary ferromagnet and indicates a way in which this last can be 
generalized to the region of higher temperatures T ~ T c. 

We thank D. N. Zubarev, V. S. Lutovinov, A. A. Minakov, and V. G. Morozov for a helpful 
discussion of the results of the paper. 

Appendix 

In the second approximation of the moment method, construction of the function f(M) 
requires us to retain the parameters ~ and ~. In the case of the linear longitudinal 
susceptibility, thereare two time-dependent variables: 5~(t)=~e -i~t and a~(t)=ue-i% which 
are chosen in such a way as to satisfy the linearized equations for <~z > and <~>. As a 
result, for $ and ~ we obtain a system of two algebraic equations: 

~(rri~)+Al~(P~-im)=hoP~/T, $(P3-io)+Aza(r~-i~)=hoP3/T, 

where 

~(~o-3B) 4(3B-~o) +B~o ~ 6 ( B - ~ B ' )  6(~o(l+B')-4B) 
r ~  = , F ~ = ' I -  , A t  = ,, A2 

B-~oB' ~o(I+B')-4B B'~o 2 $o(B-~B' )  

The l o n g i t u d i n a l  s u s c e p t i b i l i t y  XlJ c a n  b e  e x p r e s s e d  i n  t e r m s  o f  t h e  p a r a m e t e r s  $ and  a a s  
follows : 

I i 
XJJ = - - - -  B ' [ ~ + A ~ ] .  

T ho 
From this it is possible to obtain the expression (21), in which the relaxation parameters 
are determined by the expression 

! , [ l , ,~  _ l 

2 ( l -R)  

where R = AI/A 2. 
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