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§1. Introduction

Let g be a finite-dimensional simply laced simple Lie algebra over C, let § be the correspondmg affine
Lie algebra, i.e., the one-dimensional central extension of the current algebra g5 = -4gt74gt7 +
g+gt+gt?+..., and let K be a central element of §. We will deal with mtegrable representations of
the Lie algebra @ from the category O of representations with highest weight, where K acts by a scalar
k (the number k is called the central charge or the level of a representation). An integrability criterion
can be stated as follows. Let us fix a Cartan decomposition g =ny @@ n_. Let o be an arbitrary root
of the Lie algebra g, let e(c) be a nonzero element of g from the root space attached to «, and let us put
ei(a) = e(a) - ¥ and S’.gkﬂ)(a) =D i ipgpa=i €01 (a) ...€i 4 (). The infinite expressions S§k+1)(a),
i € 7., act on representations of § from the category O, and a representation V of level k is integrable if

and only if k € Z, k > 0, and all expressions S§k+1)(a) have the zero action on V. In other words, the

elements Sng) (a) generate a two-sided ideal in the completed universal enveloping algebra ﬁ(ﬁ), and
this ideal annihilates the integrable representations of level k.

Now let us restrict ourselves to the vacuum irreducible representation Vi of level k. Let v be the
vacuum vector of Vi. Then g"v = 0, where g'" = g+ gt +gt> +.... Denote by iy = --- +nyt™1 +
ny +nyt + -+ C § the Lie algebra of currents with values in the positive nilpotent subalgebra of g.
The main role 1n our investigation is played by the subspace W = U(fi;)v C Vi. The space W can be
identified with the quotient space U(fy)/Ix, where I is aleft ideal of U(ny). The structure of this ideal
is described by the following theorem.

Theorem 1.1.1. I = U(fiy) 8P + Ji, where @if = 4, Ng™, and Ji 1s a two-sided ideal generated by

the elements S§k+1)(aj) (the ezpressions from Ji are finite modulo i), where o are the simple roots
of the Lie algebra g, 7=1,...,1, and | = rankg.

This theorem provides us with a rather cumbersome construction of the dual space of W (see Con-
struction 1.1.2). First we describe this construction in the simplest case g = sl.

Let Q'C = C[z]dz be the space of polynomial 1-forms on a line. The symmetric power S"Q!C of
it is realized in the space of expressions f(zi,...,%n)dzy...dz,, where f(z1,...,2,) is a symmetric
polynomial. Let us define the “restricted symmetric power” of the space Q' C as the subspace S (k _H)Ql(: C
S™QIC that consists of the expressions f(z1,...,Zn)dz;...dz, such that the polynomial f vanishes
for 21 = 29 = --- = x4+1-. It is clear that S(.k _H)QIC is a commutative coalgebra. We claim that
StranQC W™,

This result can be used to describe the irreducible representation Vi as a linear space. Recall that, in
Vi, there is a family {vn, n € Z} of so-called extremal vectors. The translation subgroup Z of the affine
Weyl group of sl; acts on Vi, and {v,} is the orbit of the vacuum vector under this action. Consider the
family of subspaces W, = U(fi4+)v,; we have Wy, ~ W,,, and the isomorphism is given by the action of
an element of the affine Weyl group. On the other hand, there is a sequence of embeddings

‘(_—)WlL_"WZWQ‘—“)W_l"““)W_QC—‘)...,

and Vi is the inductive limit of this'sequence. Informally, this means that it is possible to define the
“semi-infinite restricted symmetric powers” of the space Q'(S') of 1-forms on a circle, so that the space

. EF: C .
W_eo = Vi is dual to P,z 5% +1‘)(Ql(51))_ In some sense, these “semi-infinite restricted symmetric
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powers” are very close to spaces of semi-infinite exterior forms, but the construction of “symmetric powers”
is less transparent. The character formula for the space V;, arising from the “semi-infinite realization” of the
representation coincides with the “parafermionic” formula of Lepowsky and Primec [3]. The relationships
between the semi-infinite construction and parafermion algebras are still a riddle for us.

Now we pass to the case of an arbitrary Lie algebra g.

Construction 1.1.2. Consider the Z'-graded vector space M = @ Mu, ... m;, mi €Z, m; >0,

Mu,,..m = {f(:cl(al), v (1) zi(az), oo Ema(a2); s za(ar), - Ty (1))

« ] (aitew) = 2y [T o) .

il<jl

Here f is a polynomial in the variables z;(c;) symmetric with respect to each group of variables
{zi(a1)}, ..., {zi(ar)}. The space My, .. ,m, can be considered as a component of the “extended sym-
metric power” of the space F'= M o,...0®Mo,1,0,...,09 - -® Mo 0,...,0,1 - We call the space M “extended,”
because M is larger than the symmetric algebra of F: the expressions from M may have poles of order
one on diagonals z;(ay) = z;(aj). Now we add the “Serre relations.” Let A = (A;;) be the Cartan
matrix of g. Let us introduce the subspace M = @ My, .. m of M, where My, . m; C Mm,, .. m,
consists of the expressions in which f vanishes provided z;(a;) = z3(a;) = - -- = 21_4;; () = z1(e;) for
some 1 <1i,j <!, i# j. Weclaim that M is naturally isomorphic to the dual space of U(fi.)/U (Ry)Rin.
Finally, let us describe W* = (U(fi4)/Ix)*. It is a graded subspace of M, Woooom C My, ...m, , and
an element of M belongs to W* if f satisfies the following additional condition: for each 1 < i < the
polynomial f vanishes for z1(a;) = z2(;) = -+ - = z41(ai).

The “functional realization” of the space W* thus obtained leads to a character formula for this space.
Let Lo be the energy operator. First, let us consider the case &k = 1. Then
g3 2 Aiimim;

TN = Y e

my,...,m; >0

(1.1.3)

Here (A;;) is the Cartan matrix. For a general k the formula has the same form, but [ is replaced by
Ik, and (A;;) by the quadratic form with the matrix A ® §;1, where A is the Cartan matrix of g,
and By, is the symmetrized Cartan matrix By (cf. 2.7.3). Note that formulas of this kind appeared in the
papers [11-14], where they described the character of the space of quasi-particles in the thermodynamic
Bethe Ansatz. '

The same scheme as in the case g = sl leads to a description of the space Vi, given the description of
W*, and to the following character formula for Vj: '

i j 1) O]
3 X Aile(, )Nl(’J)le:p Ny L zlzp Ny

1 2
Vi = 5 oo T (1.1.4)
o0 Nl(")Z...ZN‘E‘)EZ Hi:l p=1 q Ng")_N;‘ll
i=1,...,1
(where the powers of z1,..., 2 correspond to the weights with respect to the Cartan subalgebra h C g,

and the powers of ¢ are eigenvalues of ‘Lg). This formula describes the decomposition of the space Vi
into irreducible representations with respect to the homogeneous Heisenberg subalgebra h.

Finally, note that the above results can be generalized to the case of a non-simply-laced Lie algebra g.
In Theorem 1.1.1, one should replace S’fkﬂ)(aj) by Sf”kﬂ)(aj) if the root a; is /s times shorter
than a long root (s = 1, 2, or 3). The same change (the replacement of k + 1 by »k + 1) must be
done in Construction 1.1.2. The character formula for Vi suggests the idea (according to a remark of
E. B. Vinberg) that g is realized as the fixed-point algebra of a diagram automorphism of a simply laced
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Lie algebra g; [4], and the representation Vi of § is realized as a subspace in a representation of §; . For
example, here is the character formula for g of type Bj:

M2 3> NO(NE) 4 NP N2 ZN(” ZN(”
ZN 21 (NGl + )+E

1 ¢= 7 A7 5
1 2
chVy = O > : kﬁl( ) 21ﬁ1( \ ' (1.15)
o0
N®>..>NVez q) N (1) _ (D) Q) (2 _ (@) -
Ni(z)z...ZN;zi)eZ p=t P TNed1 poy T

In this paper only the case g = sl; is discussed in some detail (see §2). The general case is much more
technical, and we hope to tell more about it in our forthcoming paper. Note that the notion of semi-
infinite restricted symmetric powers is not fully developed here even for g = sl;. This notion deserves an
individual investigation, and we hope to realize it in the future.

The second subject of the paper is related to the geometry of the flag manifold of the Lie algebra g.
Let F = G/B+ be the flag manifold, 1 the unit coset, and M the closure of the orbit N+ 1, where
the subgroup N+ C G consists of the currents taking values in the unipotent subgroup Ny C G with
the Lie algebra ny . The irreducible integrable representation V with highest weight A is realized in the
dual space of the space of sections of a holomorphic line bundle Ly on F. The space W = U(fi;)v (v
being the vacuum vector) is dual to the space H°(M, Ly). Hence, we can use geometric methods when
we deal with W. In §3, in the case g = sl;, we apply the holomorphic Lefschetz fixed point formula to
determine the character of H°(M, Ly). The variety M is nonsingular in the case g = slz. (As is well
known, applying the same method for the full flag manifold, instead of M , one obtains the Weyl character
formula.) We also write down a Demazure type character formula for W and obtain the same result.

Thus, we have two character formulas for W: the first formula is a consequence of the functional
realization in the space of symmetric polynomials, and the second one is given by the Lefschetz or Demazure
formula. A comparison of these two expressions gives the Rogers-Ramanujan identities (for k£ = 1) and
the Gordon identities (for a general k).

In §4 we discuss the case g = si3. For g = s{3 the variety M is singular, so the fixed-point formula,
is much more complicated. We are unable to write down the whole formula, but we state a conjecture,
which implies that the specialization (Tr ¢“°|w) of the second character formula for W coincides with the
Kac formula for the character of the vacuum irreducible representation of the algebra 5, with the same
central charge.

An extended version of this text is published as a preprint [10].

We are grateful to V. A. Fateev for helpful discussions with the second author about the relationships
of our subject with the theory of S-matrices arising in deformations of conformal field theories.

We dedicate this paper to Izrail Moiseevich Gel'fand on the occasion of his 80th birthday.

§2. The Functional Model: the Case g = sl,

2.1. Notation. The Lie algebra sl; has the standard basis e, f, h, and the Lie algebra sl =
sly @ C[[t, 7] @ (K) has the basis consisting of e; = e @ t*, fi = f®@ ¢, h =h®t, i€ Z,and the
central element K. In this basis the bracket is given by the formulas

[K,e]=[K, fi] = [K,h] = [ei, ¢5] = [fi, fi] =0,  [hi, &j] = 2ei45,
(i, fi] = =2fixjs e, fi] = hij +iK8i —j,  [hi, hj] = 2iK6; ;.

In the triangular decomposition sl, = n_©hdn, wehave § = (ho, K), 0y = (e;, fi, hi 1 i > 0)+{eo),
and n_ = (e,, firhi 11 < 0) + (fo). The root vectors corresponding to the simple roots are ey and fi.
The algebra 5[2 is a graded Lie algebra: dege; = degf; = degh; = i and deg K = 0; the degree of an
element 7 is called the energy of . The affine Weyl group Wog = Zs X Z consists of the integral shifts
on areal line T, n € Z, and of the reflections S, n € Z, with respect to the points n/2. The reflection
Si, 1 > 0, corresponds to the root vector f;, and the reﬁectlon S_i, 1 2 0, corresponds to the vector e;.
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The weights A of graded representations of sl, are given by triples of numbers A = (m, A, k), where
m is the energy, A = A(ho), and k = A(K). The action of the Weyl group on the set of weights is given
by the formulas

Tn - (m, A, k) = (m — An — kn® X+ 2kn, k), So-(m,\, k) =(m, =\ k). (2.1.1)
In particular, T,, acts on the root vectors as follows:
Ta(ei)Ton = (€i-2n),  Tn(hi)T-n =(hi) (i#0),  Tu(fi)T-n= (fir2n)- (2.1.2)

The Virasoro algebra acts on the algebra sl, and the integrable representations of it belonging to the
category O:

1
Tak+2) ,,;:,-(eafﬂ +Jacs + hatal2) (2.1.3)

[Li, e5] = jeivj, [Li, fil = 3fitj, [Lishj] = jhiyj.
Let us also introduce the “half-sum of positive roots of sl,” p=1(0,1,2).

2.2. The basic representation of sl, is the irreducible representation V' with highest weight Ao =
(0,0,1). It is the quotient module of the Verma module My, with vacuum vector ¢ by the maximal
submodule Msg«x, + Ms, 41, (here the action of an element w € Wog on a weight A is defined by the
formula w * A = w - (A + p) — p). The corresponding singular vectors in My, are foo and e ;9. Denote
the image of ¥ under the projection My, — V by v.

Let fi = (e) ® C[[t, ¢7?] be the abelian subalgebra in sl, with the basis e;, i € Z. Define the principal
subspace W C V by W = U(f)v. In fact, since e;v = 0 for ¢ > 0, only the algebra U(n°"*) =
Cle—y,e—2,...] acts nontrivially on v. Hence, W = (Cle~1,€e-2,...]/I)v, where I is an ideal in
Cle-1,€-2,...]. We know that e2; € I.

Theorem 2.2.1. The ideal I is generated by the polynomials S_p = > eje_k—;, k> 2.

This theorem will be proved in §3. Now we explain only the reason for S_; € I. From the explicit
formula (2.1.3) it follows that L_jv = 0. Hence, (k —2)!S_xv = £[(ad L_1)*~2(e2,)]v = 0.

Remark 2.2.2. In general, the infinite expressions Sm = 2, ._, eie;, which are coefficients of the
formal series (D;c5 eiz')? = e(z)?, act on arbitrary representations of sly from the category O. It is

known that if the central charge is equal to 1, then all S,, act trivially on an integrable representation:
e(2)? =0 (cf. §2.4).

2.3. The space W is the direct sum of its weight components: W = @ W(, »,1). In order to evaluate
its formal character ch(W), which is equal to Y ¢tzf dim W(—i,2j,1) by definition, we now introduce a
convenient description of the dual space W*, and this will be called the functional model.

The vector space f°" = (e;);<o consists of “singular currents” ¢(z) ® e with values in the subalge-
bra ny C sly, where o(z) is a polynomial in z~! without a constant term. The dual space (A°"*)*
is naturally identified with the space of polynomial 1-forms Q!C (with gradation degz"dz = n + 1).
Hence, U(A°")* ~ @rso(S*A)* =~ @, S¥(Q'C), where S¥(QIC) is the space of the expressions
f(z1,...,zx)dzy ... dzy such that f(zi1,...,zx) is a symmetric polynomial, and different dz; commute.
We will call S*QIC “the space of k particles.” The pairing of S¥Q'C with S¥fi°"t is given by the formula

(fdzy...dzy, (p1Q¢€) ... (pr®¢€)) = Resg,=zgp=0(f(z1, ..., Tk)01(21) .. . (k) dzy ... dzr). (2.3.1)
The space W* = @, W* N S*(QIC) is a subspace of 5*(Q'C), and Theorem 2.2.1 easily implies that
W*n SEHQC) = {f(z1,...,zk)dzy ... dzg : f =0if 21 = z2}.
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Fig. 1

(In terms of particles: the function must be zero if two particles coincide.) Thus,

W*:éwg,

k=0

where

k
Wi = {g(a:l yeeey Tk) H (z; — z;)° H dz;, g(z1,...,x) is a symmetric polynomial} i (2.3.2)
i=1

i<j
o0 o0 qkzzk
= ;= : 2.3.3
W ;Chwk ,;(I—Q)(lﬂqz)---(l—qk) (2.3.3)

For z =1 and z = ¢, these are the left-hand sides of the Rogers—Ramanujan identities.

2.4. Now let us apply Theorem 2.2.1 to describe the whole representation space V. Let n € Z, and
let v, = Tpv be the nth extremal vector of this representation. By (2.1.1), the weight of v, is equal
to (—n?,2n,1). Consider the space W, = T,W = U(f)v,. Obviously, ... C Wo C Wy C W, =
WcWoicC...and V=UW,= limW_y (see. Fig. 1). From Theorem 2.2.1 and formula (2.1.2) it
follows that W, = (Cle—an-1,€-2n-2,...]/In)vn, where I, is the ideal generated by the polynomials
Sm, m < ~4n—2. Thespace Wy = (Cle_1,e_3,...]/(e2;,e_1e_2,2e_1e_3+e%,,...))v is embedded in

W_1 = (Cle1,e0, e~1,...]/(€3, e1€0, 2e16—1 +€%,...))v_1 via the homomorphism of Cle;}-modules that
maps v to e;v.;. Furthermore, ejv_; = ejesv_g = ejezesv_3 = ... . Any vector of the space V is a finite
linear combination of expressions of the form e;, e;, ... e, v_n = €, €4, ... €, €any10-N_1 = ... for N suffi-

ciently large. Now let N tend to infinity, i.e., let us substitute the expression ezny1€2n43€2n45 -+ . Voo (in
an absolutely formal way) instead of v_y. We obtain the following description of the basic representation.

Theorem 2.4.1. Let V be the vector space with the basis consisting of infinite “monomials” m =
€i)€iy - - €2N+1€2N+3 - - - Voo SUcCh that, starting from some position, the successive symbols e; are indezed
by successive odd numbers 1 =2N +1,2N +3,2N +5, ..., and it is assumed that

(i) different e; commute (i.e., €; €iy... €54 ... V0o = €, €4, ... € €ix -+ Veoo)}

(ii) ¥f a symbol e;, with the index ix > 2N appears before the stable part exnyi€ants...v-co Of @
“monomial” m = e; €;, ... €anp1€2N43 ... Voo, then m =0 ( “repulsion rule”).

The infinite ezpressions Sy, = Ea+ﬂ=m eqeg, m € Z, act from the left on the space V. Let V

il

V/(S’m)v be the quotient space by this action. Then in the space V the basic representation of sl is
realized, and the elements e; act in an obvious way (by multiplication from the left).

59



Remark 2.4.2. The symbol v_., stands for the “extremal vector at infinity.” The vector v_y is
annihilated by the subalgebra W™ = T_yn; Ty = (fi,i > —2N; h;,i > 0; ¢;,i > 2N). As N tends to
infinity, the subalgebra ni" tends to n7® = (fi,i € Z; hi,i > 0). Therefore, it is natural to consider
that the “vector” v_o is annihilated by the subalgebra n;*. But, in fact, v_o is annihilated by the

larger subalgebra b= {fi,hi,i € Z}. We will try to explain this viewpoint in the next subsection.

2.5. It is natural to try to construct the action of sly on the space V of Theorem 2.4.1 independently
of the preceding exposition. The action of the part (h;,¢ > 0) of the algebra n]* is reconstructed
automatically from the condition hi(v_) = 0. For example,

hi(erezes ... v_oo) = [hi, €1] €365 ... Voo + €1hi€3E5 ... V0o
= 2€;41€3€5 ... V0o + 2€1€;43€5 ... Voo + -+ €1€3€65... AV -0 .
All summands, except for the latter, are zero by the “repulsion rule” from Theorem 2.4.1, and the latter
one vanishes because of the equality hijv_oo = 0. (Of course, such “reasoning” simply expresses the fact

that h;v_n = 0 for N sufficiently large.) Similarly, the action of the operators f; € n,* reduces to the
action of hj, due to the condition fiv_o =0.

Thus, it remains to construct the action of h; for : < 0. A surprising (though easily explainable) fact
is that the operators h; also act by the rule h;v_o = 0 in this case. (In other words, the symbol v_
in the notation of the “monomials” can be omitted; thus, the construction 2.4.1 is somewhat close to the
constructions of semi-infinite forms.)

Let us give an example. A calculation gives h_jv = egv—; in the basic representation. On the other
hand,

h_1(61€365 R 'U—oo) = 2€0€3€5 ...Vmpo + 2€1€2€5€7 .. . Vg + -+ €1€3 ... h1V_0o .

From the relations Sszeser...v_oo = S7€7€8...0_oo = -+ = 0 it follows that

€p€3Es ... Voo = —€1€2€5€7 ... Voo = €1€3€4€ETEY .. . Voo = .+ .. &
Thus, if we put 2epeges ... v = a, then

h_i(ereses...v_)=a—a+a—a+---+ereses...h_jv_.
It is natural to consider that the sum of the series a—a+a—a+... isequal to a/2, which is just equal
to egeseser...V—go = €ov~1 = h_jv. Therefore, we must realize that the operator h—; obeys the rule
h..] Voo = 0. ‘ '

2.6. It is much easier to work with the principal space W and with the space V from Theorem 2.4.1
if bases of monomials are chosen in these spaces. A monomial e;, ...e;,v € W is said to be reduced if
i < i3 < -+ < i, < 0 and, moreover, ix41 — ik > 2 for all k. A “monomial” m = e;,€;,€i; ... V00 18
said to be reduced if ix41 —ix > 2 for all k.

Proposition 2.6.1. (a) The reduced monomials form a basis of the space W .
(b) The reduced “monomials” form a basis of V.

Part (a) can be easily deduced from Theorem 2.2.1; (b) follows trivially from (a).
From Proposition 2.6.1(a) one can get another proof of formula (2.3.3) for the character of the space W.

Now we evaluate the character of V. Let us introduce the standard notation
) oo

@r=01-¢)(1—¢*)...(1—¢*) and (9o =][J(1—¢").

=1

Then we have
2

chW_y = ch(T_yW) =T_ych W = 3 2 (see (2.1.1)),
n=—N (Q)n+N
A
hV = lim chW_y = —— n?m, 2.6.2
C NEHOOC N (q)oo nzz_:ooq ( )

We have obtained the well-known character formula for the boson realization of the basic representation.
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2.7. The results of 2.2-2.6 can be easily generalized to other irreducible integrable representations of
sl, with highest weight. We will present the corresponding statements here.

In this subsection, V is an irreducible representation of sty with highest weight A = (0,1, k), where k
and | are integers, 0 <[ < k, v is the vacuum vector, and W = U(#)v = (Cle-1, e-2,...]/T)v.

Theorem 2.2.1'. The ideal I is generated by the polynomials ek'H ! and
SHD > €orC€as -+ Capyrs L2 k1.
ajtogttagpr=—1
The proof of the theorem will be given in 3.4.
Remark 2.2.2". e(z)F*! =0.
One has the following analog of (2.3.2):
e o]
=D W,
m=0
where
Wy ~{f(z1,...,zm)dz1...dzm, f is symmetric,
f=0ifz, =20 =--+=zp41 (for k+1<m)
andif 21 =22 =+ =241 =0 (for k~ 1+ 1 <m)}. (2.3.2")

(The function vanishes if k+ 1 particles coincide or k + 1~ particles coincide with zero.) The character
formula for W is given by

chW = i >y

m=0 N;>--->N;>0 (q)N1—N2 (Q)Nz—Na o (q)Nk—x“Nk (Q)Nk .
N1+ FNy=m

ZmH/2gNE 4+ N+ Niwrgr o4 Ni

(2.3.3")

We will give a sketch of the proof of this statement.
For simplicity, we will assume [ = 0.

Theorem 2.7.1. The character of the space Wy = {f(z1,...,2n)dz1...dzy, [ is a symmelric
polynomial, f =0 for z; = 9 = -+ = zg41} with gradation deg(ar:i1 coztmdry L odzy) =Yt +m s

equal to
* q
chW = .
" N1>.§Nk>0 (@)ny=va (Do =3 -+ - (DN i (D,
Nif--FNe=m

NZ4-+NZ

Sketch of the proof. Let p = (p1,...,ps) be a partition of the number m, p; > --- > p, > 0.

Let Up = {f(z1,...,2m)dzy...d2y, [ is symmetric, and if we have simultaneously z; = z; =
= Tpyy Tpy+l = 0t = Tpydpes Tpidpatl = 00 = Tpydpatpss s Tpiteotpeaatl = 00 = T, then
flz1, ... zm) = 0} C S™QIC. Define a filtration of S™Q!'C by the subspaces F, = ﬂp,>p Up,
where the set of partitions of m is ordered lexicographically. Clearly, W, = Uy = Fp(k):where

pk)y=(k+1,1,1,...,1).

The associated graded quotient space (GrF'), can be identified with the space of polynomial forms
©(z1,...,25)(dz1)P* ... (dzs)P* of the variables 2y = z; =23 = - = Zp,, 22 = Tp,41 = *** = Tp,+p,,

.y Zs = Tpytetpo_141 = **- = Tm (the particles have combined into s groups, p; particles in the ith
group), such that

(1) if p; = p;, then ¢ is symmetric with respect to z; and z;;

(2) ¢ vanishes on the diagonal z; = z; with some multiplicity ;.
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The multiplicity s;; can be calculated by forgetting all variables z; except for the two groups of
variables corresponding to z; and z;. Let p; > p;. Considering the component (GrF)(,,,,,) for the
filtration F' on the space of symmetric functions of p; + p; variables one can easily see that s;; = 2p;
(= deg Sym []1Z,(z: — zp,4¢)?, Sym is the symmetrization over z;, ... y Tp;+p;)- Thus,

(GrF)p ~ {cp(zl yeeesZs) H(z,- — 2;)?Pi(dz, )Pt ... (dz,)P*, where, for each r € N,
i<j @ is symmetric with respect to the variables z; for which p; = r}.

Let n, be the number of summands of the partition p equal to r. Then
Z.‘<,‘ 2p;+3; pi qZ, Nf
I1,(g)n, "~ (@n N2 (DNa—ns N ()RR

ch(Gr F), = 2

?

where N, =n, 4+ n,y; + ... are the summands of the partition that is transposed to p.
Summing over p and m, we get the “Gordon identity for k = co™:

1 = N7
chS*QC= —— = > . (2.7.2)
(2)eo (N:...N,..000...) (@)1 N2 (@)N—ns - -
Ny>-->N,=0

The desired character of W, is obtained by summing of ch(Gr F), over all p < p(k), i.e., p; < k for
all ¢. In the partition transposed to p we have Npy3 = Ngy2 =--- =0, and this gives the formula from
Theorem 2.7.1.

Remark 2.7.3. The matrix of the quadratic form

k

Z(nr + gyt 0+ nk)2 = Zrni + Z 2rn,ng

r=1 T r<t

is inverse to the symmetrized Cartan matrix

2 -1 0 ... O
-1 2 -1 :
Br=1] 0 -1 0
: .2 41
0 0 -1 1
Therefore, if we put
qZAejninj

o= Y e

ny,...,0520

then we see that we have proven the relation ch W(g, 1) =¥ Bt (9).

Theorem 2.4.1'. The irreducible representation of sly with highest weight A is realized in the quotient
space V/(S’z-(k"'l)),-ezv, where V' is the space with the basis consisting of “monomials”

I k=1 1 k-1
€i; €ip - - - CaNCoNt162N+2C2N43 -0
such that
(1) different e; commute,
(ii) if a “monomial” m = ej,eiz€i, ... contains a symbol e;; with 1; > 2N (resp., i; > 2N + 1) before
the stable part of the form eéNe;“;_l,_l ... (resp., e;‘;_ll_leéN“ ... ), then m =0.

The elements e; € sly act on V' by left multiplication.
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Proposition 2.6.1'. We say that a monomial e;, ...ei,,v € W (eiy€iy - € V) is reduced +f 11 <
< i <0, imepyr < —1, and 1545 —1j > 2 for all j (respectively, i1 <ip < ... and ijpx — 15 = 2
for all §). Then the reduced monomials form a basis of W (respectively, V).

Finally, we obtain the following character formula for the representation V':

N2+ NZ+Ne~i41++Ni y N1t +Ne+1/2

MV = Yoo

(@)oo N1>--->Np€Z (Q)Nl—NQ(Q)NQ—NS e DNy~ (2.6.2")

Remark 2.7.4. One can easily see that the character formula just obtained coincides with the “para-
fermionic” formula from [3]; for the case [ = 0 it has the form

k-1
J=0

in the notation (2.7.3) (A;~, is the inverse matrix to the Cartan matrix Ag—1).

= 1
qz 7/ dlmV(_i 25,1) = ( ) \IIA;_ll(q)
=0

k2

§3. Semi-Infinite Schubert Cells: the Case g=sl,

3.1. Let G = SL(2,C), let G = ﬁ(Z Clt,t7]) be the central extension (with the help of (C*) of the
G-valued current group, let B4 be the Borel subgroup in G with Lie algebra b, , and let F = G /By be
the flag manifold of G. We will consider F as an infinite-dimensional complex algebraic variety.

The irreducible integrable representation V' of the Lie algebra § with highest weight A is realized in
the space H°(F', Ly)*, where Ly =G xB, C(_a) is the holomorphic Borel-Weil line bundle on F (5, 6].

To the principal subspace W C V there corresponds the principal subvariety M = N-1CcF , which is
the closure of the orbit of the unit coset under the action of the group N of currents with the values in the
group of upper triangular matrices from SL(2,C). The inclusion map W — V is dual to the restriction
map for sections H°(F, Ly) — H°(M, Ly). To verify this statement, we note that M = lir__}nMn, where

M, = B} -1, B} = T,,B,T_, (the limit is taken in the sense of algebraic geometry), and a similar
fact for the finite-dimensional variety M, (and the Lie algebra b} instead of i) does not differ from the
well-known theorem for the flag manifold of a finite-dimensional complex semisimple Lie group [15, 16].
Our statement is now obtained by passing to the limit over n.

The same reasoning verifies that the higher cohomology groups of M with coefficients in Ly|a vanish
and that the Atiyah~Bott-Lefschetz fixed-point formula, for the action of the maximal torus T = TxTx T
of the group T x 517(2) , which is the “compact form” of C* x @, can be applied to (M, La|ar).! (Here the
extra factor C* corresponds to the gradation according to energy on V and to the letter ¢ in character
formulas.)

Combining the Lefschetz formula with the triviality of H*(M, La|s) for i > 0, we obtain the following

character formula for W: _
weA

W= Y - € et (3.1.1)

wEWatrOM p is a weight of T, M

(Recall that the Weyl group W,g = N(T)/T is included in F ~ (T x @(2))/T)

3.2. Theorem 3.2.1 (the structure of the variety M).

(1) M is nonsingular.

(2) MO Wag ={Tn: n>0,S,: n>0}.

(3) The set of weights for the action of the mazimal torus T on the tangent space of M at a point
€

w € Wag N M 1s a subset of the set of roots of §. The corresponding root vectors are

tDespite the fact that the varieties My, are singular, one can write an analog of the Atiyah-Bott~Lefschetz formula for
them. See 3.5.
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forw=T,, n>0: {e~;,1>2n+1; fi,n+1<:i<2n; h_;,1<i<n};

for w=258,, n>0: {e~i,1>2n; fi,n<i<2n—-1; h_;,1<i<n—1)}.

(4) The stratification of the flag manifold by the orbits of the group N_ induces a stratification of M :
M=|],ewpomYe, Yo=N_wnM, and

(i) Y., is a contractible subvariety, codim Y7, = codimYs, = n;

(ii) Y, and Ys,,, are n-parametric families of N -orbits of codimension 2n and 2n + 1 respectively,
and a transverse subvariety to the family Y,, (w =T, or Sn41) is given by the formula

(I+dit™ 4+ dpt™m)? 0 .
(dl’“"d”)H( 0 1+dit~ 4o ddpyt™ )

(ii) Y7, = Umsn Y7 Umsy ¥s,, and Ys, = Umsn Ysm Umsn Y1, » where Y1 is a subfamily of
N-orbits in Y7, of codimension 1 that consists of orbits with parameter d,, = 0.

To prove the theorem, let us choose the following representatives of cosets w € Wog = N(T)/T (and

denote them by the same letter w): T, = (t; t?,) , Sp = ( t(’)‘ —i)— ) . The manifold F is covered

by coordinate charts F = UweWm Uw, Uo = wN_-1~N_. A direct computation in coordinates U,
proves all statements of the theorem.

—-n
For example, let w =T, = (to tg) . An element w (‘cl 3) € wN_ -1, where a = 1 + a1t~ +

at 4., b=bitT 4 bt c=coteat™ +...,d=1+d1t7" +..., and ad —bc = 1, belongs
to N -1 if and only if, for some Laurent series p = p;¢~' + pst~2 + ..., the matrix

1 p t™™ 0 a b\ [(at™"+ct"p W74 dt"p
<01><0 w)(cd)‘( ctn at (322)

liesin B4. If n < 0, then the series dt” = t™ + d1#"~1 + ... cannot belong to C[t]; therefore, N-1n
U, = @. Now let us discuss the case n =1 in detail, in order to illustrate the phenomenon of imaginary
roots appearing in the tangent space T, M . The condition “matrix (3.2.2) lies in B;” means in this case
that we have

c = Cp, d=1+d1t—1,
t tat 2 tast ™+ teolpr o2t +...) = copr,
blt—z + bzt—3 A4 + (t + d])(plt_l +p2t—2 + .. ) =pD1.
If ¢ = 0, then the third equation cannot hold, and p does not exist. But if ¢g # 0, then the third
equation determines ps, ps, ... uniquely, e.g., p» = —1/co. Equating the coefficients of ¢t™! in the

fourth equation, we get p1dy = —py = 1/co. Therefore, d; # 0 is also necessary. Conversely, if ¢g # 0
and d; # 0, then let us define p; by the formulas

1 1 ) a;—9

for i =3,4,.... (3.2.3)
. CoP1 i
Then the matrix (3.2.2) has the form ( ot dy 4t

to 1, whence z = p; and the matrix lies in B4, q.e.d.
Thus, we have

) , and its determinant cop;(di 4+ t) — zcpt is equal

~ 1 tT 4. bt
N-10UT1={T1-( +a160+ i_*_dj.t_l)'lico,dl?éo},

_ a bit7l4... _ a bt bt 4+
MNUn = {T1.<Co 1+dt1 )1} B {(cotz 14 dyt~t hiy
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Fig. 2

In particular, M N Uy, is nonsingular; moreover, we have proved part (3) for w =T7.
The hyperplane {¢o =0} C M N U, is

. 3 . (1 +d1t_1)——1 0 .
vn=|J N ( 0 Ldyemt ) T
d, €C

The hyperplane {d; = 0} is the intersection Ur, NY s, ; this can be seen easily, taking into account that
the action of a copy of SL(2,C) with Lie algebra (e_s, fa, ho — 2¢) C § on the variety F induces a

holomorphic embedding SL(2,C)/By ~ CP' — M which maps 0 € CP! to Ty, z to ( ! O) - Ty,

zt? 1
and oo to STy = 5;.
The latter observation suggests a way of illustrating concisely the information of Theorem 3.2.1 by a
picture. In Fig. 2, the intervals of straight lines symbolically represent the projective lines CP' C¢ M,
generated by the action of e_;, that join the points w and S;w of Wg N M.

3.3. Combinatorial consequences of Theorem 3.2.1. Substituting the results of Theorem 3.2.1
into the formula (3.1.1), we obtain

e ei(T -A)
chW = nZ (1-¢q)...(L—g?)(1—(g"'2)71)...(1 — (¢2"2)"1)(1 — @2»H1z). ..
ez(Sn-A)
* Z (1-¢q)...(1 =g )1 —(gn2)"1)... (1 — (g2~ 12)~1)(1 — ¢2n2). ..
- (g e e e [ 120 s
Aﬂl(l*qz; ’ El*q

A comparison of this formula with (2.3.3') gives some interesting combinatorial identities. We write them
down for z = 1;
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Theorem 3.3.2. (a) (Euler pentagonal theorem)

o0
[[a-em =3 1™
m=1 nezZ

(b) (Rogers-Ramanujan identities)

@ Z

1
H (1 — @&mH1)(1 — ppm+e) i

n=0 (q)n m=1
ad n 24n 1
(1D :
= (Q)n ,,gl (1 — g¥m+2)(1 — g5m+3)
(c) (Gordon identities) Let 0 <[ < k be integers; then
NZ4-+NZ+Np—141+-+Ng 1

q
NlZ'ZZ:Nk >0 (q)N1 —Ng - (q)Nk—l"'Nk (q)Nk

11

1—qm’
m>0; m#Z0,+(k—I+1) mod 2k+3

Part (a) corresponds to the weight A = 0, part (b) to A = (0,0,1) and (0,1,1), and part (c) to
A=(0,0,k).
The product decomposition of the right-hand side of the Gordon identities

n (k48 n?4(2041)n m
> (-1)%q 2 = II (1-q™)

n€zZ " m=0,%(k—I+1) mod 2k+3

is a special case of the Jacobi triple product

Z( 1)*u gt y—n (l—v)H(l—u v~ )(1—u (1 —u™v)
nez

2k+3 k—1+1

for u=gq and v =g¢
Theorem 3.3.2(c), together with Proposition 2.6.1', implies some classical results of the theory of par-

titions ([17, Theorem 7.5]).

8.4. The decomposition M = | | e, ,np Yo from Theorem 3.2.1 is not a stratification in the strict
sense: the boundary of the stratum Yg, is not contained in the union of strata of greater codimension.
To get a real stratification, one must divide some of the strata into smaller ones, for example, decompose
Yr, into the union (Y, \ Y7,)UYp, of two strata of codimension 1 and 2, etc. As usual, to the corrected
stratification of M there corresponds a resolution of the fi-module H%(M, Ly) (the Cousin resolution),
which consists of spaces of distributions supported on strata. The character of the resolution is given by
the Lefschetz formula (3.3.1), which shows that this resolution is rather complicated. Nevertheless, its
initial terms, corresponding to the strata of codimension 0 and 1, admit an explicit description, and this
leads to the proof of Theorem 2.2.1'.

Let U =Y; = N-1 be the open dense stratum of M, let Uy = Us, "M and Uy = (U, NM)\Ys, be
open neighborhoods of the (codimension 1) strata Y¥s, and Y7, \ Y7, , respectively, and let Uy = Uy \ Y5,
and Uy = U, \ Yr,. One has Uf = U NU and Uy = U, NU (see the proof of Theorem 3.2.1).

From now on, let us fix a bundle Ly, A = (0,1, k), and write H°(Z) instead of H°(Z,Ly). By
Hartogs’ theorem, the sequence of restriction maps

0 — H°(M) — H°(U) - H(U})/H(Uh) & H°(U3)/ H(U2)
is exact. The dual sequence has the form
0« W(l C[C_l,e_g,...] M M1 @Mz,
where 7 is the natural projection and M; = [H®(U})/H°(U;)]*.

Theorem 2.2.1' follows from the next lemma.
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Lemma 3.4.1. (i) M; is a free Cle_1,e—2, ...]-module of rank 1 with the generator 7, py(7) =
k=141
e .

~1 9
(ii) The Cle;]-module My is generated by elements o;, i € Z, pa(0i) = Sgk'H)_

The proof is a straightforward calculation. (Cf. [5, Lemma 14.5.5]; calculations for (ii) are based on the
coordinate transformation formula (3.2.3).)

3.5. In conclusion, we will say a few words about the Lefschetz formula for singular varieties in order
to justify some statements of Sect. 3.1. The subject of this subsection will be also useful in §4.

Let X be a compact complex algebraic variety (possibly with singularities) with an invertible sheaf L,
and let T be a torus acting by holomorphic transformations of the pair (X, L) with isolated fixed points.
A natural analog of the Lefschetz formula is the following:

> (~1)'ch(T,H (X, L)) = ), ch(T, O0(L)) (3.5.1) .
Tr=x .
(O(L) is the space of germs of sections of L at the point z) [18].

For example, let X be contained in a nonsingular variety Y, let L bea holomorphic line bundle on
Y,let L = E| x , and let the torus T act on (Y, E), preserving the variety X. Let « € X be a fixed
point with respect to T, let (z1,...,25n) be local coordinates on Y with origin at the point z such that
the action of T on the cotangent space T;Y diagonalizes with weights Ay, ..., A, in these coordinates,
and let X be a locally full intersection of hypersurfaces fj(z1,...,2,) =0, 7=1,...,m, where f; is

homogeneous with respect to the action of T with weight p+; (and the elements f; form a regular sequence
in the local ring O,(Y)). Then in formula (3.5.1) the local summand has the form

w ™ L pip;
(T, 0,(L)) = Solliza (1 =€)
. [Tioi (1 —efr#)
(v is the weight of T on the fiber L;); this follows from the weight decomposition of the Koszul complex.
Consider the situation of 3.1: X = M,, Y = F, L= Ly, T is the maximal torus of the current
group. It is known that in this case formula (3.5.1) coincides with the Demazure formula [16, 19] for
the element T, of the affine Weyl group. Decompose T, into the product T, = S2,52,-1...5:51 of
reflections corresponding to the roots @ > 0 such that (T,) '« < 0. (Conjugating Sz by S1, Sz by S$25
etc. in this decomposition, we obtain the reduced simple decomposition of T, .) The Demazure formula is
the result of the application of the sequence of operators ¥s, g, ,...Zs,%s on the group algebra of
the weight lattice of the torus T to the element e™**, where
S
s, (X) = o + T2
(So is the reflection corresponding to the root o > 0).
By induction on n we get

ch H(My, Ly)* = ch(Cle~1, €2, ..., e—zp)v)
2n—1 iTm-A , (2n—1
= Z ¢ ( m )q
A= @) (= @)1~ @) (L= )

m=0
eismX (2r::11)q

* mz::l = (@) D) (= (@ 12) 1)1 — @mz).. (1= gnion-iz) |

(3.5.2)

3.5.3)

2n~1\ _ _ (@on-1
(( J )q—(fl)j(fl)zn-1—j

The presence of the numerator (1 —¢?"~7)...(1 — ¢?*~1) in the local terms of formula (3.5.3) means
that the varieties M,, are singular.

As n — oo, formula (3.5.3) tends formally to (3.3.1). In this sense, it is natural to consider that formula
(3.3.1) coincides with the Demazure formula for the “infinite element”

Wy = nh—{%oT = ... 54535251 = 51505150 e

is a g-binomial coefficient.)

of the affine Weyl group.
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§4. The Case g =sl3: the Lefschetz Formula and Relationships with slt

4.1. Let us denote the simple roots of the Lie algebra sl3 by o and 3, and the highest root by
v = a+f. Let the corresponding root vectors be e*, e?, and e7 = [¢®, ef]. Let the opposite root vectors
be @, f#, and f7. Denote the coroots by h*, hf and hY = h* + hP. The corresponding basis in sl3
consists of ef = e® @ t*, ef =ef @1t etc., and of the central element K.

We will try to preserve the notation of §§2, 3 for similar objects. Thus, A = (m, X, k) is a weight of the
Lie algebra sl (m is the energy, A is a weight of sl3, and k = A(K)), V is an irreducible representation
of 5l3 with highest weight A, G = SL( ,C[t,t7]), La = G xs + C(—) is the Borel-Weil line bundle on
F = G/B.,., and V ~ H(F, Ly)*.

The affine Weyl group Wor = W x T = S3 x Z? contains the lattice 7 = Hom(T,T) C hgr, where
T is the maximal torus of SU(3) with Lie algebra hg (the element mh® 4+ nh? € T will be denoted
by Tma+ng), and also contains the reflections with respect to the roots (i, «,0), (¢, 8,0), and (4,7, 0)

(denoted, respectively, by S2;, S’i, and S”.). One has S¢ = $* € W and S¢ = Ty405%, and similarly
for # and ~. The reflections 5%, S#,and Sy correspond to the simple roots o, 2, and (1, —v, 0) of sls.
Elements £ € T and w € W act on weights by the formulas

E-(m, A k)= (m—AN¢&) —k(£,€)/2, A+ kE*, k), w-(m, A, k)=(m,w- k). (4.1.1)

Here £* is the image of { under the isomorphism hr — b induced by the canonical inner product ( , )
on hg.

4.2. Let V be the basic representation of 5l3, v the vacuum vector, fi = n; ® Clt,t7'], and W =
U(f)v C V. Asin 2.2, we are interested in the left ideal I in U(f°"") annihilating the vector v. We have
fev = fPv = (e?,)%v = 0 (these are the singular vectors in the Verma module My, ); hence, the following
elements belong to I:

(671)27 ad f5'(e 11)2 = i2e€1611’ adf(’,@(ezlf = iQeilezh
ad fg' (eﬂle 1) = :I:(e 1) ; adff(eflezl) = :}:(e‘il)z.

Commuting these five expressions with the operator L_; € Vir and using the relation L_;v = 0, we
obtain five series of elements of the ideal I, which can be written in the short form in the notation of
Remark 2.2.2 as follows:

e*(2)? = e*(2)e7(2) = €7(2)? = e7(2)eP(2) = €’ (2)? = 0. (4.2.1)

Theorem 4.2.2. The left ideal I is generated by the coefficients of the power series (4.2.1), z'.'e., by
the ezpressions Ry =3, i, efed, Sm = EH,] m &5 e] , ete.

Remark 4.2.3. In fact (as in Remark 2.2.2), the infinite expressions Ry, Sm, etc. have the zero
action on any vector of the space V.

By analogy with (2.3.3) and (2.6.2), it is natural to suppose that the character of the space W is given
by the formula :

2 2
a?—ab+b%_a b
212

_ q
chW = )" OO (4.2.4)

(here the variables z; and z; correspond to the two simple roots of sl3; cf. (4.1.1)), or chW(q,1,1) =
U14,(q) (see Remark 2.7.3).

Proof of formula (4.2.4).

t This section is written in a rather concise manner. The proofs of the most part of assertions are omitted.
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Proposition 4.2.5. Let I C S(/°") be the associated graded quotient of the Poincaré-Birkhoff- Witt
filtration on the ideal I C U(7°"*). Then the ideal I is generated by the same relations (4.2.1).

Now the same line of reasoning as in §2.3 applied to the dual space of W=S8 (rout)/ I gives
r2 452442 +rs+st r+s s+t

Toa _ q
bW 2 9)r(9)s (q)

r,s,t2>0

Using the technique of ¢-binomial coefficients, it is not difficult to reduce this formula to the form

(4.24). O

The above results can be generalized to the case of the representation with highest weight A = (0, 0, k):
there are 2k + 3 series of relations of type e®(z)%e”(z)¥¥1~# = 0, etc. The character formula for W has
the form

chW(g,1,1) =¥y, o5-1(9)- (4.2.6)

In the general case A = (0, A, k), in the character formula for W extra linear terms are added to the
quadratic form %Az ® B;! at the exponent of q.

4.3. The variety M and the Lefschetz formula. In order to simplify our calculations, we restrict
ourselves to the representations V' with highest weight X = (0, 0, k), where k is a natural number. In this
case the bundle Ly is trivial along ﬁbers of the projection n : F — P onto the Grassmanman P=G / Gin.
We also denote the bundle m, Ly o~ G X&in C(—a) by La.

For ¢ €T and w e W C Wag C F we have n({ - w) = n(£). Hence, the inclusion W,g < F induces
the inclusion Wog/W ~T — P.

We can introduce, as in §3, the subvariety M' = N+ 1 C F and prove that W* ~ HO(M', LA) But

it will be more convenient for our purposes to consider the variety M = N_1c F, where N_ is the
group of currents into the lower triangular subgroup N_ C SL(3, C) with the Lie algebra, (fe, 2, ).
The fact is that the variety M, unlike M’, is a union of fibers of the projection =, and, in the Lefschetz
formula, after projecting to P, we can sum over the part 7N 7(M) of the lattice T, mstead of summing
over w € Wog N M. (Respectlvely, the principal subspace U(fiy)v C V is replaced by U(n-)v but the
characters of the spaces U(fiy)v and U(fi-)v differ only by the replacement of z; by 27! and of z; by

, because V' is symmetric with respect to the replacement of e by f. ) Let us denote n(M) by the
same letter M.

Theorem 4.3.1. (1) TNM = {Traing: m,n < 0}.
(2) M is nonsingular at the points Tno and Ty and is singular at other points E€ TNM.
(3) In the Lefschetz formula for the pair (M, Ly) the local term at the point T—pg, n > 0, is equal to

eiTna-A
I1 (1—e¥)

é is a root ;la;

Ss(—na)=ka+I#—na,k,1<0;

A——na =

Tpa(8)>0
eiT=na'A
(= ()™~ (¢"Ha)1) . (1 = (P Ta) (1 — ¢ la)(1 — g™ Hia) ..
1

X (1 =g ™+1b) ... (1 = g71b)(1 — b)(1 — gb)...(1 — g"+lc)(1 — g"tic)...

(here Ss is the reflection with respect to §, a =1z, b= z2, and ¢ = z123);
the local term A_,p is obtained from A_,, by the replacement a < b and a 3.
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(4) The local term A_,y is equal to

el (A=A —(9™h)... (A= (¢" 197"
S AT (1—e?) (1-9)(1-¢*)...(1-¢")

Ss(—ny)=ka+if#—ny,k,1<0;

Ty (8)>0
eiT=nv A
T l-eNa-(g@ .. A— (@) )1 - g a)(l - g°a)...
1

A=A = (@) ) (L= (@) )1 — ¢ B)(1 — ¢*2)....
(1—-c (1= (ge)™Y)...(1 = (g™ 1e)™Y)
(1=q)...(1=¢g")(1 = (gnc)™)... (1 = (¢ te)1)(1 — ¢®"Fle)(1 — ¢?"F2c)....

X

The theorem is verified by direct computation in local coordinates in a neighborhood of a point ¢ € T
(similarly to the proof of Theorem 3.2.1) and next by applying formula (3.5.2).

We have not succeeded in evaluating the local terms corresponding to the points T_,q—ng for m >0,
n >0, m # n. At these points the variety has rather complicated singularities. It seems likely that they
are not even locally full intersections, thus, formula (3.5.2) cannot be used for them. As for the Demazure
character formula for the “infinite element”

wo = lim T_py = S*SP 5575575757 ... = ... 875" 87,5%.87,58575¢,

this formula converges rather slowly, and the complexity of the calculations grows exponentially.
Nevertheless, we can state the following conjecture.

Conjecture 4.3.2. For z; = zp = 1, the contribution to the Lefschetz formula of local terms Ag,
corresponding to the points £ € TN M different from T_pno, T-png, and T—_n, 15 equal to zero.
Seemingly, each of these terms contains the factor (1—a), (1—b), or (1—c¢) in the numerator, originated

from the local equation of M in a neighborhood of ¢, which is homogeneous with respect to the torus T
with weight a, b, or c.

Proposition 4.3.3. (A_po+A_ng+ A_pny)|ny=z=1 15 equal to

(a) ((6n +1)g*" ™ — (6n — 1)¢®*=")/(q)3,, if V is the basic representation;

(b) (((2k + 4)n + 1)gk+Dn*+n _ (2k 4 4)n — 1)g*+D7° ") /(g)3 | if V is the representation with
highest weight A = (0,0,k), k> 0.

Taking the sum over n and equating to (4.2.6), we obtain the series of identities:

Theorem 4.3.4 (modulo Conjecture 4.3.2).

(a) (Gauss’ theorem) ()3, =1—3q+5¢> — 7¢° +9¢'® — 114" +....
(b) (Analog of the Rogers—-Ramanujan identities)

g 15 4+7¢* —11¢0 +13¢" —...  T,p(6n+ 1)@t
30 (@a(a)s (9% (9% '

(c) (Analog of the Gordon identities)

1 n2 "
Y3080 = > ((2k +4)n + 1) gFHD
© neZ

(Part (a) corresponds to k = 0; for the notation of part (c), see 2.7.3.)
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4.4. For us, a rather unexpected observation was that the right-hand side of f/'?rmula 4.3.4(b) coincided
with the Kac character formula for the basic representation of Lie algebra sly (see, for example, {5,
(14.3.5)]), and, more generally, the right-hand side of 4.3.4(c) coincided with the Kac character formula
for the representation of sly with highest weight (0,0, k).

Using this observation, one can simplify identities (4.3.4), replacing their right-hand side by the “bo-
son” character formula (2.6.2) for £ = 1 and by the “parafermionic” formula (2.6.2') for a general k.
A. E. Postnikov has noticed that after such a replacement identity 4.3.4(b) becomes obvious. (The proof

concerns the Durfee square.)
We will give here an explanation for the coincidence of the characters of the space W and ,E)f the space

of a representation of the Lie algebra sl,. For example, let V' be the basic representation of sl, (we hope
that there will be no confusion in the notation). It is a quotient space of the algebra U(;[é’“t), where
s:\[,‘?“t = (e;, fi, hi : 1 < 0), by some left ideal J. Since e ;v = fov = L_jv = 0, the following elements of
the form (ad L_;)"(ad fo)™(e%,) belong to J:

€2y, hoje_i+ethoy, foeite_ifor—~hE, hoifo+ foahoy,  fi, (44.1)
o oeies, Y (hiegteh), Y. (fiej +eifi — hikj),
i+j=—n itj=—n i+ j=-n (442)
Yo i+ ), Y fifi
i+j=-n i+j=-n

Proposition 4.4.3. (a) The five relations (4.4.1) generate the ideal J .
(b} The five series of relations (4.4.2) generate the ideal J C S(sI9%t), which is the associated graded
quotient of the PBW-filtration on J C U(slg"t).

It remains to compare the statements 4.4.3(b) and 4.2.5, and to see that the quotient spaces S (Aevt)y/ T
and S (;[3“) /J are almost the same spaces: the only difference between them is the extra sum
Y itj=m(fi€; + eif;) in the third series of the quadratic relations (4.4.2). Therefore, it is likely that
the characters of the two spaces coincide.

This argument can be easily generalized to the case of arbitrary k.
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