
Functional Models  for Representations of Current Algebras 
and Semi-Infinite Schubert Cells 

A .  V .  S t o y a n o v s k y  a n d  B .  L.  F e i g i n  UDC 512.81 

§1. I n t r o d u c t i o n  

Let ft be a finite-dimensional simply laced simple Lie algebra over G, let ~ be the corresponding afflne 
Lie algebra, i.e., the one-dimensional central extension of the current  algebra ft sl . . . .  + ftt -2 + ftt -a + 
ft + ftt + ft t2 + . . .  , and let K be a central element of ~. We will deal with integrable representations of 
the Lie algebra ~ f rom the  category (9 of representations with highest weight, where K acts by a scalar 
k (the number  k is called the  central charge or the level of a representation).  An integrabili ty criterion 
can be s ta ted as follows. Let us fix a Car tan  decomposit ion ft = n+ ® [~ ® n_ .  Let a be an arbi t rary  root 
of the Lie algebra ft, let e(a) be a nonzero element of ft from the root  space a t tached to a ,  and let us put  

ei(a) = e ( a ) .  t i and  S~k+l}(a)  : Ei l+ . . .+ i~+l=ie i l (a ) . . . e ia+~(a) .  T h e  infinite express ions  ~q~k+l)(a), 

i E Z,  act on representat ions of ~ from the category O,  and a representat ion V of level k is integrable if 

and only if k E Z ,  k _> 0, and all expressions S~k+a)(a) have the zero action on V.  In other  words, the 

elements S~k+l)(a) generate  a two-sided ideal in the completed universal enveloping algebra ~(fi) ,  and 
this ideal annihilates the integrable representations of level k. 

Now let us restrict  ourselves to the vacuum irreducible representat ion Vk of level /~. Let v be the 
vacuum vector of" Vk. Then  ~inv = 0, where filn = ft + ftt + ftt 2 + . . . .  Denote by fi+ . . . .  + n+t -1 + 
n+ + n+t + . . .  C ~ the Lie algebra of currents with values in the positive hi]potent subalgebra of ft. 
The main  role m our investigation is played by the subspace W = U(fi+)v C V~. The  space W can be 
identified with the quotient  space U(fi+)/Ik,  where Ik is a left ideal of U(fi+).  The  s t ructure  of this ideal 
is described by the following theorem. 

T h e o r e m  1.1.1.  I~ = U(fi+)fi~_ n + J~, where fiin+ = fi+ V~ in , and Jk is a two-sided ideal generated by 
the elements S~+~)(aj) (the expressions from Jk are finite modulo fii~+~, where aj  are the simple roots 
of the Lie algebra ft, j --= 1, . . .  , l ,  and I = rankft .  

This theorem provides us with a ra ther  cumbersome construction of the dual space of W (see Con- 
struction 1.1.2). First we describe this construction in the  simplest case ft = ~[2. 

Let ~t~C = C[x] dx be the space of polynomial  1-forms on a line. The symmetr ic  power S n ~ I C  of 
it is realized in the space of expressions f ( x l ,  . . .  , xn )dx l  . . . d xn ,  where / (X l ,  . . .  ,xn)  is a symmetr ic  
polynomial.  Let us define the "restricted symmetr ic  power" of the space f ~ C  as the subspace S~k+~)fl~C C 

S'~fl~C tha t  consists of the expressions f ( xx ,  . . . ,  x,~) dx~ . . .  dx,~ such that  the polynomial  f vanishes 
for x~ = x2 . . . . .  Xk+~. It is clear that  S'~+a ft~C is a commutat ive  coalgebra. We claim that  ( ) 
S ~ k + ~ ) ~ C  ~- W * .  

This result can be used to describe the irreducible representat ion Vk as a linear space. Recall that ,  in 
V~, there is a family {v~, n ~ Z} of so-called extremal  vectors. The translat ion subgroup Z of the affine 

Weyl group of ~'[2 acts on V~, and {v.} is the orbit of the vacuum vector under  this action. Consider the 
family of subspaces W~ = U(fi+)v~ ; we have W ~  __ W ~ ,  and the isomorphism is given by the action of 
an element of the a ~ n e  Weyl group. On the other  hand,  there is a sequence of embeddings 

• . .~--~W~ ~ - - ~ W = W o ~ - ~ W _ ~  ' - - ~ W - 2  ~ . . . ,  

and V~ is the inductive limit of this sequence. Informally, this means tha t  it is possible to define the 
"semi-infinite restr icted symmetr ic  powers" of the space f~l(S1) of 1-forms on a circle, so tha t  the space 

¢ -~+ i  
W-o~ = V~ is dual to ~ i 6 ~  ~'(~+~)(~a(S~)) • In some sense, these "semi-infinite restr icted symmetr ic  
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powers" are very close to spaces of semi-infinite exterior forms, but the construction of "symmetric powers" 
is less transparent.  The character formula for the space Vk arising from the "semi-infinite realization" of the 
representation coincides with the "parafermionic" formula of Lepowsky mid Pr imc [3]. The relationships 
between the semi-infinite construction and parafermion algebras are still a riddle for us. 

Now we pass to the case of an arbitrary Lie algebra 9. 

C o n s t r u c t i o n  1.1.2.  Consider the Z*-graded vector space M = (~ Mm~ ..... m,, rni ~ Z ,  rn~ > 0, 

Mm~ ..... rnt = { f ( X l ( a l ) ,  . . .  ,Xm~(O~l); X l ( O ~ 2 ) , . . . , T ,  m2(O~2);  . . .  ; Xl(Oq),... , X m t ( O q ) )  

× H 
i' < j '  i , j  

Here f is a polynomial in the variables xi(aj)  symmetric with respect to each group of variables 
{ x i ( a l ) } , . . . ,  {xi(a~)}. The space Mm~ ..... m, can be considered as a component  of the "extended sym- 
metric power" of the space F = M1,0 ..... 0@M0,~,0 ..... 0@'" -~M0,0 ..... 0,1. We call the space M "extended," 
because M is larger than the symmetric algebra of F:  the expressions from M may have poles of order 
one on diagonals xi(ai,)  = x j (a j , ) .  Now we add the "Serre relations." Let A = (Aij) be the Cartan 
matrix of 9. Let us introduce the subspace 2~r = (~/~/,~ ..... m~ of M ,  where ~ m l  ..... m, C Mm~ ..... m~ 
consists of the expressions in which f vanishes provided xl (ai) = x2(ai) . . . . .  Xa-A,~ (ai) = Xl(aj)  for 
some 1 _< i, j <_ l, i ~ j .  We claim that  ~ is naturally isomorphic to the dual space of g(fi+)/U(fi+)fi~ n . 

- -  

Finally, let us describe W* = (U(fi+)/Ik)*. It is a graded subspace of 2~/, W* C Mm~ ..... m, and m l  ~...~ml , 
an element of 3S/ belongs to W* if f satisfies the following additional condition: for each 1 < i < l the 
polynomial f vanishes for x~(ai) = x~(ai) . . . .  = zk+~(ai). 

The "functional realization" of the space W* thus obtained leads to a character formula for this space. 
Let L0 be the energy operator.  First, let us consider the case k = 1. Then 

q½ ~-~ A i.i rn l m.i 

Tr(qL°)lW = ~ (q)ml - .~(~m,  " 
rnl , . . . ,  mt ~_0 

(1.1.3) 

Here (Aij) is the Car tan matrix. For a general k the formula has the same form, but  l is replaced by 

l • k ,  and (Aij) by the quadratic form with the matr ix A ®/~-~ ,  where A is the Caftan matrix of 9, 

and /~k is the symmetr ized Cartan matrix Bk (cf. 2.7.3). Note that  formulas of this kind appeared in the 
papers [11-14], where they described the character of the space of quasi-particles in the thermodynamic 
Bethe Ansatz. 

The same scheme as in the case 9 = ~[2 leads to a description of the space Vk, given the description of 
W*, and to the following character formula for Vk: 

1 q½~",J,p A''N(')N(j) ~ " N ( ~ I )  ~'PN(~*) 
" ~ ~ z l  - . . . z l  ( 1 . 1 . 4 )  chV/~ --(q)~ E , ~-~/~-1, , , , 

N~,) ~...~N~,)eZ ~i=1 H p = l ( q ) N ( ' ) - N ( ' )  P p ~ l  

i = l , . . . , l  

(where the powers of z l , . . . ,  zl correspond to the weights with respect t o  the Car tan subalgebra [} C 9, 
and the powers of q are eigenvalues of :L0). This formula describes the decomposit ion of the space Vk 
into irreducible representations with respect to the homogeneous Heisenberg subalgebra ~. 

Finally, note that  the above results can be  generalized to the case of a non-simply-laced Lie algebra 9. 
In Theorem 1.1.1, one should replace ~.~k+l)(O~j) by s~k+l)(o~j) if the root aj is ~ times shorter 
than a l o n g  root ( z  -- 1, 2, or 3). The same change (the replacement of k +  1 by ~ k +  1) must  be 
done in Construction 1.1.2. The character formula for Vk suggests the idea (according to a remark of 
E. B. Vinberg) that  9 is reMized as the fixed-point algebra of a diagram automorphism of a simply laced 
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Lie algebra 91 [4], and the representation V~ of ~ is realized as a subspace in a representation of t~.  For 
example, here is the character formula for ~ of type B2: 

2k k . 2k 
~ Np(1)2_ ~ (1) (2) A_/kT(2),_ ~-~ t,r(2)2 ~ N (1) ~ N (2) n~ ( n ~ _ ~ . ~ , ~  ~ , ~  , ~  , ~ ~ 

1 q'=~ ":~ '=" z~ z 2 (1.1.5) 
e~ Uk -- (q)~ ~ k-1 2 k - 1  

N~)~'"~N~X)~Z ~ (q)~(~)_~(~) ~ (q)~(~)--N(u) 
N~2) ~ . . . ~ N ~ )  e Z  p = l  P ,+~ = , p+t  

In this paper only the case 9 = ~[2 is discussed in some detail (see ~2). The general case is much more 
technical, and we hope to tell more about it in our forthcoming paper. Note that  the notion of semi- 
infinite restricted symmetric  powers is not fully developed here even for ~ = ~[2. This notion deserves an 
individual investigation, and we hope to realize it in the future. 

The second subject of the paper is related to the geometry of the flag manifold of the Lie algebra f). 
Let F = 0 / B +  be the flag manifold, I the unit  coset, and M the closure of the orbit 2~+ • 1, where 

the subgroup ~ +  C ~ consists of the currents taking values in the unipotent  subgroup N+ C G with 
the Lie algebra n+.  The irreducible integrabte representation Vx with highest weight X is realized in the 
dual space of the space of sections of a holomorphic line bundle L)~ on F .  The space W = U(fi+)v (v 
being the vacuum vector) is dual to the space H ° ( M ,  L),) .  Hence, we can use geometric methods when 
we deal with W.  In §3, in the case g = ~[2, we apply the holomorphic Lefschetz fixed point formula to 
determine the character of H ° ( M ,  L) , ) .  The variety M is nonsingular in the ease t! = z[2. (As is well 
known, applying the same method  for the full flag manifold, instead of M ,  one obtains the Weyl character 
formula.) We also write down a Demazure type character formula for W and obtain the same result. 

Thus, we have two character formulas for W: the first formula is a consequence of the functional 
realization in the space of symmetric  polynomials, and the second one is given by the Lefschetz or Demazure 
formula. A comparison of these two expressions gives the Rogers-Ramanujan identities (for k = 1) and 
the Gordon identities (for a general k). 

In §4 we discuss the case ~ = ~[a. For ~ = s[3 the variety M is singular, so the fixed-point formula 
is much more complicated. We are unable to write down the whole formula, but  we state a conjecture, 
which implies that  the specialization (Tr qLolw ) of the second character formula for W coincides with the 

Kac formula for the character of the vacuum irreducible representation of the algebra ~'[2 with the same 
central charge. 

An extended version of this text is published as a preprint [10]. 
We are grateful to V. A. Fateev for helpful discussions with the second author  about the relationships 

of our subject with the theory of S-matrices arising in deformations of conformal field theories. 
We dedicate this paper  to Izrail Moiseevich Gel~fand on the occasion of his 80th birthday. 

§2. T h e  F u n c t i o n a l  M o d e l :  t h e  Case  f1 = s[u 

2.1. N o t a t i o n .  The Lie algebra a[~ has the s tandard basis e, f ,  h ,  and the Lie algebra ~'[2 = 
s[~ ® C[[t, t -1] ® {K} has the basis consisting of ei = e ® t i ,  f i  = f ® ~i, hi = h ® t i ,  i ~ ~ ,  and the 
central element K .  In this basis the bracket is given by the formulas 

[ g ,  = [K ,  Yi] = hd = [ei, = [Yi, Y;] = 0,  [hi ,  tj]  = 2¢ i+ j ,  

[hi, f j]  = - 2 f i + j ,  [el, f j] --- hi+j + iKSi ,_~ ,  [hi, h~] = 2 iKS i , _~ .  

In the tr iangular decomposit ion ~'[2 = n_  ~ O@n+ we have [~ = (h0, K},  n+ = {ei, f / ,  hi : i > O} + (co}, 
and vt_ = @i2 f i ,  hi : i < O) + {fo}. The root vectors corresponding to the simple roots are e0 and f l -  
The algebra s[~ is a graded Lie algebra: deg ei --- deg f i  -- deg hi -- i and deg K = 0; the degree of an 
element ~/ is called the energy of 7.  The afflne Weyl group W ~  = Z~ ~( Z consists of the integral shifts 
on a real line T,,, n ~ Z,  and of the reflections Sn,  n ~ Z ,  with respect to the points n / 2 .  The reflection 
Si ,  i > 0, corresponds to the root vector f i ,  and the reflection S - i ,  i >__ 0, corresponds to the vector e l .  
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The weights ,X of graded representations of ~z are given by triples of numbers ,X = (m, A, k), where 
m is the energy, A -- X(h0), and k -- X(K).  The action of the Weyl group on the set of weights is given 
by the formulas 

T , ' ( m , A , k ) = ( m - A n - k n z , A + 2 k n ,  k), S o . ( m , A , k ) = ( r n , - A , k ) .  (2.1.1) 

In particular, Tn acts on the root vectors as follows: 

T,~(ei)T_,, = (ei-z,~), T,~(hi)T_,, = (hi) (i # 0), T,~(fi)T_,~ = ( f i+z,) .  (2.1.2) 

The Virasoro algebra acts on the algebra ~'[z and the integrable representations of it belonging to the 
category O: 

1 
Li - -  2 ( k + 2 )  : Z ( ea f~3+fae~+hah~ /2 ) : ,  

,:,+t~=i (2.1.3) 

[Li, ej] = jei+i,  [Li, fj] = Jfi+i,  [ri, hi] = jh i+i .  

s[2 p = Let us also introduce the "half-sum of positive roots of ^ " (0, 1, 2). 
^ 

2.2. The basic representation of s[z is the irreducible representation V with highest weight X0 = 
(0, 0, 1). It is the quotient module of the Verma module M~, o with vacuum vector ~ by the maximal 
submodule Mso.Xo + Ms1.Xo (here the action of an element w E W~fr on a weight A is defined by the 
formula w * A = w.  (A + p) - p). The corresponding singular vectors in M~, 0 are f0~ and ez__l ~. Denote 
the image of ~ under the projection Mxo -~ V by v. 

, ~ .  

Let fi = (e) ® C[[t, t -~] be the abelian subalgebra in ~[2 with the basis el, i E Z.  Define the principal 
subspace W C V by W = U(fl)v. In fact, since eiv = 0 for i > 0, only the algebra U(fl °ut) = 
C[e_~, e _ ~ , . . . ]  acts nontrivially on v. Hence, W = (C[e_~, e - z , . . . ] / I ) v ,  where I is an ideal in 
C[e_~, e - 2 , . . . ] .  We know that eZ__l ~ I .  

T h e o r e m  2.2.1. The ideal I is generated by the polynomials S -k  = ~ e ie -k - i ,  k >_ 2. 

This theorem will be proved in §3. Now we explain only the reason for S-k  ~ I .  From the explicit 
formula (2.1.3) it follows that L_iv  = 0. Hence, (k - 2)!S_kV = +[(adL_l)k-z(ez_a)]v = O. 

R e m a r k  2.2.2. In general, the infinite expressions S,~ = ~-]~i+i=rn eiej, which are coefficients of the 

formal series ( ~ i e ~  eizi) z = e(z) 2, act on arbitrary representations of ~2 from the category O. It is 
known that if the central charge is equal to 1, then all S,~ act trivially on an integrable representation: 
e(z) ~ = 0 (cf. §2.4). 

2.3. The space W is the direct sum of its weight components: W = (~ W(,~,a,1). In order to evaluate 
its formal character ch(W),  which is equal to ~ q~z j dim W(_L~j,I) by definition, we now introduce a 
convenient description of the dual space W*, and this will be called the functional model. 

The vector space flout = (ei)i<o consists of "singular currents" ~(x) ® e with values in the subalge- 
bra n+ C ~[2, where qo(x) is a polynomial in x -a without a constant term. The dual space (flout). 
is naturally identified with the space of polynomial 1-forms ~aC (with gradation degx~dx = n + 1). 
Hence, U(fl°ut) * k^°u t  * ~_ @k>o(S n ) ~-- (~>o  Sk(~aC),  where S ~ ( ~ C )  is the space of the expressions 
f (xl , . . . ,  xk) d x a . .  dxk such that f ( x a , . , .  ,Xk) is a symmetric polynomial, and different dxi commute. 
We will call s k ~ I c  "the space of k particles." The pairing of s k ~ I c  with Skf l  °ut iS given by the formula 

( f  dxl . . . dxk, ( ~  ®e ) . .  . . . ( ~ k ® e )  ) = Resxl . . . . .  x ~ = o ( f ( x l  , . . . ,  Xk ) ~ l  ( X l ) . . .  ~ k ( X k  ) d x l  . . . d xk  ) . (2.3.1)  

The space W* = (~k W* (~ sk(~tlC) is a subspace of S '(Q1C),  and Theorem 2.2.1 easily implies that 

W *  CI Sk(~r~lc)  = { f ( x l ,  . . . ,  x k ) d x l . . ,  dY, k :  f = 0 i f  x~ = x ~ } .  
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V ~  

? V--2 

v_i/" 

v 
e l ~  

Fig. 1 

3V2 

V3 

(In terms of particles: the function must  be zero if two particles coincide.) Thus, 

w* = @ w ; ,  
k=0 

where 

{ k  ̧ } 
W~ = g ( x l , . . .  , xk )  l - I  (xi -- x j)  2 H dxi ,  g ( x l , . . .  ,Xk)  i s a s y m m e t r i c p o l y n o m i a l  ; (2.3.2) 

i < j  i=1 

c~ • ¢x~ q k Z z k  

chW=  chW; = (1 q)ll-q2), t2.3.Z) 
k=0 k=0 " " 

For z = 1 and z = q, these are the left-hand sides of the Rogers -Ramanujan  identities. 

2.4. Now let us apply Theorem 2.2.1 to describe the whole representat ion space V.  Let n E Z,  and 
let vn = Tnv be the n th  extremal  vector of this representation. By (2.1.1), the weight of vn is equal 
to ( - n 2 , 2 n ,  1). Consider the space Wn = T n W  = U(fi)v,~. Obviously, . . .  C W2 C W1 C W0 = 
W C W-1 C . . .  and V = ~JW,  = l i m W _ g  (see. Fig. 1). From Theorem 2.2.1 and formula (2.1.2) it 

follows tha t  W~ = (C[e -2n-1 ,  e - 2 n - 2 , . . . ] / I , ) v n ,  where In is the ideal genera ted by the polynomials 
S,~, m _< - 4 n - 2 .  The space W0 = (C I t - l ,  e - 2 , . . .  ] / ( e ~ ,  e - l e - 2 , 2 e _ 1  e-3 +e2__2,... )) v is embedded in 
W--1 = (C[e l ,  e0, ~--1, - - .  ] / ( ~ ,  e le0,  2e1~--1 -~ e02,-.. ))V--1 via the homomorphism of ¢[ei ] -modules  that  
maps v to e l y - 1 .  Fur thermore ,  elV_l = ele3v-= = eleaehV-a . . . . .  Any vector of the space V is af ini te  
linear combinat ion of expressions of the form ei, ei~ • •. ei~ V-N = ei~ ei= • .  • e i h  e2N+lV--N--1 . . . .  for N suffi- 
ciently large. Now let N tend to infinity, i.e., let us subst i tute the expression e2N+le2N+ae2N+5... V-~x~ (in 
an absolutely formal way) instead of V-N. We obtain the following description of the  basic representation. 

T h e o r e m  2.4.1.  Let ~ be the vector space with the basis consisting of infinite "monomials" m = 
ei~ei= . . .  e2gA-l e2g+ 3 . . .  V--c~ such that, starting from some position, the successive symbols ei are indexed 
by successive odd numbers i = 2N + 1 , 2 N  + 3, 2N q- 5, . . .  , and it is assumed that 

(i) different ei commute (i.e., ei, ei~. . .ei~ei ,  . . . v - ~  = % e i = . . . % e i ~ . . . v _ m ) ;  
(ii) i f  a symbol ei~ with the index i~ >_ 2 N  appears before the stable part e : N + l e : g + a . . . v - ~  of a 

"monomial" m = ei~ eia . . .  e2N+~e2g+a . . .  v-oo, then m = 0 ( %epulsion rule"). 

The infinite expressions S m =  ~ + ~ = m e , e ~ ,  m E Z,  act f rom the left on the space ~'. Let V = 

~7/(Sm)~7 be the quotient space by this action. Then in the space V the basic representation of "~[~ is 
realized, and the elements e~ act in an obvious way (by multiplication from the left). 
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R e m a r k  2.4.2.  The symbol v _ ~  stands for the "extremal vector at infinity." The vector V-N is 
annihilated by the subalgebra n~  ~v = T-gn+T~v = (f~, i > - 2 N ;  hi,  i > 0; ei, i _> 2N).  As N tends to 
infinity, the subalgebra n_~ N t e n d s  to rt~ ~ = ( f i ,  i ~ Z ;  h i ,  i > 0). Therefore, it is natural  to consider 
that  the "vector" v-o~ is annihilated by the subalgebra n~  °~ . But,  in fact, v _ ~  is annihilated by the 

larger subalgebra g = {f~, h~, i ~ Z}.  We will try to explain this viewpoint in the next subsection. 

2.5. It is natural  to try to construct the action of ~'[2 on the space V of Theorem 2.4.1 independently 
of the preceding exposition. The action of the par t  {hi, i > 0) of the algebra rt~ ~ is reconstructed 
automatically from the condition hi(v_o~) = O. For example, 

= . . .  + . . .  

= 2 e i + l e 3 e 5  . . . v _ ~  + 2e~e i+3e5  . . .  v _ ~  + . . .  + e~e3es  . . .  h i v - o a .  

All summands,  except for the latter, are zero by the "repulsion rule" from Theorem 2.4.1, and the latter 
one vanishes because of the equality h i v _ ~  = 0. (Of course, such "reasoning" simply expresses the fact 
that  h i V - g  = 0 for N sufficiently large.) Similarly, the action of the operators f l  ~ aye °~ reduces to the 
action of h i ,  due to the condition f iv-oo = O. 

Thus, it remains to construct the action of hi for i < 0. A surprising ( though easily explainable) fact 
is that  the operators hi also act by the rule hiv-o~ = 0 in this case. (In other words, the symbol v-oo 
in the notat ion of the "monomials" can be omitted; thus, the construction 2.4.1 is somewhat close to the 
constructions of semi-infinite forms.) 

Let us give an example. A calculation gives h_~v =. eov_~ in the basic representation. On the other 
hand, 

h - l ( e l e 3 e 5  . . .  v _ ~ )  = 2 e 0 e 3 e 5 . . .  v _ ~  + 2 e l e 2 e s e 7 . . .  v - o ~  + . . .  + e l e  3 . . .  h _ l l ) _ o ~  . 

From the relations Saesey . . .  v _ ~  = STeTe9 . . .  v _ ~  . . . . .  0 it follows that  

e o ( ~ 3 e 5  . . . v _ ( ~  : - e l e 2 ( ~ 5 ~  7 . . . v _ ( x  ) ~ (~1(~3(~4(~7~9  . . . v _ ( x  ) ~ . . . .  

Thus, if we put  2e0eae5 . . .  v _ ~  = a, then 

h -  l ( e i e3 eh . . . v _ ~  ) : a - a + a - a -~- . . . + e l e 3 e h . . ,  h _ l  v _ ~  . 

It is natural  to consider that  the sum of the series a - a + a - a + . . .  is equal to a/2 ,  which is just  equal 
to eoe3ehez.. ,  v _ ~  = e 0 v - 1  ~ h - i v .  Therefore, we must realize that  the operator h-1 obeys the rule 
h - l v - ~  = O. 

2.6. It is much easier to work with the principal space W and with the space V from Theorem 2.4.1 
if bases of monomials  are chosen in these spaces. A monomial  eil . . .  ei, v ~ W is said to be reduced if 
i~ < i2 < . . .  < i,~ < 0 and, moreover, ik+a - - ik  _> 2 for all k. A "monomial" m ---= ei~ei:ei~ . . . v -o~  is 
said to be reduced if  ik+a -- ik _> 2 for all k.  

P r o p o s i t i o n  2.6.1.  (a) The reduced monomials form a basis of the space W .  
(b) The reduced "monomials" form a basis of  V .  

Part  (a) can be easily deduced from Theorem 2.2.1; (b) follows trivially from (a). 
From Proposit ion 2.6. l(a) one can get another proof of formula (2.3.3) for the character of the space W.  
Now we evaluate the character of V. Let us introduce the s tandard notat ion 

O~ 

(q)k = ( 1 - - q ) ( 1 - - q e ) . . . ( 1 - - q  k) and (q)~ = II(l_q ). 
i ~ l  

Then we have 

oo q n 2 z n  

ch W--N = c h ( T _ N W )  - -  T - N C h  W = ~ ( q ) n + N  ( s e e  ( 2 . 1 . 1 ) ) ,  

n ~ - - N  

c h V =  lira c h W _ g -  1 ~ qn2z . ( 2 . 6 . 2 /  
~ - - O ~  

We have obtained the well-known character formula for the boson realization of the basic representation. 
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2.7. The  results of 2.2-2.6 can be easily generalized to other  irreducible integrable representations of 

~'[~ with highest weight. We will present the corresponding~statements here. 
In this subsection, V is an irreducible representat ion of a[~ with highest weight ~ = (0, l, k) ,  where k 

and l are integers, 0 < l  < k ,  v is the vacuum vector, and W = U(fi)v = (C[e_~, e_2, . . . ] / I ) v .  

Theorem 2.2.1 ' .  The ideal I is generated by the polynomials ek_+~ ~-t and 

: o i >_ + 

a l + ( ~ 2 + . . . + o ~ + ~ = - - i  

The proof  of the  theorem will be given in 3.4. 

Remark 2.2.2'. e ( Z )  kq -1  : 0 .  

One has the  following analog of (2.3.2): 

w*=@w:, 
m = 0  

where 

Wr ~ e.o {f(Xl ,  . . .  , Zm) d x l . . ,  dxm,  f is symmetr ic ,  

f = 0 i f x l  = x ~ =  . . . .  X~+l ( f o r k + l _ < m )  

and if Zl = x2 . . . . .  Xk-~+l = 0 (for k -  l + 1 _< m)} .  (2.3.2') 

(The function vanishes if k + 1 particles coincide or k + 1 - l particles coincide with zero.) The  character  
formula for W is given by 

c~ z m +  I /2  q N ~  + . . . +  N~ + Nh_~ + ~ + . . . +  N ~ 

ch W = m ~  ° E (q)NI--~v:(q)N:--N~... (q)N~_~--N~ ( q ) ~ "  (2.3.3') 
= N~. . .>_N~>_O 

N ~ + . . . + N ~ = m  

We will give a sketch of the proof of this s ta tement .  
For simplicity, we will assume I = 0. 

T h e o r e m  2.7.1.  The character of the space W,~ = { f ( x i , . . . , x ~ ) d x i . . . d x , ~ ,  f is a symmetric 
~ dxl .dx,~) ~ t ~  + m is polynomial, f = 0 for x~ = x2 . . . . .  X k ÷ l }  with gradation deg(xtl ~ . . .x ,~  .. = 

equal to 
q N ~ + . . . + N ~  

chW;  = 

N ~ > . . . > N h > O  
N~ +.. .q- N~,=m 

S k e t c h  o f  t h e  p r o o f ,  Let p = ( P l , . . .  ,Ps) be a part i t ion of the number  m ,  pl >_ . .-  _> p~ > 0. 
Let Up = { f ( x ~ , . . . ,  x , ~ ) d x l . . . d x , ~ ,  f is symmetric ,  and if we have simultaneously Xl = x2 --- 
" ' "  ~- Xp l  ~ X p l + l  = " ' "  ~ X p ~ + p 2 ,  Xplq-p2q-1 ~ " ' "  ~ X p l q - p 2 q - p a , . . .  , X p l - b . . . q - p t _ ~ + l  ~ " ' "  : xm, then 
f ( z l , . . . , X m )  = 0} C smf~ lC .  Define a filtration of Smft~C by the  subspaces Fp = Np,_>pUv', 
where the set of part i t ions of m is ordered lexicographically. Clearly, W ~  = U~(k) = Fp(k), where 
p(k)  = (k + l ,  l ,  l ,  . . .  ,1 ) .  

The associated graded quotient space (Gr F)p can be identified with the  space of polynomial  forms 
~ ( z ~ , . . .  , z~) (dz l )  m . . . ( d z s )  p" of the variables z~ = x~ = x~ . . . . .  x m ,  z2 = xm+~ . . . . .  xm+v~ , 
. . .  , z~ = xm+...+p._~+~ . . . . .  Xm (the particles have combined into s groups, p~ particles in the ith 
group), such that  

(1) if p~ -= p j ,  then  ~ is symmetr ic  with respect to zi and zj ; 
(2) q~ vanishes on the diagonal zi = zj with some multiplicity g~J- 
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The multiplicity ~ij can be calculated by forgetting all variables xt  except for the two groups of 
variables corresponding to zl and z j .  Let pi > p j .  Considering the component  ( G r F ) ( n , , ~  D for the 
filtration F on the space of symmetric  functions of pi + pj  variables one can easily see that  ~ij = 2pj 
(_.~ PJ deg Sym ~t=~  (xt  - x~¢+t) ~ , Sym is the symmetrizat ion over x~, . . . ,  x~,+~).  Thus,  

(Gr F)~ ~ {T(z~, . . .  ,Zs)  ~ ( z i -  zj)2P~(dz~) ~ . . . ( d z s )  ~ , where, for each r e ~, 

i<J T is symmetric  with respect to the variables zl for which p i =  r~.  

Let n~ be the number  of s u m m ~ d s  of the parti t ion p equM to r .  Then 

ch(Gr F)~ = qE~<~ 2~+E~ ~, : q ~  N ~  

H~(q) ,~  ( q ) ~ - ~ ( q ) N = - - N a  . . . (q)N~--N~+, . . . ' 

where N~ = n~ + n~+~ + . . .  are ~he s u m m ~ d s  of the p ~ t i t i o n  that  is t ransposed to p. 
S u ~ i n g  over p and m ,  we get the "Gordon identity for k = ~ " :  

1 q ~  N~ 
c h S * ~ l C -  (q)~ - ~ (q)~--~=(q)N~--Na. . .  (2.7.2) 

(N~...N .... 0 0 0...) 
N I ~ " ' ~ N t = O  

The desired character of W~ is ob t~ned  by s u ~ i n g  of ch(Gr F)p over M1 p < p ( k ) ,  i.e., p~ ~ k for 
all i. In the part i t ion transposed to p we have N~+~ = Nk+2 . . . .  = 0, and ~his gives the formula from 
Theorem 2.7.1. 

R e m a r k  2.7.3.  The matr ix of the quadratic form 

k 
+ + . . .  + 

r=l  

is inverse to the symmetrized Cartan matr ix 

/ 2  

- 1  

0 
• 

0 

n k ) ~ = E r n 2 ~ + E 2 r n ~ n t  
r r ~ t  

- 1  0 . . .  0 
• • 

2 - 1  ". 
• . 

- 1  ". ". 0 

"'. "'. 2 " 1  
. . .  0 - 1  1 

Therefore, if we put  
a S  Ai jn ln~  

• A(q)= 
n ~ . . . , n k ~ O  

then we see that  we have proven the relation ch W ( q ,  1) = ~I'~-~ (q). 

T h e o r e m  2.4.1 ~. The irreducible representat ion of  ~[~ with highest  weight  ~ is realized in the quotient  

 pace where is the spaee with the basis consisting o] "monomia  " 

l k--l l k--I 
e l l  e l2  " • • e2N{g2N+ 1 e 2 N + 2  e 2 N + 3  " " • 

such that 
(i) dif ferent  ei commute ,  
(ii) i r a  " m o n o m i a l "  m = eilei2ei3 . . .  contains a symbol  eij with ij > 2 N  (resp., ij  > 2 N +  1) before 

the stable par t  o f  the f o r m  t k - t  .. (resp., k--t t e 2 g e 2 N + l  . e2g+le2g+2 . . .  ), then rn = O. 

The e lements  ei E 3[2 act on V by left mult ipl ication.  
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P r o p o s i t i o n  2.6.1' .  We say that a monomial eil . . .ei,~v E W (eilei2 ""  ~ V )  is reduced if il <_ 
• .. <_ im < 0 ,  im-k+l < - - 1 ,  and i j+k - - i j  >_2 for all j (respectively, i~ <_i2 <_... and i j + k - i j  >_2 
for all j) .  Then the reduced monomials form a basis of W (respectively, V). 

Finally, we obtedn the following character formula for the representation V: 

1 qN~-t-...-t-N~÷Nu_,+~-i-...+N~ zN~-t-...+N~,-t-I/2 
ch v - 

N~>_...>_Na~Z 

R e m a r k  2.7.4. One can easily see that the character formula just obtained coincides with the "para- 
fermionic" formula from [3]; for the case I = 0 it has the form 

k--1 c~ 1 

E E qi-j~/k dim V(-i,:j,~) - (q)o~ k~A:~_x (q) 
j = 0  i =0  

in the notation (2.7.3) (A~-11 is the inverse matrix to the Cartan matrix Ak-1). 

§3. Semi - In f in i t e  S c h u b e r t  Cells:  t h e  Case  9----$[2 

3.1. Let G = SL(2, C), let ~ = ~'~(2, C[t, t-1]]) be the central extension (with the help of C*) of the 
G-valued current group, let B+ be the Borel subgroup in ~ with Lie algebra b+,  and let F = ~ / B +  be 
the flag manifold of ~ .  We will consider F as an infinite-dimensional complex algebraic variety. 

The irreducible integrable representation V of the Lie algebra ~ with highest weight X is realized in 
the space H ° ( F ,  Lx)*, where Lx = ~ xB+ C(_~) is the holomorp~c Borel-Weil line bundle on F [5, 6]. 

To the principM subspace W C V there corresponds the principal subvariety M = ~ • 1 C F ,  which is 
the closure of the orbit of the unit coset under the action of the group ~ of currents with the values in the 
group of upper triangular matrices from SL(2, C). The inclusion map W ~ V is dual to the restriction 
map for sections H ° ( F  L~) ~ H ° ( M ,  Lx) .  To verify this statement, we note that M = l imM~ where ~ ~ ~ 

M~ = B~ • 1, B~  = T~B+T_~ (the limit is taken in the sense of Mgebraic geometry), and a similar 
fact for the finite-dimensional variety M~ (and the Lie algebra b~ instead of fi) does not differ from the 
well-known theorem for the flag manifold of a finite-dimensional complex semisimple Lie group [15, 16]. 
Our statement is now obtained by passing to the limit over n.  

The same reasoning verifies that the higher cohomology groups of M wi~h coefficients in LX[M vanish 
and that the Atiyah-Bott-Lefschetz fixed-point formula, for the action of ~he maximM torus T = ~ x T x ~ 
of the group ~ ~ S~(2) ,  which is the "compact form" of C* ~ ~ ,  can be applied to (M,  LX[M).~ (Here the 
extra factor C* corresponds to the gradation according to energy on V and to the letter q in character 
formulas.) 

Combining the Lefschetz formula with the triviality of H i ( M ,  LxlM) for i > 0, we obtain the following 
character formula for W: 

~iw.~ 

w~ WaffoM # is a weight of T~M 

h 

(Recall that the Weyl group Waft = N ( T ) / T  is included in F ~ (V ~ SU(2) ) /T . )  

3.2. T h e o r e m  3.2.1 (the structure of the variety M). 
(1) M is nonsinguIar. 
( 2 )  MaW,.={T.:  , k  0, S .  : 
(3) The set of weights for the action of the maximal torus T on the tangent space of M at a point 

w ~ Waft ~ M is a subset of the set of roots of ~. The corresponding root vectors are 

t D e s p i t e  t he  fac t  t h a t  t he  var ie t ies  Mn are  s ingu la r ,  one  c a n  wr i t e  a n  ana log  of  t he  A t i y a h - B o t t - L e f s c h e t z  f o rmu la  for 
t h e m .  See 3.5. 
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f o r w = T n , . n > O :  { e _ i , i > _ 2 n +  l; f i ,  n + l  < i < 2 n ;  h - i ,  l < i < n } ;  
f o r w = S ~ ,  n > O :  {e_ i , i>_2n;  f i ,  n < i < 2 n - 1 ;  h - i ,  l < i < n - 1 } .  
(4) The stratification of the flag manifold by the orbits of the group N _  induces a stratification of M : 

M =  I ],~W.f~nM Y~ , Y~ = N _ w  M M , and 
(i) Y~ is a contractible subvariety, codim YT. = codim Ys. = n; 
(ii) YT. and Ys.+, are n-parametric families of ~-orbits of codimension 2n and 2n A- 1 respectively, 

and a transverse subvariety to the family Y~ (w = Tn or $n+~) is given by the formula 

(dl "" 'da)~-+ l ( l  +d l t -~  + ' " + d n t - a ) - ~  2 ) 
' " 0 l + d ~ t  -~ . . . + d ~ t - "  . w ;  

(iii) YT. = Urn>,, YT~ U,~>,, Ys., and Ys. = U~n>_,, Ys., Urn>,, Y,' where Y; T,~ , T,~ 

~-orbits in YT. ,  o f  codimension 1 that consists of orbits with parameter d m =  O. 
is a subfamily of 

To prove the  theorem, let us choose the following representatives of cosets w E Waft = N ( T ) / T  (and 0) 
denote them by the same letter w): T,, = 0 t ~ , Sn = . The  manifold F is covered 

by coordinate charts  F = lJ,~ew~f~ U~, U~ = w N _  • 1 ___ N _ .  A direct computa t ion  in coordinates U,~ 
proves all s ta tements  of the theorem. 

Forexample, let w = T = =  ( t ;  n O )  ( a  : )  t"  . An element w E w N _  • 1, where a = 1 + alt -1 + 
c 

a2t -2  ~ - . . .  , b = b i t  -1  + b2 t - 2  - ~ . . .  , c = c o  + c l t  -1  + . . .  , d = 1 + d~t -~ + . . .  , and a d -  bc = 1, belongs 
to ~ .  1 if and only if, for some Laurent  series p = p i t  -1  -~p2 t  - 2  + . . .  , the mat r ix  

1 b (0 0 0 t n ) ( :  d ) = ( a t - ~ + c t n p  
ct n dt n ] (3.2.2) 

lies in B + .  If n < 0, then  the series dtn = t n + d~t n-~ + . . .  cannot  belong to C[t]; therefore, ~ .  i N 
U~ -- ~. Now let us discuss the case n -- 1 in detail, in order to illustrate the phenomenon of imaginary 

roots appearing in the tangent space TwM. The condition "matrix (3.2.2) lies in B+" means in this case 

that we have 

c = c 0 ,  d = l + d l t  -1, 

t - i + a l t - 2 + a 2 t - 3 +  . . . + c o ( p l + p 2 t - l + . . . ) = c o p ~ ,  

bit -2 + b2 t-3 + . . .  + (t ~- d~)(p~t -~ +p2t -2 + . . .  ) = p l .  

If co = 0, then  the third  equation cannot  hold, and p does not exist. But if co # 0, then the third 
equation determines p2, p3, . . .  uniquely, e.g., p2 = - l / c o .  Equat ing the coefficients of t - ;  in the 
fourth equation, we get pld~ = -p2 = 1/co. Therefore,  dl # 0 is also necessary. Conversely, if co # 0 
and dl # 0, then  let us define pi by the formulas 

1 1 a l - 2  
- for i = 3, 4, . . . .  (3.2.3) 

Pl = cod~ ' p2 - co' Pi co 

Then the mat r ix  (3"2"2) has the f ° rm / c°Plc0t dl x_~_ t ) 

to 1, whence x = pl and the mat r ix  lies in B + ,  q.e.d. 
Thus, we have 

, and its de terminant  copl (d~ + t) - xcot is equal 

co 1 + d l t  -1 ' ' 

i (  o M~3U, rl = T1. co l + d l t  -1 cot 2 1 + d i g  -1 " 
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Fig. 2 

In particular, M fl UTi is nonsingular; moreover, we have proved part  (3) for co = T~. 
The hyperplane {co = 0} C M (3 UT~ is 

YT~ = U ~ " ( (l  + dlt-~)-~O 1+ d~t ) Tx 
d~ ~C 

m 

The hyperplane {dl = 0} is the intersection UTI fl Ys~ ; this can be seen easily, taking into account that  
the action of a copy of SL(2, C) with Lie algebra (e-2, f2, ho - 2c) C ~ on the variety F induces a 

holomorphic embedding SL(2, C)/B+ ~_ CP ~ ~ M which maps 0 E CP ~ to TI , z to z¢ ~ • T~ , 

and eo to S~T~ = S~. 
The latter observation suggests a way of illustrating concisely the information of Theorem 3.2.1 by a 

picture. In Fig. 2, the intervals of straight lines symbolically represent the projective lines C P  ~ C M ,  
generated by the action of e- i ,  that  join the points co and Siw of W~f~ ~ M .  

a.3.  C o m b i n a t o r ~ a I  c o n s e q u e n c e s  o f  T h e o r e m  ~.~.1. Substi tut ing the results of Theorem 3.2.1 
into the formula (3.1.1), we obtain 

~ ei(T~ .x) 
c h W  = ~ ( l _ q ) . . . ( l _ q ~ l ( l _ ( q ~ ÷ i z l _ ~  I ( l _ ( q 2 ~ z / _ ~ ) ( l _ q ~ n ÷ ~ z /  

~ - - - 0  . . . . . .  

oo ei( S ~.~ ) 

+ E ( l _ q ) . . . ( l _ q n - ~ ) ( l _ ( q ~ z ) - I )  . ( l _ ( q 2 ~ - l z ) - l ) ( l _ q 2 ~ z )  
~ - ~ - ~ l  ° " • " ° 

~ 1 E(_ l )nq~_~zn[e iTn .X_eiSn+l .Xq2n+lz]  1--q~z . 

17[ (1 -- qiz) n=O i=~ 1 -- q' 
i~-i 

(3.3.1) 

A comparison of this formula with (2.3.3') gives some interesting combinatorial identities. We write them 
down for z = 1: 
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T h e o r e m  3.3.2. (a) (Euler pentagonal theorem) 

OO 

H (1 _ _ q m ) =  E ( _ _ l ) n q Z n ~ + " .  

m=l  

(b) (Rogers-Ramanujan identities) 

o~ qn  ~ 

(I) E (q). 
n ~ - - O  

~x~ q n ~ + n  

(II) E (q). 
n ~ O  

n E Z  

~ 1 
H ( 1 -  qS'~+~)(1- q~"~+'~) ; 

m ~ l  

E (1_qSm+~)1(l_q5m+3) " 
m.~- I 

(c) (Gordon identities) Let 0 < l < k be integers; then 

qN~ +...+ N~ + N~_, + ~ +...+ N~ 1 

Z (q'~N~----~-.:-.~~N~ = H 1 _qm 
N1 _>'-.>N~ _>0 m>0 ; m~O, - I - ( k - - l+  1) rood 2k+3 

Part (a) corresponds to the weight A = 0, part (b) to ,k = (0, 0, 1) and (0, 1, 1), and part (c) to 

The product decomposition of the right-hand side of the Gordon identities 

{ 2 ' + ' ) °  = 

n~Z 

is a special case of the Jacobi triple product 

H (1 __qm) 
rn=_O,=l:(k-I+l) rood 2k+3 

E . . . .  (,~+~) __ 
( -1 ) "~  ~ v " = ( l - v )  H ( 1 - ~ m v - ] ) ( 1 - u ' ~ ) ( 1 - ~ m v )  

n~Z m=l  

for u = q2k+3 and v = qk-l+l. 
Theorem 3.3.2(c), together with Proposition 2.6.1 ~, implies some classical results of the theory of par- 

titions ([17, Theorem 7.5]). 
• 

3.4. The decomposition M = I~ew~rrnM Y~ from Theorem 3.2.1 is not a stratification in the strict 
sense: the boundary of the stratum Ys, is not contained in the union of strata of greater codimension. 
To get a r.eal stratification, one must divide some of the strata into smaller ones, for example, decompose 
YT1 into the union (YTI \ Y"T1) U Y"T~ of two strata of codimension 1 and 2 , etc. As usual, to the corrected 
stratification of M there corresponds a resolution of the fi-module H°(M,  Lx) (the Cousin resolution), 
which consists of spaces of distributions supported on strata. The character of the resolution is given by 
the Lefschetz formula (3.3.1), which shows that this resolution is rather complicated. Nevertheless, its 
initial terms, corresponding to the strata of codimension 0 and 1, admit an explicit description, and this 
leads to the proof.of Theorem 2.2.1q 

Let U = Y1 = N .  1 be the open dense stratum of M,  let U~ = U& f3 M and U2 = (UTI f3 M) \ ~& be 
open neighborhoods of the (codimension 1) strata Y& and YT1 \ Y" respectively, and let U; = U] \ Y& T1, 
and U~ = U2 \ YT~. One has U~ = U1 fq U and U~ = U2 f3 U (see the proof of Theorem 3.2.1). 

From now on, let us fix a bundle Lx, ~, = (0, l, k), and write H°(Z) instead of g ° ( z ,  Lx). By 
Hartogs' theorem, the sequence of restriction maps 

0 -o H° (M)-~  g ° ( v )  --~ H°(U;)/H°(U]) ® H°(U~)/H°(U2) 

is exact. The dual sequence .has the form 

(~,. ,~2) 
O ,~-- W <ff--- C [ e _ l  , e _ 2  , . . . ] ( M i a M i ,  

where 7r is the natural projection and Mi = [H°(U~)/H°(Ui)] *. 
Theorem 2.2.1 ~ follows from the next lemma. 
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L e m m a  3.4.1.  (i) M1 is a free C[e_l,e_2,. . .]-module of rank 1 with the generator ~-, ~I(T) = 
ek_~l+l ; 

(ii) The C[e~]-module M2 is generated by elements ai ,  i E Z, ~2(ai) --= S~ k+l), 

The proof is a straightforward calculation. (Cf. [5, Lemma 14.5.5]; calculations for (ii) are based on the 
coordinate transformation formula (3.2.3).) 

3.5. In conclusion, we will say a few words about the Lefschetz formula for s ingul~ varieties in order 
to justify some statements of Sect. 3.1. The subject of this subsection will be also useful in ~4. 

Let X be a compact complex algebraic v~ie ty  (possibly with singul~ities) with ~ invertible sheaf L, 
and let T be a torus acting by holomorp~c t r~sformat ions  of the pMr (X, L) with isolated fixed points. 
A natural ~ a l o g  of the Lefschetz formula is the following: 

~ ( - 1 )  ~ c h ( w , g ' ( X , L ) ) =  ~ ch(W, Ox(n)) (3.5.1) . 
W ~ x  

(V~(L) is the space of germs of sections of L at the point x) [18]. 
For example, let X be contained in a nonsingular variety Y,  let ~ be a holomorphic line bundle on 

Y, let L = ~ ]x ,  and let the torus T act on (Y, ~) ,  preserving the variety X .  Let x ~ X be a fixed 
point with respect to T ,  let (z~, . . . ,  zn) be local coordinates on Y with origin at the point x such that 
the action of T on the c o t ~ g e n t  space T~Y diagonalizes with weights ~1, . - . ,  £~ in these coordinates, 
and let X be a locally full intersection of hypersugaces f j ( z ~ , . . . ,  zu) = O, j = 1 , . . . ,  m,  where fj  is 
homogeneous with respect to the action of T with weight gj  (and the elements f j  form a regular sequence 
in the local ring O~(Y)). Then in form~a (3.5.1) the locM summand has the form 

fl :l(  - 
= - 

(~ is the weight of T on the fiber L~); this follows from the weight decomposition of the Koszul complex. 
Consider the situation of 3.1: X = M~, Y = F ,  ~ = Lx~ T is the maximal torus of the current 

group. It is known that in this case formula (3.5.1) coincides with the Demazure formula [16, 19] for 
the element Tn of the affine Weyl group. Decompose Tn into the product T~ = S2~S:n-~ ... S~S~ of 
reflections corresponding to the roots a > 0 such that (T~)-~a < 0. (Conjugating $2 by $1, Sa by S:S1 
etc. in this decomposition, we obtain the reduced simple decomposition of T~ .) The Demazure formula is 
the result of the application of the sequence of operators Es~. E~,_~ . . .  Es~Es~ on the group algebra of 
the weight lattice of the torus T to the element e -i~ , where 

X S~ • X 
~S~ (X) -- i - e i~ + i - e-i~ 

(S~ is the reflection corresponding to the root a > 0). 

By induction on n we get 

ChH°(M~, ~)* = ~(C[~_~, ~_:, ... ', ~_~Qv) 

~-~ eiT~.~ . (~-~ 
~ ~ x m ]q 

2n ciSm.~. (2n - - l~  
k m - - 1 / q  

+ 

m = l  " " " 

(~ -~)  -- (q):~-~ is a q -b ino~al  coefficient.) (~ J ~q (qb(q)~--~-~ 
The presence of the numerator (I - qe , - j ) . . .  (1 - qe~-~) in the local terms of formula (3.5.3) means 

that the varieties M~ are singul~. 
As n ~ ~ ,  formula (3.5.3) tends formally to (3.3.1). Ia this sense, it is natural to consider that formfla 

(3.3.1) coincides with the Demazure formula for the "infinite element" 

w0 = lim Tn . . . .  &&S2S~ = SISOSISO... 
~ 

of the affiae Weyl group. 
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§4. T h e  Case  g = a[s: the  Lefschetz  Formula  and R e l a t i o n s h i p s  w i th  ~[~t 

4.1. Let us denote the simple roots of the Lie algebra ~[~ by a and fl, and the highest root by 
7 -- a + ft. Let the corresponding root vectors be e ~ , e a,  and e~ _- [e a, ea]. Let the opposite root vectors 
be f ~ ,  f a ,  and f~ .  Denote the coroots by h a , h a , and h "~ -- h a + h a . The corresponding basis in ~'[~ 
consists of e~ = e a ® t i , e~ = e a ® t i etc., and of the centra/element K .  

We will try to preserve the notation of §§2, 3 for similar objects. Thus, ~ = (m, A, k) is a weight of the 
. . ~  

Lie algebra ~[~ (m is the energy, A is a weight of a[z, and k = X(K)), V is an irreducible representation 

of ~ with highest weight A, ~ = ff~(3, C[t, t - i l l ) ,  Lx = ~ ×B+ C(-x) is the Borel-Weil line bundle on 
~ . ~  

F = G/B+,  and V ~- H°(F ,  LA)*. 
The affine Weyl group W~ff = W ~< ~ = $3 ~< Z 2 contains the lattice 7 ~ = Horn(T, T) C I~,  where 

T is the maximal torus of SU(3) with Lie algebra I~ (the element rnh a + nh a 6 7 ~ will be denoted 
by T,~a+,a), and also contains the reflections with respect to the roots (i, a ,  0), (i, fl, 0), and (i, 7, 0) 

(denoted, respectively, by S_~, S_~, and S_Ti). One has S~ = S a 6 W and Sn a = Tna o S a, and similarly 

for fl and 7.  The reflections S a, S a , and S~ correspond to the simple roots c~, fl, and (1, - 7 ,  0) of ~z .  
Elements ~ 6 7 ~ and w 6 W act on weights by the formulas 

~ . ( m , A , k ) = ( m - A ( ~ ) - k ( ~ , ~ ) / 2 ,  A + k ~ * , k ) ,  w . (rn ,  A , k ) = ( r n , w . A , k ) .  (4.1.1) 

Here (* is the image of ~ under the isomorphism l~ -~ %~ induced by the canonical inner product ( , ) 
on [ ~ .  

4.2. Let V be the basic representation of ~'[3, v the vacuum vector, fi = n+ @ C[[t, t - l ] ,  and W = 
U(fi)v C V. As in 2.2, weaxe interested in the left ideal I in U(fi °"t) annihilating the vector v. We have 
f~v  = fo~v = (eT_l)~v = 0 (these axe the singular vectors in the Verma module Mx0); hence, the following 
elements belong to I: 

( 71)2 , ad  f ( 71)2 ---- -+-28fl_leT_l , ad  f0fl(ET_l)2 -- q-2 a_l 7_l, 

Commuting these five expressions with the operator L-1 6 Vir and using the relation L_lv  = 0, we 
obtain five series of elements of the idea/ I ,  which can be written in the short form in the notation of 
Remark 2.2.2 as follows: 

2 = = 2 = = = 0 .  ( 4 . 2 . 1 )  

T h e o r e m  4.2.2.  The left ideal I is generated by the coed~cients of the power series (4.2.1), i.e~, by 
the expressions Rm = ~i+j=m e~e~, Sm = ~iTj=m ei "ejT, etC. 

R e m ~ k  4.2.3.  In fact (as in Remark 2.2.2), the infinite expressions Rm, Sm, etc. have the zero 
action on any vector of the space V. 

By analogy with (2.3.3) and (2.6.2), it is natural to suppose that the character of the space W is given 
by the form~a 

~aZ-ab+b~a ~b 
c h W  = ~ ~ ~ 2  ( 4 . 2 . 4 )  

(here the variables Zl and z2 correspond to the two simple roots of ~[3; cf. (4.1.1)), or chW(q,  1, 1) = 
~Z~(q)  ( see  R e m a r k  2 .7 .3 ) .  

P r o o f  of  f o r m u l a  (4.2.4).  

t This section is wri t ten in a ra ther  concise manner.  The  proofs of the most pa r t  of assert ions are omit ted.  
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P r o p o s i t i o n  4.2.5.  Let _~ C S(fi °at) be the associated graded quotient of the Poincarg-Birkhoff-Witt 
filtration on the ideal I C U(fi° ' t ) .  Then the ideal i is generated by the same relations (4.2.1). 

Now the saxne line of reasoning as in §2.3 applied to the dual space of ~ = S( f t °" t ) / /g ives  

~ r2+s2+t2+rsq-st rWs s+t 
c h W * =  E q zl z~ 

,.,,,,>_o 

Using the technique of q-binomial coefficients, it is not difficult to reduce this formula to the form 
(4.2.4). [] 

The above results can be generalized to the case of the representation with highest weight A = (0, 0, k): 
there are 2k + 3 series of relations of type e~(z)ie~(z) ~+~-i = 0, etc. The character formula for W has 
the form 

ch W(q,  1, 1) = • ½A=®~-~ (q). (4.2.6) 

In the general case X = (0,), ,  k), in the character formula for W extra linear terms are added to the 
1 A ~ quadratic form $ 2 ® B~ -~ at the exponent of q. 

4.3. T h e  v a r i e t y  M a n d  t h e  Lefsche tz  fo rmula .  In order to simplify our calculations, we restrict 
ourselves to the representations V with highest weight A = (0, 0, k), where k is a natural number. In this 
case the bundle Lx is trivial along fibers of the projection 7r : F --~ P onto the Grassmannian P -- ~ / ~ i n .  
We also denote the bundle 7r.L~ ~_ ~ × ~ ,  C(-x) by L~. 

For ~ 6 7 ~ and w e W C W~ff C F we have Tr(~. w) = 7r((). Hence, the inclusion W~r ~ F induces 
the inclusion W~ff / W  ~_ ~ ~-~ P .  

We can introduce, as in §3, the subvariety M' = N+ • 1 C F and prove that W* ~_ H ° ( M  ', L~). But 

it will be more convenient for our purposes to consider the vaxiety M = 2~_ • 1 C F ,  where ~ _  is the 
group of currents into the lower triangular subgroup N_ C SL(3, C) with the Lie algebra (f~,  f~,  f~).  
The fact is that the variety M ,  unlike M ~ , is a union of fibers of the projection 7r, and, in the Lefschetz 
formula, after projecting to P ,  we can sum over the part ~ fq 7r(M) of the lattice 7 ~, instead of summing 
over w ~ Wag fq M .  (Respectively, the principal subspace U(fi+)v C V is replaced by U(fi_)v; but the 
characters of the spaces U(fi+)v and U(fi_)v differ only by the replacement of zl by z~ -~ and of z~ by 

- 1  z~ , because V is symmetric with respect to the replacement of e by f .) Let us denote 7r(M) by the 
same letter M .  

T h e o r e m  4 . 3 . 1 .  (1) 7 ~ fq M = { T m ~ + , ~  : m ,  n < 0 ) .  

(2) M is nonsingular at the points Tn~ and Tnz and is singular at other points ~ 6 ~ N M .  
(3) In the Lefschetz formula for the pair (M,  L),) the local term at the point T--ha, n >_ O, is equal to 

A ~ ~t (~ -~-- 

eiT_,~,~ .A 

II 
6 i s  a r o o t  -~'[a ; 

S,5 ( --not)=kot.+l~-nc~, k, l~_0 ; 
T , , ~  (¢I) > 0  

(I -- e i5) 

eiT_ ,~,~ . A 

( 1 - -  ( q n a ) - l  ) (1  - -  ( q n + l a ) - l  ) . . . ( 1  - -  ( q 2 n - l a ) - l  ) (1 - -  q2n+la)(1 -- q2n+~a~. 7.. 

1 
X 

( 1  - -  q - n + l b ) . . .  ( 1  - -  q-lb)(1 - -  b)(1 - q b ) . . .  (1 - q n + l c ) ( 1  -- q n + 2 c ) . . .  

(here Sa is the reflection with respect to 5, a = z l ,  b = z2, and c = zl z2 ); 
the local term A-nZ  is obtained from A_~a by the replacement a ~ b and c~ ~-~ ~.  
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(4) The local term A_~7 is equal to 

e i T _ ~ . i k  

6 is a root; 
& (-  nv) =k o~+l~-  n~, k, l<O ; 

T,~(~)>0 

(1 - e ia) 
(1 -- c-l)(l -- ( q ¢ ) - l ) . . .  (I -- ( q n - l c ) - l )  

(1 - q ) ( 1  - q~) . . .  (1 - q " )  

e i T - n v ' A  

(1 - -  a - 1  ) ( 1  - -  ( q a ) - l ) . . .  (1 - (qn-~a)-~)(1 - qn+~a)(1 - qn+2a)... 

1 
X 

(1 - b -1)(1 - (qb) - 1 ) . . .  (1 - (qn-lb)-l)(1 - qn+lb)(1 - qn+2b)... 

(1 - c - : ) ( 1  - (qc ) -~ ) . . .  (1 - (qn-l¢)-l) 
X 

(1 - q ) . . .  (1 - q ' ) (1  - (qnc)- : ) . . .  (1 - (q~'~-~c)-~)(1 - q:'~+~c)(1 - q~n+¢c)..." 

The  theorem is verified by direct compu ta t ion  in local coordinates  in a ne ighborhood  of a point  ~ ff 7 ~ 
(similarly to the  p roof  of Theo rem 3.2.1) and  next  by applying formula  (3.5.2). 

We have not  succeeded in evaluat ing the  local te rms  corresponding to the  poin ts  T-m~-~Z for m > 0, 
n > 0,  ra ¢ n .  At these points  the  variety has ra ther  compl icated singularities.  It seems likely tha t  they 
are not  even locally full intersections,  thus,  formula  (3.5.2) cannot  be used for them.  As for the  Demazure  
character  formula  for the "infinite element"  

= S'~ S ~ S v  S - S ~ £ # e v e -  w0 = lira T_~-~ SaS#S~S~S~S#S~S~ . . .  = . . . .  3 --1 --~ --1 --1 0 ~ 0  ~"0 ' 
~----r (x:~ 

this formula  converges ra ther  slowly, and  the  complexi ty  of the  calculations grows exponentially.  
Nevertheless,  we can s ta te  the  following conjecture.  

C o n j e c t u r e  4 .3 .2 .  For Z 1 = Z2 = 1, the contribution to the Lefschetz formula of local terms A~, 
corresponding to the points ~ ~ ~ fq M different from T-ha,  T-nB , and T-nv , is equal to zero. 

Seemingly, each of these t e rms  contains  the factor (1 - a ) ,  (1 - b ) ,  or ( 1 -  c) in the  numera to r ,  or iginated 
from the local equat ion  of M in a ne ighborhood  of ~, which is homogeneous  wi th  respect  to the  torus T 
with weight a ,  b, or c. 

P r o p o s i t i o n  4 .3 .3 .  (A_n~ + A _ ~  + ~-~7)[z~=z~=~ is equal to 
(a) ((6n + 1)q a ~ + n  - (6n - 1)qan:-n)/(q)~,  if V is the basic representation; 
(b) (((2k + 4 )n  + 1)q (k+2)~+n - ((2k + 4 )n  - 1)q(k+:)n:-n)/(q)~, g V is the representation with 

highest weight A = (0, O, k), k ~ O. 

Taking the  s um over n ~ d  equat ing  to (4.2.6), we obta in  the  series of identit ies:  

T h e o r e m  4 .3 .4  (modulo  Conjec ture  4.3,2). 
(a) (Gauss '  theorem)  (q )~  = 1 - 3q + 5q a - 7q ~ + 9q ~° - l l q  a~ + . . . .  
(b) (AnMog of the  R o g e r s - R a m a n u j a n  identit ies) 

q a2-ab+b2 _ 1 - 5q ~ + 7q 4 - l l q  1° + 13q 14 - . . .  ~ , G z ( 6 n  + 1)q 3'~2+'~ 
= 

a ,b>O 

(c) (Analog of the  Gordon  identit ies) 

1 1) q(~,+2),?+,~ =  ((2k + 4 I n  + . 
nGZ 

(Part  (a) corresponds  to k = 0; for the  no ta t ion  of par t  (c), see 2.7.3.) 
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4.4. For us, a rather unexpected observation was that the right-hand side of ~rmula 4.3.4(b) coincided 
with the Kac character formula for the basic representation of Lie algebra ~[2 (see, for example, [5, 
(14.3.5)]), and, more generally, the right-hand side of 4.3.4(c) coincided with the Kac character formula 

~ .  

for the representation of ~[2 with highest weight (0, 0, k). 
Using this observation, one can simplify identities (4.3.4), replacing their right-hand side by the "bo- 

son" character formula (2.6.2) for k = 1 and by the "parafermionic" formula (2.6.2 t) for a general k. 
A. E. Postnikov has noticed that after such a replacement identity 4.3.4(b) becomes obvious. (The proof 
concerns the Durfee square.) 

We will give here an explanation for the coincidence of the characters of the space W and of the space 
of a representation of the Lie algebra ~'[2. For example, let V be the basic representation of ~e (we hope 
that there will be no confusion in the notation). It is a quotient space of the algebra U(~u t ) ,  where 
~[~ut = (el, fl ,  hi : i < 0), by some left ideal J .  Since e2~v = for = L_~v = 0, the following elements of 
the form (adL_~)n(adfo)m(e~_i) belong to J: 

e2 --1, h_le_~ + e_~h_~, f - l e -1  -t- e-l  f-1 -- h2-1, h - l  f-1 + f-~h-1,  f~_~, (4.4.1) 

eiej ,  + + 

i+j=-~ i+~=-~ i+j=-~ (4.4.2) 

i + j = -n  i+ j= -n  

Propos i t ion  4.4.3. (a) The five relations (4.4.1) generate the ideal J .  
(b) The five series of relations (4.4.2) generate the ideal j C S(~'[~ut), which is the associated graded 

quotient of the PBW-filtration on J C g(~ut) . .  

It remains to compare the statements 4.4.3(b) and 4.2.5, and to see that the quotient spaces S(fi°ut)/] 
and S ( ~ t ) / 3 ~  are almost the same spaces: the only difference between them is the extra sum 
~i+j=m(fiej  -~ eifj) in the third series of the quadratic relations (4.4.2). Therefore, it is likely that 
the characters of the two spaces coincide. 

This argument can be easily generalized to the case of arbitrary k. 
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