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Let G be a group, let T be a unitary representation of G in a Hilbert space H ,  and l~et F(H) be 
the semigroup of all contractions (i.e., operators with norm < 1) in H ,  equipped with the weak operator 
topology. Then, closing the image T(G) of the group G in r(H), we obtain a compact semigroup 
I" C_ F(H) with separately continuous multiplication; in particular, F is a compactification of the group G. 

This simple construction is of special interest for infinite-dimensional groups, because it proves to be an 
important tool for studying representations of such groups and also because it furnishes us with interesting 
examples of compactifications. See the author's papers [17-19, 21], Neretin's papers [12, 14, 15], and the 
forthcoming paper by R. S. Ismagilov "On the irreducibility of representations of groups of measurable 
currents." 

The present paper is devoted to a single model example: for G we take the infinite-dimensional real 
metaplectic group Mp(cx~, R) := limMp(n, R) and for T we take the Weil representation W of G in 
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a boson Fock space with countably many degrees of freedom. The interest in the Well representation 
W is related to the fact that this representation is one of the main "building blocks" for constructing 
representations of infinite-dimensional groups; see Olshanskii [20] and Neretin [13]. 

However, the main result of the paper (Theorem 3.5) deals with the Fock space F (C  N) with finitely 
many degrees of freedom and consists in computing the norm of the so-called Gaussian operators in F(C'~). 
These are integral operators with kernel of Gaussian type: the exponent of a quadratic form. 

The formula for the norm of a Gaussian operator (see (3.3) and (3.10)) turns out to be not very 
simple; under supplementary restrictions on the operator it admits somewhat simpler versions (see (3.8), 
(3.13), and (3.14)). The knowledge of the norm allows us to describe the semigroup F(n) of all Gausslan 
contractions in the Fock space F(Cn) ,  n = 1, 2 , . . .  , completely; finally, the semigroup F itself, as a set, 
is a projective limit: F = l imF(n)  ; see §4. 
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However, the constructive description of the semigroup F remains an open problem, and in §4we state 
four related problems. It seems to me that these are interesting problems of operator theory. In Neretin's 
paper [12], for the semigroup F, two estimates ~'from below" are obtained. There also exists a p-adic 
version of the semigroup F, which compactifies the infinite-dimensional metaplectic group over a field of 
p-adic type. Nazarov [10] succeeded in obtaining a precise description of this semigroup. The situation 
over the field R is more complicated, and this seems to be caused by the fact that ,  over a p-adic field, 
there is no difference between operators of trace class and Hilbert-Schmidt operators. 

Gaussian operators and their relationships with analysis are thoroughly examined in Howe's work [9]. 
However, this work has another orientation: the problems concerning norms and the compactification 
of the metaplectic group are not considered there. The paper [9] also deals with another realization of 
Gaussian operators, which is related to the "real" model of the Fock space but not to the "complex" 
one. The connection between the two realizations is discussed in Folland [5] and Hilgert [7]. Regarding 
Gaussian operators in L p spaces, see Epperson [4] and the references therein. 

The present publication, together with the cited works [10, 12] by M. L. Nazarov and Yu. A. Neretin, 
gives a detailed exposition of our joint note [11]. I am deeply grateful to my co-authors for numerous 
conversations and collaboration. The results of this paper, in their first version, were obtained by the 
author in the autumn of 1984. 
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§1. Preliminaries 

The proofs of the facts s tated in this section can be found in the following sources: Berezin [2], Berezin 
and Shubin [3], Folland [5], and Neretin [12]. 

Denote by #n ,  n = 1 ,2 ,  . . . ,  the Gaussian measure on C ~ with density rr-~ e x p ( - z * z )  with respect 
to the Lebesgue measure. Here z ~ C a is regarded as a column vector and z* = g '  as a row vector (the 
symbol ( • )t s tands for transposition).  The space F (C~) ,  formed by the entire functions on C" contained 
in Le(C ~, #~), is closed in L2(C ~, #~) and so is itself a Hilbert space. It is called the Bargmann-Segal 
space and is a convenient model  of the boson Fock space with n degrees of freedom. Note that  F ( C  ~) is 
canonically isomorphic to F(C ~)®~. 

For any z e {2 n , the function f~(w) := exp(z*w) lies in F ( C  n) and has the property that  (f ,  Ix) = 
f(z) for all f E F ( C " ) .  Any bounded operator A in F ( C  n) is uniquely determined by its symbol 
K(z, w) := (Afw, f~) and can be writ ten as an integral operator,  

(Af)(z) = J K(z, w)f(w)#,,(dw). ( i . I )  

Moreover, the concept of a symbol and the representation (1.1) hold for a wide class of unbounded  operators 
in F(C"). 

Let 12 be a complex symmetric  matr ix of size 2n x 2n writ ten in block form 12 = [~ij], where the 
indices i and j take the values 1 and 2 and each of the four blocks ~2ij is of size n x n.  Let us assign 
to 12 the kernel K (f/) =: K (a l~ ,  ~ ) ,  where 

1 ~ - -  K(121z,w):=-exp(½(z@N)tfl(zeN))=exP(½Zt12nz+Tw f~e2w+ztfl~eN), z, w e C  n. (1.2) 

We are interested in operators in F (C" )  with symbol of the form const .K(f / ) ,  which we will call Gaussian 
operators (a precise definition is given below). 

1.1. Let C be a matrix of size n x n with IICII _< 1 and let f / ( C ) : =  I 2 ,  C~ The Example 
operator Ac of the change of a variable ' [ u  0 ] " 

(Aef)(z) := f(C'z),  f e F(C"), z e C '~, 

is a bounded Gaussian operator with symbol K(fl(C)). Moreover, Ac  is a contraction, and if the matrix 
C is unitary, then the operator  Ac is also unitary. 

Example 1.2. If Ilall < 1, then  a bounded Gaussian operator A(F/) with kernel (1.2) exists and is 
a Hilbert-Schmidt  operator,  since the kernel is square integrable. If ~ is another matr ix with ]l ll < 1, 
then 

t r (A( f / )*A(5) )  = de, ((1 - a ' 5 ) - 1 / 2 ) .  (1.4) 

P r o p o s i t i o n  1.3. For the existence of a bounded Gaussian operator with symbol (1.2), the following 
conditions on the matri.~: ~ are necessary: 

111211-< i ,  Ilallll < I, nf~2ell < I .  (1.5) 

P r o o f .  Suppose that  A is a bounded operator with symbol (1.2). Then the function (Afo)(z) = 
exp(}ztallZ) lies in F(C"), whence Ilanll < 1. Replacing A by A*, we obtain tlf/2211 < 1. Further,  for 
any x = z ( 9 ~ E C  2n 

lexP( ½Xttix)l = I(A f,~, fz)l <_ IIAII IIf~,ll llfzll = IIAI] exp (~xl . x ) .  (1.6) 

Reducing the matr ix 12 to the diagonal form by the transformation 12 ~-~ Ut12U with an appropriate 
unitary matr ix U,  we conclude from (1.6) that  111211 -< 1. [] 
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In fact, conditions (1.5) are also sufficient. This will be proved in two ways, see Corollary 2.9 and 
Theorem 3.5. Neretin [12] proposed another approach, based on the fixed-point method. 

Following Neretin [12], we introduce the dense subspace F0(C '~) in F (C  n) spanned by the functions of 
: 

the form 
f,~,~(z)=exP(½ztwz+atz), z e C  "~, (1.7) 

where a E C n and w is a Complex symmetric matrix of size n × n with [[w[[ < 1. Denote by S(n) the 
space of all complex symmetric matrices ~ of size 2n x 2n that satisfy conditions (1.5). 

P r o p o s i t i o n  1.4 (Neretin [12]). For any ~ ~ S(n), there is an operator A(~):  F0(C =) ~ F0(C ~) 
well defined by the integral (1.1) with kernel K(z, w):= K(~[z, w). ~ 

It will be convenient for us to take A(~) as ~ initiM definition of the Gaussian operator with kernel 

Z(~ l z ,~ ) ,  ~ e S(~). 
Set V := C n ~ C  ~ • We equip V with an indefinite inner product O(x, y) and a bilinear skew-symmetric 

form B(x, y): 

• he forms • and B are rela~ed by ~he form~a O(z, ~) = iB(~, eonj (9)), where conj s~andsfor ~he 
an~ilinear involution on g sending a vector 9 = ~1 • ~2 (where 9~, 9~ ~ C~) into ~he vector i(g~ ~ g~). 
Denote by Ve ~he reM form of ~he space ~ corresponding to ghe involution conj. ~hen  ~he quadruple 
(V, ~ ,  B,  conj) is uniquely de~ermined by ~he reM symplee~ic space (V~, B) .  The group Au~ (g~, B) 
is ~he real symplec~ic group Sp(n,  N) of rank n.  On ~he o~her hand, ~he s ~ e  group, viewed as ~he 
au~omorphism group of ~he ~riple (V, ~ ,  B) ,  c ~  be re~i~ed as g(n, n) n Sp(n, C), where g ( n ,  n) := 
Aut (V, ~) ~ d  Sp(n, C) := Aut (V, B) .  Then we obtain the well-known complex, realization of the group 

: =  

P r o p o s i t i o n  1.~ (Bere~in [2, Chap. II, (4.26)], Vergne [26]). The a~ssian operators 

] = w h e r e  [ , 

define a t~o-val~ed projective ~nitar~ representation 4 the 9m~p Sp(n,N) in the space N(C~). ~ 

~he representation W~ is called ~he Well representation of ~he group Sp(n, R). ~he function 9 ~  ~ 
~(de~ ~)~/~ admits ~he choice of a single-vMued branch when lifted ~o ~he ~wo-fold covering Mp(n, N) ~ 
Sp(n, N), whi& is called ~he me~aplectic 9romp. ~his allows us ~o in~erpre~ W~ as an ordinary unitary 

representation of the group Mp(n, N) as well. 

~ .  L~near R e l a t i o n s  a n d  Orb i t s  

As in ~1, we pu~ V = C~ ~ C ~, where n ~akes ~he values 1, 2 ~ . . . .  Vectors of V will be denoted by 
z = z~ ~ z~ or 9~ ~ 9~, where xi, gi ~ C~. By definition, a linear relation ~: V ~ V is an ~bi~rary 
l ine~ subspace in V ~ V. We will write vectors of V ~ ~ in ~he form 

( = ~ l O ~ e ~ 9 ~ ,  where ~ , z ~ , 9 ~ , 9 ~  C~. (2.1) 

The permuga~ion ~ ~ 9~ of ~he components ~ and ~ in (2.1) defines ~ involu~ive ~r~sforma~ion 
P on ~he se~ of linear relations, which we will call ~he Potapov-~in~r9 transformation, el. A~i~ov and 
Iokhvidov [1, Chap. V, ~1]. ~he  ~ransforma~ion ~ has a number of r e m ~ b l e  properties; in particular, 

see Proposition 2.1. 
Any opera, or T: V ~ V can be interpreted as a linear relation if T is replaced by i~s 9raph 

graph(T) := { z .  Tx I ~ e V} C V ~ V. (2~2) 
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Denote  by C o n t r ( V ,  J )  the  set of all max ima l  J -con t rac t ing  linear relat ions L:  V --+ V.  In other 
words, L E C o n t r ( V ,  J )  if d i m L  = 2n and  the  Hermi t iau  form ~ _  :=  • ® ( - ~ )  on V @ V tu rns  out  to 
be nonnegat ive  on L .  In par t icular ,  if T :  Y -+ V is a J -con t rac t ing  opera tor  (i.e., e2(Tx, Tx)  <_ e~(x, x) 
for all x ~ V or, in ma t r ix  terms,  J - T * J T  > 0), t hen  g r a p h ( T )  G C o n t r ( V ,  J ) .  

By C o n t r ( V )  we denote  the  space of all cont rac t ing  operators  T :  V --* V ,  i.e., opera tors  wi th  ]ITII _< 1. 
We will not  d is t inguish  be tween T and  graph  (T) .  

P r o p o s i t i o n  2.1 .  The Potapov-Ginzburg transformation establishes a bijection 7): L --+ T between 
C o n t r ( V ,  J) and C o n t r ( V ) .  

P r o o f .  Let L e C o n t r ( V ,  J ) .  Let us show tha t  7~(L) coincides wi th  g r a p h ( T )  for some opera tor  T .  
For ~ ~ L we have 

0 = - I l x l l l  + IIx ll 2 + liy ll2 -Ily ll = (llyall = + Ilx21i 2) - (ll  ll + Ily ll ) • (2 .3)  

Thus,  ya ® xz = 0 implies x~ ~3 y2 --- 0. Since d im L = 2n ,  this means  tha t  the vector (Yl • x2) ~ (x~ ~) Y2) 
runs over the  g raph  of an opera to r  T :  V --+ V if ~ runs  over L.  The  equivalence of the  condit ions 
L e C o n t r ( Y ,  J )  and  T e Con t r (Y)  is obvious (due to (2.3)). [] 

Let us denote  by V ~ and V" the  first and  the  second copies of the  space V in the  direct  sum V ® V ; 
somet imes we will identify t h e m  with  V itself. For L G C o n t r ( V ,  J )  we put  K a r L  := L f~ V ~ and 
Ind L :=  L N V " .  By the  condi t ion ~ _  I L >_ 0 we have • I Ker L >_ 0 and ~ I Ind  L _< 0. We will write the 

. 

contract ing opera tor  T = P ( L )  in the  block form T = [Tij], where i, j = 1, 2. Let us in t roduce  another  
Hermi t ian  form ~+ := • ® • on V ~ V.  

P r o p o s i t i o n  2.2 .  Let L ~ Cont r (V,  J) and-let T -= [Tij] be the corresponding operator from Cont r (V) .  
The following conditions are equivalent: 

(i) O l K e r L > 0  and O ] I n d L < 0 ;  
(ii) ]ITI~tl < 1 and ]IT~II < 1; 

(iii) the form ~+ tL is nondegenerate. 

P r o o f .  (i) .: ;. (ii). Let us show tha t  ]IT121] < 1. Since IITII _< 1, we have T~2T12 + T~2T22 <_ 1. 
Therefore,  it suffices to verify tha t  ]lTl2a]l < Ilal] for any nonzero a e (Y' such tha t  T:2a = 0. Let us 
assume tha t  the  vector ~, wr i t ten  in the  form (2.1), ranges over L .  T h e n  T t ransforms ya ~3 xz into 
xl ~Y2. P u t  ya = 0 and  x2 = a .  T h e n  y2 = T2~ya +T2:x~ = O. Therefore,  ~ G K a r L  and  ( ¢ 0. Due to 
(i), ~(~,  ~) > 0, i.e., ]]Xl[ ] < ][Z2[], and  this means  ]]Tl~a[~ < ]]a]]. In the  same way, se t t ing z2 = 0 and 
y~ = b, where T11b = 0, b ¢ 0, we check tha t  ][T~a ~] < 1. 

(ii) ~ (iii). Consider  the  n -d imens iona l  subspaces L -  and L + in L tha t  ~ e  dis t inguished by the 
condit ions x2 = 0 and  Yl = 0, respectively. Now we will show tha t  L -  is str ict ly negat ive ~nd L + is 
strictly posit ive wi th  respect  to the  form ~ + .  Since d im L = 2n,  this will immedia te ly  imply  tha t  L is 
nondegenerate .  

Let ~ ~ L -  and  ~ # 0. T h e n  x2 = 0, ya # 0, and,  by (ii), ]]Y2]] = []TZly~]] < ]]ya]]. Together  with 
the definit ion of the  fo rm ¢ + ,  this implies ~+(~ ,  ~) < 0. Similarly it is checked tha t  ¢+(~ ,  ~) > 0 for all 
nonzero ~ G L + . 

(iii) ~ (i). Since ~ [ Ker L = q _  [ Ker L ~ 0, in order  to prove tha t  ~ [ Ker L > 0, it suffices to check 
tha t  ~ ~ K a r l  and  ~ _ ( ~ , ~ )  = 0 imply ~ = 0. Now note  tha t  ~ _ ( ~ , ~ )  = 0 for all ~ ~ L ,  because 
• _ [L ~ 0. But ,  since ~ has the  form x ~ 0, this also m e ~ s  tha t  ~+(~ ,  ~) = 0 for M1 ~ ~ L .  By (iii), 
we conclude tha t  ~ = 0. The  proper ty  O~Ind L < 0 is checked similarly. ~ 

Denote  by A(n) the  set of all l inear relations L E C o n t r ( V ,  J )  t ha t  satisfy the  equivalent conditions 
(i)-(iii) of Propos i t ion  2.2 and  are also Lagrangian subspaces in V @ V with  respect  to the  form B_ := 
B e  ( - B ) .  

P r o p o s i t i o n  2.3 .  A(n) is a semigroup with respect to the multiplication of linear relations. 
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Proo f .  Recall that the product N = L M  of the linear relations L and M consists of those vectors 
x @ z ~ V @ V for which there exists a vector y E V such that x @ y ~ M and y @ z ~ L; this operation 
generalizes the multiplication of linear operators. Now let L, M ~ A(n). Then it is easily verified that 
N is a nonnegative subspace with respect to the form ~ _ ,  isotropic with respect to the form B _ ,  and 
satisfies condition (i) of Proposition 2.2. The only nonevident property is dim N = 2n. We can derive this 
from the fact that L and M are Lagrangian relations; see Guillemin and Sternberg [6, (9.6)]. Another 
reasoning is as follows. Let us put S = P(L)  and T = :P(M), and let us show that  :P(N) = graph(U),  
where U: V --~ V is a linear operator. To do this, it suffices to check that, for any fixed zl ,  x2 ~ C ~, the 
following system of linear equations on the vector y = y~ @ y2 E V is solvable: 

T2~y~ + T22x2 = Yh, ,-~llZl + S~2Y2 = y~ • (2.4) 

But this fact is evident if one takes into account that lIT5111 < 1 and IISI~II < 1. [] 

P r o p o s l t l o n 2 . 4 .  L e t T ~ ' s t a n d f o r t h e t r a n s f o r m a t i o n t h a t a s s i g n s t h e m a t r i x 1 2 = [  0 ~ ] T ,  where 
T := :P(L), to a linear relation L ~ Contr(V, J) .  Then 1 

(i) P '  establishes a bijection A(n) -* S(n);  
(ii) the transfer of the semigroup structure from A(n) to S(n) by means of P'  leads to the following 

multiplication in ,~(n) : 

12,~ [1211 -~-1212~11(1--1225~11) -11221 1212(1-- ~111222)--1~12 ] 
= 5~1(1 -- a22511)--11221 fi~1222(1 - fin12~2)-11215 + 1225 " 

(2.5) 

Proof .  (i) Conditions (1.5) characterizing the matrices 12 ~ S(n) rephrase the condition IITI] ~< 1 
from Proposition 2.1 and condition (ii) of Proposition 2.2. Finally, the symmetry condition 12t = 12 is 
equivalent to the condition B_ I L = 0. 

(ii) This is verified by direct computation. [] 

P r o p o s i t i o n  2.5. For fl, ~ ~ S(n) ,  we have 

A(12)A(5)  = det ((1 - 1225fin)-1/2) A(12 * 5 ) .  (2.6) 

Proo f .  A direct calculation based on a formula for the Gaussian integral (Berezin [2, Chap. I, (2.16)]) 
shows that the application of both sides of formula (2.6) to the vector f~,a E Fo(C") gives the same 
result. [] 

Thus, the multiplication (2;5) in S(n) has two natural interpretations: on the one hand, it corresponds 
to the multiplication of linear relations, and on the other hand, it corresponds to that of Gaussian operators. 
This fact also means that  the mapping L ~ A(7~'(L)) defines a projective representation of the semigroup 
A(n) by Gaussian operators. 

Let us consider the group Sp(n,  R) in its complex realization (see §1). 

P r o p o s i t i o n  2.6. (i) The mapping g ~-~ graph(g) specifies an' isomorphism of the group Sp(n,  R) 
onto the group of invertible operators of the semigroup A(n)-  

(ii) The image of the group Sp (n, ~) in S(n) under the mapping 7 ~ O graph consists of :all unitary 
symmetric matrices 12 with det 1215 = det 1221 ¢ 0. 

(iii) The operator lYn(g), where g ~ Sp(n,[~),  is proportional to the Gaussian operator 
A( :P' (graph (g ) ) ) . ~ ~ , 

, 
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P r o o f .  (i) This is trivial. 
(ii) This is trivial, too. Note that  the condition det Q12 = det ~/21 # 0, which means that  ~/ comes 

from the graph of an operator,  implies the conditions I]Q~I ]] < 1 and ][~/221] < 1, because ~/ is unitary. 
(iii) It suffices to check that  Q(a , f l )  = T " ( g r a p h ( g ~ ) ) ,  in the notat ion of (1.9). [] 

By Proposit ion 2.6, the group Sp(n, R) acts by two-sided translations on the semigroup A(n) --- S(n). 
Now we will deal with classifying orbits of this two-sided action. The heart  of this problem (if one digresses 
from the isotropy condition B_  [L = 0) consists in reducing to a canonical form a couple ( ¢ _ ,  ¢+)  of 
Hermitian forms, defined on a finite-dimensional linear space L,  such that  ¢ _  is nonnegative and ~+ is 
nondegenerate.  Precisely these conditions play a crucial role in simplifying the classification problem. 

A linear relation L E A(n) will be called nondegenerate if KerL  = 0 and I n d L  = 0. Nondegenerate 
elements L E A(n) are the graphs of the operators g E Sp(n, C) that  are J-contractions (i.e., J -  
g*Jg _> 0). They form a subsemigroup in Sp(n, C), which will be denoted by Sp<(n, C). For more detail 
about semigroups of this kind, see Olshanskii [16] and Hilgert and Neeb [8]. Note that  the image of the 
semigroup Sp<(n, C) in S(n) consists of all symmetric matrices ~ of size 2n × 2n such that  I[Q[I <: 1 
and det f~12 = det Q21 # 0. 

A linear relation L E A(n) will be called totally degenerate if L = Ker L @ Ind L. In other words, L 
is specified by a couple of transversal B-isotropic n-dimensional subspaces in V,  one of which is strictly 
positive and another of which is strictly negative with respect to the form ¢ .  In terms of matrices ~ ,  this 
means that  ~~12 = ~"~21 =: 0, [1~11]1 < 1, and [[~-~2211 < 1. The totally degenerate elements L e A(n) form 
a single orbit under  the action of the group Sp (n, ~) × Sp (n, II~); any such element can be reduced to the 
following canonical form.: Ke rL  -- {0 @ x2} and I n d L  -= {y~ ~ 0) ,  where x~ and y~ range over C '~ . 

For arbitrary elements K ~ A(k) and M ~ A(m),  where k, m -- 1, 2 , . . . ,  the direct sum L --= K ~ M ,  
which is an element of the semigroup A(k + m) ,  is defined in an obvious way. In terms of block matrices 
~ ,  this operation ~ me,ms that  any of the fourblocks (7)'(L))~j, where i, j -- 1, 2, equals the direct sum 

P r o p o s i t i o n  2.7. Under the action of the group Sp(n, ~) × Sp(n, ~),  an arbitrary element L e A(n) 
is reduced to the form K @ M,  where K is a totally degenerate element of A(k), M is a nondegenerate 
element of A(rn), and 1~: + m = n. 

(Of course, it is possible that  K or M equals {0}, i.e., L itself is already a nondegenerate or totally 
degenerate element.) 

P r o o f .  Step 1. Recall that  V ~ and V ~ stand for the first and the second copies of the space V in 
V ® V. For L ~ A(n) let us denote by DotaL a n d  R a n L  its projections to V ~ and V ~, respectively, 
and by L* its orthogonal complement in V @ V with respect to the form ~ _ .  Then Dora L coincides 
with the orthogonal complement of KerL* := L* (~ V ~ with respect to the form ~ on V ~ = V,  and R a n L  
coincides with the orthogonal complement of Ind L* := L* ~ V ~ with respect to the form ~ on V" = V. 

Indeed, e.g., let us check the first claim. It is evident that  Dora L is orthogonal to Ker L*. Conversely~ 
let us assume that  a vector x ~ V ~ is orthogonal to Ker L*. Then there exists a linear functional on 
L* + V t that  vanishes on L* and coincides with the functional ~ ( . ,  x) on V ~ . Let us extend it to a linear 
functional on the whole space V' ® V" and write it in the form ~_  ( . ,  ~). Then ~ lies in L and has the 
form x @ y with some y E V ~ , that  is, x ~ Dom L. The second claim is verified in exactly the same way. 

Step ~. Let us show that  Dom L and Ran L are nondegenerate with respect to the form ~ on V ~ = 
V" = V.  By Step 1, it suffices to prove a similar s tatement for KerL* and IndL* .  Note that  L* is a 
maximal nonpositive subspace with respect to ~ _ ,  because L is maximal nonnegative. Further,  we also 
note that  L* is nondegenerate with respect to ~+: indeed, denote by L ± the orthogonal complement to 
L with respect to ~+ ; ~hen L ± is nondegenerate together with L; on the other hand,  by the definition 
of the forms ~_  and ~ + ,  L* is t ransformed into L ± by the operator x @ y ~-~ x ® ( - y )  ; since this 
operator preserves all forms, we conclude that  L* is nondegenerate with respect to ~ + ,  together with 
L ± . Thus,  we have shown that  L* is both  a maximal nonnegative subspace with respect to ( - ~ ) _  and 
a nondegenerate subspace with respect to ( - ~ ) + .  By Proposit ion 2.2, ~ [ Ker L* < 0 and (I' [ Ind L* > 0. 
In particular, Ker L* and Ind L* are nondegenerate. 
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Step 3. Since all four subspaces Ker L,  Dom L,  Ind L,  and Ran L are nondegenerate with respect to 
the form ~ ,  there exist O-orthogonal decompositions V ~ = U ~ @ W ~ and V" = U" @ W", where 

U ~ := KerL  + KerL*,  

U" := Ind L + Ind L*, 

W ~ := Dom L (~ Ker L, 

W" := Ran L @ Ind L.  (2.7) 

Further, due to the relation between if, B ,  mad conj and due to the fact that L is Lagrangian, the space 
L* coincides with (conj ~9 conj)(L). In particular, Ker L* = conj (Ker L) and Ind L* = conj (Ind L).  Thus, 
U ~ and U" are stable with respect to the involution conj, and then their orthogonal complements W ~ 
and W" also have the same property. 

We put K := Ker L ~t~ Ind L and M := L fq (W ~ @ W") .  Then L coincides with K @ M ,  because K 
is contained in L and is a nondegenerate subspace with respect to ~ ± .  

1 d im(W ~ @ Step 4. It is clear that  M ~ W ' =  {0} and M ~ W " =  {0). On the other hand, d i m M  = ~  
W").  It follows that dim W' = dim W" and, hence, dim U' = dim U".  Acting by the group Sp(n, ~) × 
Sp(n, ~),  we can match the space U' @ U" with the subspace (C k @ C k) ~ (C k @ C k) in V' @ V" = 
(C" @ C ") @ (C ~ @ Cn),  where k = dim U' = dim U".  This means that L = K @ M is contained in the 
image of the semigroup A(k) x A(n - k) under its canonical embedding into A(n). It is clear that K is 
totally degenerate and )k/ is nondegenerate. [] 

T h e o r e m  2.8. Under the action of the group Sp(n, R) x Sp(n, ~), any linear relation L ~ A(n) is 
reduced to a canonical form, which is the direct sum of linear relations from A(1) of the following four 
types: 

1) L(D = {O@x2 ~)y~ @0} C Ca; P ' (L  (~)) = 0 ;  
2) L~ 2) is the-graph of the operator C2-+ C 2 given by the matrix r -[sal 0[ ] where O< s < 1; 

8 ' [: k ~ J 

~ ' ( ~ =  0 ; 

any fixed number from (0, 1); ~'(L~ a)) = ] a : l  a ] is 
a - 1  ; [ - J 

4) L (~1 is the graph 4 the identity operator C 2 ~ C~ ; P ' (L  (~)) = 0 " 

P roof .  By Proposition 2.7, we can assume that L is nondegenerate, i.e., L is the graph of some 
operator T e Sp<(n, C). Then we must prove that L can be reduced to the direct sum of elements 

of type L~ 2) , L(a 3) ,, and. L (a) . It is known (Potapov [23, Chap. II]) that any J-contracting invertible 
operator T can be uniquely written in the form T = g e x p H ,  where g e U(n, n) and H is a J-self- 
adjoint J-nonpositive operator, i.e., JH = (JH)* < O. Now let T e Sp<_(n, C). Then, using the 
involution that singles out the subgroup Sp(n, C) C GL(n, C), we get g ~ Sp(n, ~) and H e  i~p(n, ~) ,  
where ~p(n, ]R) stands for the Lie algebra of the Lie group Sp(n, ~). Moreover, H belongs to the convex 
Sp(n, R)-invariant cone C ,  C ihp(n, ~) formed by the J-nonpositive operators in i~p(n, ~).  Thus, our 
problem is reduced to the well-known problem of classifying Sp(n, R)-orbits in the cone f~, see Paneitz 
[22, Lemma 7.1]. (This classification can be also obtained by Potapov's methods [23]:) [] 

C o r o l l a r y  2.9. Conditions (1.5) from Proposition 1.3 are not only necessary but also sufficient for a 
Gaussian operator A(f~) to be bounded. 

Proof .  By Proposition 1.5 and Theorem 2.8, one may assume that ft has the canonicM form. Further,, 
using ~he isomorphism F(C n) = F(C1) ~n , we reduce our statement to the case ft = P(L),  where 
L E A(1) is one of the elements listed in Theorem 2.8. For elements of the first, second, and fourth types, 

the verification of the boundedness of the operator A(ft) is trivial. For L = L(a 3) this is slightly more 
difficult, and here one can use, e.g., a, construction which is given below in the proof of Theorem 4.2, 
Step 2. : 
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§3. Computing Norms of Gaussian Operators 

Consider the subsemigroup A0(n) := {L • A(n) I ~ _ I L  > 0} in A(n). It is invariant with respect 
to the action of the group Sp(n, N) x Sp(n, N), and in the canonical representation of the elements 

L • A0(n) only components of type L (1) or L~ 2) can occur. The transformation 7 ~' maps A0(n) into the 
subsemigroup So(n) := { f / e  S(n) lllf~ll < 1}. Under the action of the group Sp(n ,R)  x Sp(n ,R) ,  any 
matrix f~ • So(n) can be transformed to the canonical form 

[ ~ diag(sl ,  . . .  , s . ) ]  
~ ( a a , . . .  , s , ) : =  diag(sl  . . .  , s , )  0 ' 0 < s ~ , . . .  , s ,  < 1, (3.1) 

where diag(s l ,  . . .  , sn) stands for the diagonal matrix with diagonal entries s l ,  . . .  , sn. This is a partic- 
ular case of the matrices f/(C) from Example 1.1. Note that possible zeros among the numbers s~, . . .  , sn 
correspond to components of type L(D. 

Proposition 3.1. L e t  us assign to an arbitrary matrix f~ • S(n) the pencil of Hermitian matrices 
(1 - fl*f~) - £(J - fl*Jfl). Then the roots of the characteristic equation 

act ((1 - a ' a ) -  £ ( J -  a*Jf~)) = 0 (3.z) 

are constant on the orbits of the two-sided action of the group Sp(n, II{). If fl = f l ( s j , . . .  , s , ) ,  see (3.!), 
then the roots have the form X = ±(1 - s,2.)(1 + S~) -1 , 1 < i < n.  

P r o o f .  Consider the pencil of Hermitian forms (/I~_ [L) - A(O+IL ) on the space L := (p,)-1(~2). 
Equip L with a basis by" making use of the projection ( H Yl (~ x2, which gives an isomorphism L --~ C 2~ 
(see the proof of Proposition 2.1). In this basis the forms ~_ IL and ~+ ]L will be represented by the 
matrices 1 - a * a  and J - f /*Jf / ,  respectively. Since the spectrum of the pencil (~_ ]L) - X(O+ [L) is 
clearly invariant with respect to Sp (n, R) x Sp (n, N), we obtain the first claim of the proposition. The 
second claim is checked by a simple calculation. [] 

By Proposition 3.1, the (unordered) collection of numbers s~, . . .  , s,,, which arises as the result of 
reducing a matrix F / •  So(n) to the canonical form, is a single-valued function of f/. 

Recall that for f/ • So(n), the Gaussian operator A(a)  is a nonzero Hilbert-Sehmidt operator and, 
hence, a bounded operator. 

Proposition 3.2. L e t  fl • So(n). Then 

n 

]]A(ft)l1-1 = det((1 a , j f t j ) I / , )  1-I( 1 + s~)-1/2. (3.3) 
i = 1  

Proof .  Step 1. In the notation of Example 1.1, we put I = A - l ,  where 1 denotes the unit matrix of 
size n x n.  It is easily verified that IA(~2) = A(f l ) I  = A(Jf lJ)  for all f~ • S(n). Now, let f~ • So(n). 
Then, by (1.4), 

tr(A(fl)*IA(f~)) = det ((1 - gl*Jf~J)-l/~). (3.4) 

Step 2. Let us show that the function 

tr(A(a)*ZA(a))llA(a)ll -~, a • So(n), (3.5) 

is constant on the orbits of the group Sp(n, N) xSp(n,  N). Indeed, note that the operator I commutes with 
the Weil representation Wn (this operator just determines the decomposition of Wn into two irreducible 
components). Therefore, expression (3.5) will not change after replacing the operator A(f/) by the operator 
Wn(gl)A(•)Wn(g2) -1, where gl and g2 are arbitrary elements of Sp(n, N). On the other hand, by 
Propositions 2.5 and 2.6(iii), we have 

Wn(gl )A(~)  W,~(g~) -~ = const .A(5) ,  
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where ~ C S0(n) is the result of the action on the matrix f~ by the element (gl, g2) of the group 
Sp(n, R) x Sp(n, R). Let us substitute (3.6) into (3.5) for the operator A(f~). Then under the trace 
symbol and under the norm symbol the factors [ coast [2 will appear, which will cancel each other, so that 
the result will come to replacing f~ by ~ ,  and this only means the invariance of the function (3.5). 

Step 3. Let us show that expression (3.5) equals 1-[(1 + s~) ~-1 . Indeed, by the result of Step 2; we can 
calculate (3.5) by substituting f~ = f~(s~, . . .  , Sn) into this expression. Then the operator A(f~) will turn 
into the operator Ac from Example 1.1, where the matrix C equals diag(s~, . . .  , s,~). It is easy to verify 
that the norm of this operator equals 1. Furthermore, the operator A(f~)*IA(~2) turns into the operator 
A_c=, whose trace is easily calculated, and the result is equal to l'I(1 ~- s~) -~ . 

Step ~. Consider the identical transformation 
, 

iiA(fl)[l_ ~ = tr(A(f~)*IA(f~)) 1 
IIAi[ ~ tr(A(~2)*IA(~2)~" (3.7) 

By Step 3, the first factor equals I-I(1 + s~) -1 .By Step 1, the second factor is given by formula (3.4). 
Finally, we obtain (3.3). [] 

R e m a r k  3.3. The s~trne reasoning, but without using the operator I ,  leads to another formula for the 
norm: 

IIA(f~)II-' det((1 1-[(1 = - - , s 0 ( N ) .  ( 3 . 8 )  

i = 1  

At first sight, (3.8) is sirnpler than (3.3). However, as we will see now, formula (3.3) holds for all ~2 ~ S(n), 
not only for f~ ~ So(n), while the substitution in (3.8) of a matrix f~, which does not lie in S0(n), leads 
to an uncertainty of type 0/0. 

As was mentioned in the proof of Proposition 3.1, the matrix J - 12*Jf~ describes the form ~+ [.L in 
an appropriate basis of the space L. Since the form ~+ [L is nondegenerate for all L ~ A(n), the matrix 
J -  f~*Jf~ is invertible ibr all f~ e S(n). Now let us assign to f~ e S(n) the Hermitian matrix 

x ( a )  :=  - - a ' a )  

a n d  se t  IX( )l = 

Let us denote by ~(n)  the closed matrix ball {fl I Nail _< 1 } in the space of complex symmetric matrices 
of size 2n x 2n. 

P r o p o s i t i o n  3.4. Define a function qo, >_ 0 on -~(n) by putting qo,~(f~) = 0 for ~2 ~ -~(n) \ S(n) and 

= I d e t ( a  - -  12,,S~)1~/4 det((1 + IX(a)l)12) (3.10) 

for ~2 E S(n). The function ~on is continuous on -~(n) and vanishes precisely on the set ~(n) \ S(n). 
Further, if ~2 e So(n), then ]]A(g2)]1-1 ' qo(~2). 

Proof .  The first factor in (3.10) is ~ continuous function on ~(n) v~ish ing  precisely on the set 
~(n) ~ S(n). The second factor is well defined on S(n) and is a continuous, bounded, nowhere v~nishing 
function on this set. Since S(n) is open in ~(n) ,  this gives the first claim of the proposition. 

Let us show tha t  the right-hand side:of (3.3) coincides with ~ , ( ~ )  for ~ e So(n). It is clear from (3.3) 
. 

that det (1 - ~*J~J) > O. Therefore, this de te rmin~ t  coincides with ]~det ( J  - ~*JQ)] .  Further, the 
roots of Eq. (3.2) ~ e  precisely the eigenwlues of the m~trix X(~) .  By Proposition 3,1, these e igen~ues  
have the form ~(1 - s~)(1 + s~) -~ , 1~< i < n. Thus, the spectrum of the matr ix (1 + $X(~[)/2 consists 
of the numbers (1 + s~) -~ t ~ e n  with multiplicity 2. Therefore, thesecond factor in (3.i0)~equMs ~tbe 
second f~ctor in (3.3). ~ ~ 
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T h e o r e m  3.5. For any matrix f~ e S(n), the aaussian operator A(~2) is bounded and [[A(fl)l1-1 = 
9~n(f~), where the ]'unction 7)n is defined in Proposition 3.4. 

It should be emphasized that  the reasoning given below does not use the proof of sufficiency of conditions 
(1.5) for the boundedness of the operator A(f/), given in Corollary 2.9. Thus, Theorem 3.5 provides an 
independent proof of this fact. Combining Theorem 3.5 with Proposition 3.4, we obtain that the function 
S(n) ~ ~ ~ ~[A(~)[[ -~ , being extended by 0 outside S(n), is continuous on the whole closed ball S(n). 

P r o o f .  For 0 < e < 1, we consider the operators A¢ = A~.~ in F (C  ~) ; see Example 1.1. The opera~ors 
Ae form a one-parameter semigroup of self-adjoint contractions in the space F(C~) .  They preserve the 
dense subspace F0(C~), ~ d  A~A(~)A~ = g(e2~)  for all ~ ~ S(n). No~e ~hat ¢ ~  ~ So(n) for M1 
~ ~ S(n). Finally, A~ strongly converges to 1 as e ~ 1. Using these properties, we obtain for an 
arbitrary vector f e F0(.C ~) (as e ~ 1) 

~[d(~) f~[ = lira JlA~A(fl)A~f]] = lira ]~A(e~)f~ 

~ l im~,(e~fl ) - l l I f l [  = ~n(fl)-~ilflI,  f l e  S(n), (3.11) 

by continuity of the function ~ , .  Hence, A(a)  is bounded for any f l e  S(n), and ilA(a)ll • 

On the o~her hand, since A~ is a contraction, for any e ~ (0, 1) we have 

liA(a)ll ~ IIA~A(a)A¢II = [IA(e~a)ll = ~n(g2a) -1 , (3.a2) 

whence IIA( )II IIA( )tl = 
R e m a r k  3.6. Let us state without proof two more formula8 for the norm of the Gaussian operator 

A(~).  The first formula is valid for all ~ ~ S(n) corresponding to elements of the semigroup Spa(n, C): 
n 

IIA( )II = l aCt al l  i(a) 
i = 1  

The second formula is w~id for n = 1 and all ~ e S(1): 

IIA( )II_ 1 = ( ( a c t ( l -  + 2 (a.14) 

§4. T h e  C o m p a c t i f i c a t i o n  of  t he  I n f i n i t e - D i m e n s i o n a l  
M e t a p l e c t i c  G r o u p  in t h e  Wel l  R e p r e s e n t a t i o n  

Note that the standaxd Gaussian measure #~ in ( ~  (see §1) is invariant with respect to the trans- 
formations z ~-~ Uz, where U E U(n). Thus, the definition of the Bargmann-Segal space F(C a) makes 
sense for an abstract finite-dimensional Hilbert space over C. 

Now, fix a countable-dimensional complex Hilbert space E and assign to it the Bargmann-Segal space 
F(E) consisting of all the complex functions f on E with the following properties: a) if E ~ C E is a 
finite-dimensional subspace, then f i E '  ~ F ( E ' ) ;  b) ]lfll 2 := s u p l l f l E ' I t  2 < oo, where the supremum 
is taken over all finite-dimensional E '  C E .  A slightly different (but equivalent) definition is given by 
Segal [24]. 

It will be convenient for us to fix an orthonormal basis el,  e2 , . . ,  in E and to identify C n with 
Cel + . . .  + Ce,~ for all n = 1, 2, . . . .  Then F(E) is identified with the Hilbertian completion of the 
algebraic inductive limit: lira F(q2~). In particular, F(E) is a Hilbert space. This is a convenient model 

of the boson Pock space with infinitely many degrees of freedom; see Berezin [2] and Segal [24]. 
The definition of a symbol of an operator and the definition of a Gaussian operator with symbol K(f~) 

remain meaningful in the space F(E) .  But now the matrix f~ has size 2c~ x 2co and each of its blocks has 
to be interpreted as a bounded operator in E .  Denote by S the set of all symmetric block matrices f/ of 
size 2c~ x 2c~ satisfying inequalities (1.5) and such that the diagonal blocks ~21j, f/a2 are Hilbert-Schmidt 
operators in E .  Then an analogue of Proposition 1.1 holds: if there exists a bounded Gaussian operator 
A(f/) with symbol K(f / ) ,  then f/ ~ S.  Conversely, as Neretin [12] has shown, for all f~ ~ S one can 
still define Gaussian operators A(a)  with a common dense invariant domain Fo(E) C F ( E ) ;  moreover, 
for these operators A(f/),  the multiplication formula (2.6), where the product • is still defined by (2.5), 
remains valid. 
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P r o b l e m  I. Describe the subset S* C S of those ~ E S for which the Gaussian operator A(O) is 
bounded. 

Neret in  [12] has shown that  S* is distinct from S ,  and evaluated "from below" the set S* in two 
different ways. 

For n = 1, 2, . . . ,  define the truncation mapping On : S -~ S(n) as follows: any of the blocks f~ij (which 
is a cx~ × c~ matrix) is replaced by its upper  left corner of size n × n.  Let Pn stand for the orthoprojection 
F(E) -~ F(C'~). The common domain Fo(E) of Gaussian operators A(~), as defined by Neretin [12], is 
invariant with respect to Pn; moreover, P~(Fo(E)) coincides with F0(cn) .  This permits  us to introduce, 
for ~ E S ,  the operator  P~A(O)Pn, which may be viewed as an operator in F0(Cn) ; the lat ter  is simply 
A(0~(~)).  

Introduce the function ~(~)  _> 0 on S which equals IIA(f~)l1-1 on S* C S had vanishes on S \S* .  For 
n = 1 , 2 , . . .  and any Y/~ S ,  we have IIP~A(~)Pnl1-1 = ~ ( ~ ( ~ ) ) ,  where the function Tn was defined 
in Proposit ion 3.4. It follows that  the functions ~,, o ~ on S form a monotone  nonincreasing sequence, 
which pointwise converges to ~,. 

P r o b l e m  I I .  Calculate the function ~ .  

Denote by ~(n) the set of all Gaussian contractions in F(C'*). The operators from ~(n) have the form 
aA(~), where ~ ~ S(n) ,  a ~ C, 0 _< lal _< ~ ( f ~ ) .  The set F(n) is a semigroup with the multiplication 
law 

(aA(~))(bA(5)) -~ abdet ((1 - ~225~)-~/2)A(~ * 5) ,  (4.1) 

as follows from (2.6). Let us equip ~(n) with the weak operator topology: on the set of nonzero operators 
this topology coincides with the topology of convergence of the parameters  (a, ~ ) ,  and the weak conver- 

- -  

gence to the zero operator is equivalent to the convergence of the parameter  a to 0. Note that  F(n) is 
compact. 

_ _  - -  

Denote by F the set of all Gaussian contractions in F(E). The operators from F have the form aA(~) ,  
- -  

where ~ ~ S* and a e C, 0 _< lal _< T(~) .  Let us equip F with the weak operator topology: this topology 
has the same description in terms of parameters  (a, ~) ,  where the convergence of the matrices ~ is taken 

- -  

with respect to the weak operator topology in E @ E .  Then F is a compact  semigroup with separately 
continuous multiplication; the latter is given by formula (4.1) as before. 

- -  

An explicit description of the semigroup F of Gaussian contractions runs into Problems I and II. 
However, ~ can be characterized as follows: as a topological space, ~ is the projective limit l ima(n )  ; the 

~ - ~  

projections Y(m) -~ Y(n), where m > n ,  or Y -~ ~(n) are given by the mapping aA(~) ~ P,~aA(~) P,~ = 
ad(~(~)) .  

Consider the group Mp(c~, R) := limMp(n, ~) and its Weil representation W := l imWn in the space 
) ~ 

F(E). We will denote by G(n) (respectively, by G) the image of the group Mp(n, ]~) (respectively, 
Mp(~x~, 1~)) in the group of unitary operators of the space F(E). The group G consists of all Gaussian 
operators of form aA(~) such that  ~ = ~t  defines a unitary operator in E@E, each of the matrices ~ ,  
~t22, ~ 2  - 1, ~21 - 1 has only a finite number  of nonzero coefficients, and a 2 = det ~ 2  = det ~ ~ 0. 

Let us take the closure of the group G in the semigroup r(F(E)) of all contractions of the space F(E), 
where F (F (E) )  is equipped with the weak operator topology. Then we obtain a compact  semigroup 
F D G with separately continuous multiplication (for more details on semigroup compactifications of 

- -  

infinite-dimensional groups, see Olshanskii [21] and Nereti,n [14, 15]). Clearly, r C_ F.  

P r o p o s i t i o n  4.1. P,~ ~ F,  n = 1,2,  . . . .  

P r o o f .  Fix n and consider the sequence (CN) of operators in E of the following form: C N e j  : ¢j 
except for the numbers  j = n + 1, . . .  , n + 4N;  C N v n + i  : en+2N+i and C N V n + 2 N + i  : en+i for i = 
1, . . .  , 2N.  In the notat ion of Example 1.1, put  AN ::  Ac~v • Since det CN ---- 1, the operator  AN is 
contained in G. For any k _> n we have PkANP~ ---= P , ,  provided 2N _> k. Thus,  AN weakly converges 
to P~ as N ~ x ~ .  [] 

By Proposit ion 4.1, ~he set F(n) := P rP IF(¢ is an operator semigroup in F(C~). Clearly, 
- -  

c_ 
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T h e o r e m  4.2. (i) F(n) = F(n) ,  n = 1,2 . . . .  
( i i)  r = = l i m r ( n ) .  

~ - ~  

Proo f .  Step 1. Let g e Mp(n, N) and aA(ft) be the corresponding operator from G(n). If g tends 
to infinity in the locally compact group Mp(n, N), then ~n(f~) ~ 0, whence a --~ 0, i.e., aA(f~) weakly 
converges to the zero operator. Thus, P(n) contains 0. 

Step 2. Assume that  L ~ A(~n) has the standard form (~Theorem 2.8) and f~ := P ' (L)  ~ S(n). Then 
there exists a unitary matrix ft ~ S(2n) such that 0~(ft) = fl and idet512] = T.(f~). In fact, it 
suffices to check this for n = 1 and for the elements L ~ A(1) enumerated in Theorem 2.8. In the case 

L = L (1) , L (2)s , L (4) the verification is trivial. In the case L = L(a a) one can take as ~ E S(2) the following 
matrix: 

, 

Step 3. Let us show that ~(n) \ {0} is contained in PnG(2n + 1) P,,. Indeed, both sets or operators are 
invariant with respect to the two-sided action of the group G(n). Therefore, it suffices to check that for 
any matrix f~ E S(n) in the canonical form and any a, 0 < lal _< the operator aA(ft) is contained 
in PnG(2n + 1)P~. But this fact is implied by the result of Step 2; the necessity of adding 1 to 2n is 
caused by the possibility of the strict inequality lal < ~ ( ~ )  (if ~al = Wn(a), then one can deal with the 
group G(2n)). 

Step ¢. The results of Steps 1 and 3 show that F(n) = ~(n) for all n ,  which in turn implies F = ~.  ~ 

R e m a r k  4.3. Denote by G the weak closure of the group G ~ Mp(~, ~) in the group of all unitary 
operators of the space F(E). The group G consists of all Gauss i~  operators aA(~) such that the matrix 
~ ~ S is unitary and 0 ¢ [a[ ~ = det(1 - ~ 1 )  = det ~ 2 .  It is isomorphic to the central extension 
of the group of proper linear canonical t rans fo~a t ions  with infinitely many degrees of freedom by means 
of the circle. The latter group is formed by the infinite symplectic matrices g~z such that the block a is 
a Hilbert-Schmidt operator (see Berezin [2, Chap. II, ~4, Theorem 1], Vergne [26], and Shale [25]). On 
the other hand, the group G coincides with the group of invertible elements of the semigroup F = ~.  

P r o b l e m  I I I .  Is it possible to find a canonical form of operators from the semigroup P = ~ with 
respect to the two-sided action of the group G? 

P r o b l e m  IV.  Consider the orthoprojection P :  E ~ E ~ onto a subspace E ~ C E with infinite di- 
mension and codimension. Is it true that PGP coincides with the semigroup of all nonzero Gaussian 
contractions in E ~ ? 
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