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§1. In troduct ion  

Consider all kinds of lattice polytopes (i.e., polytopes with vertices belonging to the lattice Z d) contained 
L x ,  i 1 . . . , d ,  we in the #dimens ional  cube with sides [0, hi.  After the scale t ransformation xi ~-~ n , = , 

get the unit  cube [0, 1] d and the set CLP~ of all polytopes contained in this cube and having vertices 
1 d on the lattice Ln -- (EZ) . This set may also be treated as a subspace in the space of all convex closed 

subsets of the unit  cube. This subspace is equipped with the Hausdorff metric. Let #n be the uniform 
measure on CLPd,. 

P r o b l e m  1 (on the limit shape). Does the sequence #n converge in the weak topology and is it true 
that  its limit is a &measure, i.e., a measure concentrated on a single convex set? 

If the answer to the second question is positive, then almost all lattice polytopes are concentrated near 
a single convex set after the scale transformation. This set is called their limit shape. 

One of the results of the present paper is that  for d = 2 the answer to Problem 1 is positive and the 
limit shape is presented explicitly. Similar problems arise in statistical physics, representation theory, the 
combinatorics of Young's diagrams, mathemat ical  biology (the Richardson model, "animal growth" ), and 
other fields. Technically, they are related to the classical asymptotic expansions of generating functions, 
the saddle-point method,  and probabilistic considerations. Let us set up one more question. 

P r o b l e m  2. Let y = f (x)  be a strictly convex function whose graph is contained in I = [0, 1] 2, 

f(0) = 0, f(1) = 1. What  is the asymptotic behavior of the number  of convex polygonal lines lying in I ,  
having all vertices on the lattice L .  1 2 = (~Z) , and contained in the e-neighborhood of the graph f as 
n -+ oc, e --~ 0 ? 

This problem is related to the first one. It is easy to state the multidimensional analog of Problem 2. 
The problem stated above happens to be closely connected with the geometry of numbers and affine 
differential geometry. It is solved in the present paper. In the multidimensional case it remains unsolved 
as yet. 

In 1979, in connection with the s tudy of certain Newton's diagrams, V. I. Arnol~d posed a question 
on the number  of lattice polytopes of a given volume (to within the group of lattice automorphisms) and 
presented two-sided estimates for the two-dimensional case [1]. Soon these estimates were generalized to 
the multidimensional case. They are based on the estimates of the number  of lattice polytope vertices via 
its volume (note that  the latter es t imates  have been obtained earlier in [2]). Sharp-order estimates for 
the logarithms have recently been obtained by I. B~r£ny and the author [3]. They are based on different 
ideas closely connected with those of this paper. The author  posed Problem 1 just  after Arnolld's work, 
following the pa t te rn  of similar problems for Young diagrams, parti t ions (see [4]), etc. The solution to 
Problem 1 for d = 2 has been suggested by I. B~rKny and the author  simultaneously; however, the p roofs  
are rather different and hence B~r£ny's proof will be published separately [17]. The theorem on a convex 
lattice approximation of a convex function (Problem 2) proved to be in close connection with the notion 
of a n n e  length according to Blaschke and with variational problems of a statphysical na ture  (the Wulff 
method).  Yet another  equally surprising connection with Diophantine analysis and with estimates of the 
number  of points on a convex curve (Jarnik's theorem) has been revealed. Functions of partit ions and 
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vector partitions and their extensions are the main technical tool in our maalysis; however, this analysis 
appears to be important by itself. In the present paper we indicate the main steps of the proofs. 

A series of reports on the topic of this paper generated useful commentaries and stimulated further 
investigations. Ya. G. Sinai suggested a statphysical interpretation of the limit shape theorem and proved 
the central limit theorem for fluctuations. His paper will be published in the next issue of this journal [5]. 
The close relation between the limit shape problem and statistical physics noticed by R. L. Dobrushin 
reveals itself in the analogy between the surface tension method (the Wulff method) and our theorem on 
curvature (Problem 2). M. M. Skriganov has drawn my attention to Jarnik's work [6], and O. M. Fomenko 
has told me about its up-to-date extensions [7, 8]. The author expresses his gratitude to all these people 
and also to I. B£rgny in discussions with whom the solution of the limit shape problem has appeared and 

• who has his own variant of the proof. The author wishes to express his thanks to V. I. Arnol'd with whom 
the problem was discussed in the early 80's in the context of the work [1]. 

Finally, the remarkable opportunity of working at IHES (France) and the contacts the author maintained 
during his stay at this institute promoted his work on the subject extremely. 

The author dedicates this work to the outstanding mathematician Israel Gel'land, with whom he had 
the luck to work for a long time and from whom the author has always been learning. 

§2. Bas ic  Not ions  and Connec t ions  

Nota t ion .  Let L,~ = (_~Z)2 = { (x l , x2 ) :  (nXl,r~x2) e ~2 C If{ 2} and let A C ]R 2 be a convex closed 
set. By CLPn(A) we denote the set of convex polygons with vertices at nodes of the lattice Ln lying in A 
and by CLP,~(A ; x, y) the set of convex polygonal lines lying in A and having their ends at the points x 
and y and vertices at nodes of L,~ (note that the convexity of a nonclosed piecewise smooth curve implies 
that for a chosen orientation of the plane the moving n-hedron (i.e., the tangent and normal vectors at 
a given point) is everywhere nondegenerate and has the same orientation). Fix the standard Euclidean 
metric r on IR 2 and denote by d the Hausdorff metric on the collection of all compact sets in R 2 , i.e., 

d ( A ,  B) = maxmin r (x  y) + m a x m i n r ( x  y).  
xEA yEB ' y~B x~A  ~ 

Let I = [0, 1] 2 , J = [ -1 ,  1] 2 , el = (1, 0), and e2 = (0, 1). 

S t a t e m e n t  o f  basic t h e o r e m s .  It is convenient to solve Problem 1 first for the case of nonclosed 
polygonal lines. 

T h e o r e m  2.1. For every e > 0 

lim # { 7  e CLP,~(I; el ,  eg.), d("/, r )  < e} = 1, 
, ~  # CLP,~(I ; el ,  e2) 

~3here r = {(Xl,X2) : ~ - ~ -  V ~ :  1, X l , X 2  ~ 0}, 

In other words, for sufficiently large n almost all convex polygonal lines in CLP,~(I; el ,  e2) lie in an 
arbitrarily small neighborhood of the parabola P. 

Let us now proceed to the case of convex polygonal lines lying in the square J .  

T h e o r e m  2.2. For every e > 0 

lim # { 7  E C L P , ( J ) ,  d(7,  A) < e} 
~--+~ # C L P , ( J )  = 1, 

,zhere /X = <(x~ ,x2)  : V/1 - I X l l  + V/1 -1-21 = 1}. 

The curve A consists of four pieces of a parabola and belongs to C 2 at the points of transition from 
one piece to another. 

Thus, the limit shape in the sense of §1 for appropriately scaled convex lattice polygons is A.  Namely, 
almost all normalized convex lattice polygons are concentrated near A for n sufficiently large. In other 
words, the uniform distributions /~,~ on CLP,~(J) converge to the S-measure S~x. 

This theorem solves Problem 1. Let us proceed to Problem 2. Let ~/I be the graph of a strictly convex 
function f E C2([0, 1]), f(0) = 0, f(1) = 1, and let e > 0. Let V,(TI)  be a uniform neighborhood of 7I- 
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T h e o r e m  2.3 .  Let f " ( t )  > 0, t e (0, 1). Then 

~01 l im lim n -~/a i n # { " / E  CLP,~(I ;  O, 1), -y C V~(7I)} = 2 - ~ / a z / [  k(s) l/ads = 2 - : / a ~  [f"(t)] ~/adt, 
~-~0 n - -*~)  4 7 

where k( . ) is the curvature of -y, >~ = 3~/~(3) /C(2)  (C is the Riemann zeta function),  0 = (0, 0), and 
I =  ( I , i ) .  

Consider  the  following variat ional  problem: F ind  

max  / k(s)l l3ds 
7 E C  2 J .y  

over all str ict ly convex curves jo in ing el = (1, 0) with  e~ = (0, 1) and  such tha t  the  tangent  vector is 
vertical at e= and horizontal  at e l .  The  curve .P = {(xl , x 2 ) :  V/gi - + v / ~  = 1} proves to be the  unique 
solution to this problem.  

Let us now proceed to the  case of closed curves. 

T h e o r e m  2.4 .  Let % be a closed strictly convex planar curve and k( • ) be its curvature. Then 

l im lira n -2/a I n # { " / ~  CLP,~(IR=), 3' C Ve('yo)} = 2 - ~ / a ; < /  k(s)Uads.  
~'--+0 ~ ' - " )OO "2 '70 

The  quan t i ty  fn k(s)l /ads is well known in differential geomet ry  as the  affine curvature .  It proves to be 

not only a Eucl idean bu t  also an affine invariant of a curve and occurs in various problems (see [12, 13]). 
The  curve F is a geodesic in affine geometry.  A possible analog of Theo rem 2.4 in the d-dimensional  
case deals wi th  the  integral  fa  k(d-1)/(d+l)(s)dm(s) , where k ( .  ) is the  Gauss ian  curvature  of a convex 
hypersurface f l .  This  quant i ty  has numerous  applicat ions (e.g., see [14]). 

The  connect ion be tween Theo rem 2.1 (respectively, 2.2) and Theo rem 2.3 (respectively, 2.4) is not  so 
straightforward.  After  proving Theo rem 2.3 (respectively, 2.4) and  solving the  ci ted variat ional  problem, 
we apparent ly  ob ta in  T h e o r e m  2.1 (respectively, 2.2). However, bo th  theorems are, in fact, proved simul- 
taneously, and  an independen t  proof  of Theorems  2.3 and 2.4 is as yet unknown.  It is also myster ious  that  
the affine curvature  arises in Theorems  2.3 and 2.4, since in the  applicat ions known so far integrali ty and 
affine curvature  are by no means  related. 

From the s t andpo in t  of p roblems of statist ical  physics,  Theorems  2.3 and 2.4 imply  tha t  the cubic root 
of the curvature  plays a role similar to tha t  of the  surface tension (see [16]) in related problems.  However, 
the appearance  of the  curvature  is undoub ted ly  connected wi th  the a priori convexity of a curve. 

There  exists a very interest ing connect ion wi th  number- theore t ic  problems.  In 1926, Ja rn ik  [6] proved 
the existence of a str ict ly convex curve of uni t  length  whose smoothness  is only C 1 and  on which there 
exist cn 2/a ra t ional  points  of the  form (p l /n ,  p2/n) for an infinite set of denomina to r s  n .  This  order is 
precise; the  n u m b e r  of such points  does not  exceed cn 2/a on an arbi t rary  str ict ly convex curve. Note (see 
Theorem 3.2) tha t  the  n u m b e r  of vertices for a typical  convex polygonal  line in CLPn  is also equal to 
cn 2/a . On the o ther  hand ,  if one requires larger differentiability, t hen  the  n u m b e r  of rat ional  points  will 
be of smaller order  [7, 8]. For C~-cu rves  this order  does not  exceed n 1/2+~, whereas v ~ is realized on 
parabolas  [7]. Thus ,  the  curve F is the only one in a ne ighborhood  of which convex ra t ional  polygonal 
lines are concent ra ted ,  and  it contains  a substant ia l ly  smaller n u m b e r  of ra t ional  points ,  i.e., some kind of 
degenerat ion ( smooth ing  of the  l imit  curve) takes place. This  curve is, however,  likely to remain  the best 
in C °O . 

§3. T h e o r e m s  on  S tr i c t  P a r t i t i o n s  

By a partition of a nonnegat ive  integer n we mean  its decompos i t ion  into an unordered  sum of nonneg- 
drive integers. We write p (n) for the  number  of these par t i t ions .  The  funct ion  p (n) is called the partition 
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function (partitio numerorum).  This function has been studied since Euler, who has found its generating 
function ~ ~ 

1 
E p(~) z" = I I  ~ -z~ - ~ (~)  
n=0  k = l  

A part i t ion of a vector n ~ Z~_ into an unordered sum of vectors with nonnegative integer coordinates 
is called a vector partition. W e  will denote the number  of such parti t ions by pd(n) .  The function pd(n) 
is called the vector partition function. It is not difficult to see that  

1 
~ Pe(n)z~ = I I  1 -  z k - Fe(z),  

~ez$ kez$,~¢0 

where z~ = d ' . . .  z ~  ; see [91. 
We need a somewhat  different notion of a partition. We refer to a part i t ion of a vector n ~ ~_  without 

proportional summands  as its strict partition. We will denote the number  of such parti t ions p~(n),  d > 2. 
The function p~(n) does not have a nontrivial analog for d = 1 and, thus, along with pal(n), may be 
treated as the multidimensional generalization of p(n) .  Its generating function is 

1 
~d(Z) = H '  1 _ zk . 

Here z k kl k~ and the product  H '  is taken over all tuples k = (kl ,  kd) such that  = Z 1 . . . Z  d , . . .  ~ 

g . c .d . (k~ , . . .  , kd) = 1. In particular, 

Z m) - I I  ~2l, Z2" " '~ 1 ~ Z 1 Z 2 ~ 1 kl k=" 
~ g l  ~2 n , m = O  g.c.d.(k~ , k z ) = l  

The asymptot ic  behavior of p(n) is well known (Hardy-Ramanujan  and Rademacher,  e.g., see [9]). 
particular, 

l np (n )  = ( 2 ' ~ / v % , / ~ 0  + o 0 ) ) .  

In 

In the mult idimensional  case, the asymptot ic  behavior of pd(n) was under  investigation only in a few 
works (see [113, 11]). It has been discovered that  the asymptot ic  behavior varies substantially depending 
on the relations between the coefficients. Specifically, for d = 2 the asymptot ic  behavior inside and outside 
the zone cl v/~ < m < c2 n2 is quite different. In this zone the asymptotics is as follows: 

l n p 2 ( n , m  ) ~ -  3 . ~ / ~ - ~ ( n m ) 1 / 3 ( 1  -[- o ( 1 ) )  . 

We will be interested in the asymptot ic  behavior of the function p~ (n, m) .  Our technique requires a 
knowledge of the logarithmic asymptotics for this function in the "linear zone" 0 < s0 < m / n  <_ s l  < c~. 

T h e o r e m  3.1.  Let g - - 3 ~ / ( ( 3 ) / ( ( 2 ) ;  then 

(1) l n p ~ ( n , m ) = g ( n m ) l / 3 ( l + o ( 1 ) ) ,  r e = a n ,  O < a < c ~ ,  n - ~ ;  

(~.) lim sup In-2/31np;(n, sn)  - x¢/~l  = 0 ,  So > O, Sl < ~ .  
n-+~ '~o_~'~_~ 

The factor ¢(2) appears in the denominator  owing to the coprimity condition. I tem (2) claims that  the 
convergence to the limit in (1) is uniform with respect to all rays separate from the coordinate axes. The 
proof deals with the multidimensional saddle:point method  for the Cauchy integral. The saddle-point torus 
depends on the parameter  (n), but  in the linear (and even quadrat ic)  zone no difficulties are encountered, 
the more so that  w e d e a l  with logarithmic asymptotics. 
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M a i n  l e m m a  (on the saddle-point contour). As Z1, Z2 "--~ 1 We have 

(1  - zl)(1 - z2) ln~2(zl ,  z2) = (~(3)/~(2))(1 + o((z~ - 1), (z2 - 1))). 

Moreover, the saddle-point torus Iz~l = r~, Iz21 = r2 is as follows: 

rl = 1 -  x,~'/3n -~/3 + o (z~-  1 )=  1 - x ~ i / 3 n  -1/~ + o (z~-  1), 

r~ = 1 -  zn~i~m-~l~ + o ( z ~ -  1)=  1 -  z ~ - ~ l ~ n  -~1~ + o(z~ - 1). 

Thus, we have determined the minimax point ~ d ,  in order to obtain the logarithmic asymptotJcs 
(including the proof of u n i f o r ~ t y  with respect to a p~ameter ) ,  one has only to verify that the Hessian is 
no,degenerate i~ ~ neighborhood of the point (1, 1). 

Let An,m denote the set of all strict partitions of the vector (n, m) ; ~A~,~  = p~(n, m) .  If ~ ~ A~,m, 
, m~))i=~, ~ n i  = n,  ~ m i  = m ,  then the summands may be pu~ in ascending order of i . e . ,  ~ = ( ( h i  ~ 

the corresponding ratios miln i :  m~lns  ~ m2ln~ ~ . . .  ~ mkln~  (note that at most one summand 
can h~ve the first or the second coordinate equal to zero). Put  ~i = ~rc~g(m~ln{), i = 1, ...> k,  and 
~(~) = ( ~ l , . . . ,  ~k) e [0, r12] k, and let I~1 be the number of s u m m ~ d s  in the partition ~. 

The following theorem describes two important asymptotic properties of a typicM strict partition; ~hese 
properties pertai~ to the number of s u m m ~ d s  and to the distribution of angles. 

T h e o r e m  3.2. 1. There exists an absolute constant c such that for every ~ > 0 

l i~  # { ~  ~ A : , , :  I~-~/~1~1- ~1 < ~} = 1. 
~ #A~,~ 

~. Fo~ ~,~,~ ~ e (0, ~/2)  ~h~,~ ~ 7 ~  ~ i ~ o ~  ~(~) > 0, ~(~) % 0 ~ ~ ~ 0, ~ c h  ~h~ 

{ lira ~-1n-2/3  in ~ A ~ A,,~ : - n{ > 7(J < 1. 
n - - ~  n i : I O ; - O l < ~  

Item 2 claims that the fraction of those summands (n{, m{) for which the angle 0{ = arctg(m{/n{) is 
sufficiently close to a given 0 can be too large only for an exponentiMly small number of partitions. In 
particular, the limit distribution of angles for a typical partition is continuous. 

These theorems may Mso be proved for full partitions. 
Le~ us now connect ~he spaces An,~ and CLP~(I ;  0, 1). 

L e m m a .  The mapping 

,m,~ I~i ~n. ~m,))~l 1 h . , .  ~ ~ = ( ( ~  ,,~=, ~ ( ( .  ,, = 

establishes the bijection between the set of strict partitions of the vector (n, n) and the set of convex 
polygonal lines in I = [0, 1] 2 with vertices at nodes of the lattice Ln = (~Z)l 2 and ends at the points 
0 = ( 0 , 0 )  ~ d  ~ = (~,S).  

This lemma Mlows us to interpret the theorems of this section as assertions on convex lattice polygoaM 
lines. 

C o r o l l a r y  1. 1. l n ~ C L P ~ ( I ;  0 , 1 ) =  ~n2/a(1 + o(1)). 
2. l n ~  CLP~(J)  = 4,n2/a(1 + o(1)). 

From now on we deal with geometric statements. 
Le~ H be the parallelogram with diagonal vertices (0, 0) and (1, 1). 

C o r o l l a r y  2. 1. l n ~ C L P ~ ( H ;  0, 1 ) =  , (AreaH)~/~nZ/a(1 + o(1)), where AreaH is the area of H. 
2. lim sup In - 2 / a l n ~ C L P ~ ( H ;  0, 1) - , s s / a l  = 0, where AreaH = s. 

n ~ O ( s o ~ s ~ l  

Both corollaries c ~  easily be derived from Theorem 3.1. In order to prove Corollary 1, it suffices ~o 
perform a linear change taking H into I ,  and to prove Corollary 2 we use the uniformity in Theorem 3.1. 

The assumption that the ends of the diagonal belong to the lattice can be removed, since one c~n deal 
wi~h ~a arbitrary parallelogram H and the set CLP~(H ; a, b), where a and b are ~he l~ttice points of 
L~ newest to the vertices of H. Corollary 2 remains valid in the same formulation. 
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§4. Ske tch  of  P r o o f  of  t h e  T h e o r e m s  

One can regard convex polygonal lines in CLP,,(I  ; el,  e2) as graphs of piecewise linear functions, i.e., 
as elements of C([0, 1]) with the boundary conditions x(0) = 1 and x(1) = 0. The set of all convex 
functions on [0, 1] with these boundary conditions forms a compact set M in the ~opology of C([0, 1]). 
This topology coincides with the Hausdorff topology on the polygonal lines considered as closed subsets 
of I .  The set of probability measures on M ,  in turn, forms a compact set V(M) in the weak measure 
topology. Let #~ denote the uniform distribution on CLPn(I  ; el ,  e2). By virtue of compactness, there 
exists at least one limit measure g = w-limk-~oo#n, ; its support supp~ is t he  closed set of all convex 
curves with ends el and e2. 

L e m m a  1. If ?o ~ supp~,  then for every ¢ > 0 

lira ~4-1?2 -2/3 l n # { 7  ~ CL P~ (I ;  el,  e2), 7 C V,(7o)} = 1, 
n ---~ ~ D  

(,) 

where V~(~/o) is the c-neighborhood of 7o. 

This relationship follows from the formula 

0 < ~ (V~(70) ) :  lim #n~(V~(70)):  lira # { T e  CLP,~( I ;  e l ,e2) ,TcV~(7o)}  
k--.~ k--.~ # CLP,~( I  ; e l ,  e 2 )  ' 

and from the estimate in Theorem 3.1. 
Hence it follows that once we prove that there is a unique convex curve (namely, F = {(x~, x2) : 

~ + v/k-~ = 1)) with the property mentioned in Lemma 1, it will follow that any limit measure for the 
sequence #n is 8r.  This is exactly the assertion of Theorem 2.1. Note that Theorem 2.2 can be proved 
with the help of exactly the same approach, since only one convex curve in J ,  namely, A = {(xl, x2) : 
V/1  ' ]Xl] + V/1 --[x2[ = 1}, has the required asymptotic behavior. 

Hence, it suffices to show that the only curve for which condition (.) is satisfied is the curve F. We 
shall prove a stronger assertion. Let y = (21, ~2) be a rational point, y 6 F, ]22 - (1 - x/~-) 2] > ¢. 
Let the set A(y, ~) = A consist of all polygonal lines in CLPn(I  ; ¢i, e2) that intersect the straight line 
{(~1, A) : A 6 JR} at some point of the interval :~2 - -  ¢ ~ ,~ ~ ~'2 ~- ~ .  

L e m m a  2. limn-~o g- ln-2/a  l n # A  < 1. 

P roo f .  The set Ao splits, into a finite number of sets A~,,o according to at what rational point A a 
polygonal line intersects the segment [22 - e, ~:2 + ~] and what is the angle p of the slope at this point to 
the xl-axis (from the left, for instance). Since the number of sets Ax,p depends on n polynomially (_< n4), 
it suffices to obtain an estimate for #Ax,p uniform with respect to all A and p. Each polygonal line in 
Ax,p lies in the union 1-I1 U II2 of two parallelograms, namely, the parallelogram Hi with the xl-axis and 
the straight line P = {(xl, x2) : xl/al  +x2/a2 = 1} as directrices and the diagonal vertices el and y and 
the parallelogram H2 with the x~-axis and the straight line P as directrices and the diagonal vertices e2 
and y. By Corollary 2 in §3, we have 

lira >~-ln-a/31n#{7 6 CLPn(I; ¢1,e2), 7 C II1 UHa} = (AreaH1)l/3 + (AreaIIa) 1/~, 
n - - + O O  

and also if the areas of the parallelograms II1 and II2 are bounded away from zero, then the convergence is 
uniform with respect to p. For small areas of the parallelograms II1, II2 we may use Item 2 of Theorem 3.1 
asserting the exponential smallness of the number of partitions ( = polygonal lines) with a large common 
length of links that have a slope close enough to that of one of the two straight lines going either through 
el and y or through e2 and y each. Thus, we reduce the problem for the remaining areas to the following 
geometric problem, whose solution has been suggested by I. B £ r ~ y  (see Fig. 1). 
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x 2  

e2 

a 2  

al ~ p  el 

Fig.  1 

• 

g g l  

L e m m a  3. Among allstraight lines of the form Pal,a= = {(Xl, X2): x l / a l + x 2 / a 2  - =  1}, 0 < al ,  a2 < 1 
and points y = (x~, x2) on Pa~,a~, the sum 

(AreaH~) 1/a + (AreaH2) 1/a 

is maximal and is equal to 1 = A r e a /  only for the pairs (al ,  a2) and points y that satisfy al + a2 = 1, 
X l  ---- a~, and x2 = a~. 

Thus, points of the form {(x~, x2) : ~ -t- x / ~  = 1} prove to be the only ones that provide the 
maximum value for the expression lim~_~o~ ~ -~n  -2/3 In # A .  Hence, Theorems 2.1 and 2.2 are proved. 

Let us proceed to Theorems 2.3 and 2.4. Let y = f ( x ) ,  f e C~([0, 1]), f(0) = 1, /(1) = 0, / " ( t )  > 0 
for t ~ (0, 1). If t l ,  t2 ~ (0, 1), then the parMlelogram constructed on tangents to the graph of f at the 
points t 1 a~d t2 with vertices at the points (t~, f ( t l ) ) ,  (t~, f(t~)) will be called admissible. Taking a 
partition of the interval [0, 1] by the points 0 = t0 < t~ < . . .  < tk = 1, ti - ti-~ = ~, i = 1, . . . ,  k ,  and 
constructing admissible parallelograms Hi = Ht~,t~+t with respect to ~he pairs (ti, ti+~), we obtain for 
5 = 5(e) su~ciently small, the inclusion ~ Hi C V~(7I), where 7I is the graph of f .  

L e m m a  4. The area of an admissible parallelogram is 

Areal I , , ,+ ,  = ¼f"(t)5 a + o(8a). 

This elementary lemma allows us to get a lower bound for z - i n  -2/3 l n # { 7  E CLPn, 7 C V~(TI) } by 

means of the integral sum for the integral f~ f"( t)~/adt .  
On the other hand, given an e > 0 small enough, we can construct a family of admissible parallelograms 

covering V,(7I) and such that  the area of their mutual overlappings is small in comparison with the total 
area of V~(Tf). This argument gives the desired upper bound. 

C o n c l u d i n g  r e m a r k s .  1. Convex capacity. The foregoing arguments suggest that the following notion 
is useful. Let A be a convex set. The quantity 

c(A) = lira ~-ln-2/aln#CLPn(A) 
~,'--'~ ¢K) 

is called its convex capacity (if it exists at all). Here CLP,~(A) is the set of all closed polygonal lines having 
vertices on Ln and lying in A. If we do not require closedness, then we can also deal with nonconvex A. 
In this case, the convex capacity can be defined as follows: 

c(A; a, b) = lira lira ~.t'-lrt -2/3 ln#{ , ' /E  CLP. (A;  a, b), ~ C V~(A)), 
$---~0 ~t---~ OO 
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a, b E OA. In fact, we have been evaluating the convex capacity of certain sets and graphs. It would be 
of interest to continue these calculations. 

2. On the other hand, Theorem 3.1 may be treated as the evaluation of the entropy for the uniform 
distribution. From this viewpoint, it is appropriate to consider some other distributions on CLPn. Our 
results are possibly stable with respect to the choice of distributions. 

3. Theorem 3.1 shows how the number of vertices of a typical polygonal line grows. However, one 
can consider some other fixed growth, say, V~, and look for the limit shapes for uniform distributions 
connected with this growth. This problem is similar to that on large deviations. 

4. In the multidimensional case there exist two forms of generalizations of two-dimensional problems, 
namely, the transfer to polyhedra and the transfer to convex hulls of polygonal lines ("zonotopes"). Both 

cases are of interest; the second one may be investigated by means of the tools of the present paper. 
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